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Adverse drug reactions (ADRs) pose health threats to humans. )erefore, the risk re-evaluation of post-marketing drugs has
become an important part of the pharmacovigilance work of various countries. In China, drugs are mainly divided into three
categories, from high-risk to low-risk drugs, namely, prescription drugs (Rx), over-the-counter drugs A (OTC-A), and over-
the-counter drugs B (OTC-B). Until now, there has been a lack of automated evaluation methods for the three status switch
of drugs. Based on China Food and Drug Administration’s (CFDA) spontaneous reporting database (CSRD), we proposed a
classification model to predict risk level of drugs by using feature enhancement based on Generative Adversarial Networks
(GAN) and Synthetic Minority Over-Sampling Technique (SMOTE). A total of 985,960 spontaneous reports from 2011 to
2018 were selected from CSRD in Jiangsu Province as experimental data. After data preprocessing, a class-imbalance data set
was obtained, which contained 887 Rx (accounting for 84.72%), 113 OTC-A (10.79%), and 47 OTC-B (4.49%). Taking drugs
as the samples, ADRs as the features, and signal detection results obtained by proportional reporting ratio (PRR) method as
the feature values, we constructed the original data matrix, where the last column represents the category label of each drug.
Our proposed model expands the ADR data from both the sample space and the feature space. In terms of feature space, we
use feature selection (FS) to screen ADR symptoms with higher importance scores. )en, we use GAN to generate artificial
data, which are added to the feature space to achieve feature enhancement. In terms of sample space, we use SMOTE
technology to expand the minority samples to balance three categories of drugs and minimize the classification deviation
caused by the gap in the sample size. Finally, we use random forest (RF) algorithm to classify the feature-enhanced and
balanced data set. )e experimental results show that the accuracy of the proposed classification model reaches 98%. Our
proposed model can well evaluate drug risk levels and provide automated methods for status switch of post-
marketing drugs.

1. Introduction

Drug risk has always been a worldwide concern, and its most
intuitive manifestation is adverse drug reactions (ADRs).
)e severity of adverse reactions of different drugs varies
greatly. In some cases, it can even be fatal, which poses a
great threat to people’s health [1]. ADRs refer to harmful
reactions of qualified drugs that have nothing to do with the
purpose of medication under normal usage and dosage.
Edwards and Aronson proposed a clearer definition of

ADRs: “An appreciably harmful or unpleasant reaction,
resulting from an intervention related to the use of a me-
dicinal product, which predicts hazard from future ad-
ministration and warrants prevention or specific treatment,
or alteration of the dosage regimen, or withdrawal of the
product [2].”

In order to reduce the harm caused by ADRs, the
classification system of prescription (Rx) drugs and over-
the-counter (OTC) drugs has become an internationally
common model. According to the regulations of the US
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Food and Drug Administration (FDA), drugs are classified
into Rx drugs and OTC drugs based on indicators such as
toxicity and dependence [3]. Compared with Rx drugs, OTC
drugs have less adverse reactions, and they can be purchased
without a doctor’s prescription to treat mild diseases. For
OTC drugs, the China Food and Drug Administration
(CFDA) further divides OTC drugs into two categories,
namely, OTC-A drugs and OTC-B drugs, of which OTC-B is
safer [4]. )erefore, drugs in China are divided into three
categories, and the order of risk levels is Rx>OTC-
A>OTC-B. At present, the drug regulatory authorities of
many countries implement a re-evaluation system for post-
marketing drugs, and switch Rx drugs and OTC drugs based
on the frequency and severity of ADRs [5, 6]. As Brass
argues, removal of the requirement for prescriptions saves
both the health care professional and the patient time, but
assessment of the ability of patients to use drugs in this
manner is a critical component of the regulatory review [7].
)is method mainly relies on the judgement of medical
experts and lacks an automated risk identification tech-
nology. We hope to build a multi-classifier to determine
whether a drug belongs to one of the above three categories
by evaluating ADRs, in order to provide an objective and
automatic method for the status switch of drugs. Further-
more, the accurate classification of drugs will provide more
convenience for patients’ medication, while reducing the
risk of ADRs as much as possible.

)e ADR reports used in this experiment all originate
from CFDA’s spontaneous reporting system (SRS). Spon-
taneous reporting means that medical workers voluntarily
report suspicious ADRs discovered in the clinic to drug
manufacturers, adverse reaction monitoring agencies, drug
regulatory departments, etc. [8]. SRS is suitable for wide
deployment in various regions and can collect large amounts
of ADR data [9]. Nowadays, most members of WHO
Uppsala Monitoring Centre (UMC) have adopted this
system [10]. However, the information in many reports is
too rough, which may affect the causality of adverse reac-
tions, leading to over or under attribution [11]. At the same
time, incomplete or missing reports make it impossible to
calculate the incidence of ADR accurately. )erefore, it is
necessary to standardize the original data and use the
method of signal detection to extract effective information.
At present, the commonly used signal detection method for
ADRs is disproportionality analysis (DPA) [12, 13]. )e
proportional reporting ratio (PRR) used in this paper is one
of the DPA methods. Based on the PRR method, we can
build a data matrix with drugs as samples, ADR symptoms as
features, and signal detection results as feature values. )e
last column of the matrix represents the category label of
each drug.

Since the overall data contains many types of ADRs, and
only part of the adverse reactions is caused by one drug, this
data matrix is high-dimensional and sparse. A large number
of features can increase interference noise and may obscure
some important ADR data. In order to improve the clas-
sification accuracy, it is necessary to perform feature se-
lection on the data set. )e principle of feature selection is to
use detection methods to evaluate all features from the data

set, and retain features that are efficient and reliable for data
classification [14]. )e experiment uses machine-learning
methods to extract features with high importance scores.

Considering that the high-dimensional feature space
contains a lot of information about ADR symptoms, we
cannot simply keep important features and delete those that
are not helpful for classification, because this method may
cause some serious ADR features to disappear, making it
difficult to accurately evaluate the potential risks of drugs.
On the basis of retaining the existing ADR features, we hope
to expand the feature space with more effective data that are
helpful for the classification. Goodfellow et al. proposed the
concept of generative adversarial networks (GANs) in 2014
[15]. As a popular theory in deep learning in recent years,
GAN has achieved outstanding performance in data gen-
eration. )erefore, according to the feature selection data,
we use GAN to generate similar artificial data, which are
added to the feature space to achieve feature enhancement.

In terms of sample space, the number of Rx drugs and
OTC drugs in our ADR data set is extremely imbalanced.
Traditional classification techniques perform poorly on this
type of data because they tend to favor themajority class.)e
synthetic minority over-sampling technique (SMOTE) al-
gorithm proposed by Chawla et al. is one of the most
representative external methods to balance data sets through
resampling [16]. We use SMOTE to balance the data set by
adding samples based on k-nearest neighbors in the mi-
nority class. )e samples of Rx, OTC-A, and OTC-B drugs
will reach a balanced state after SMOTE resampling, which
lays a data foundation for using conventional random forest
(RF) classification algorithm.

)e purpose of this paper was to build a high-accuracy
drug risk level classificationmodel, which can be deployed in
the Chinese spontaneous reporting system. When a drug
manufacturer applies to the drug regulatory authority for
drug category switch, CFDA organizes medical experts to
conduct drug risk assessment. In this process, the proposed
model can automatically identify the drug category
according to the ADR monitoring data after the drug is put
on the market, which can provide auxiliary decision support
for experts.

2. Related Work

With the development of computer science, the use of
machine learning to solve ADR problems is common and
widely used, which makes great contribution to the control
of medication risks. In 2011, Pouliot et al. used more than
480,000 molecular activity data in the PubChem database to
establish a logistic regression model to predict the level of
ADRs that may be caused by target drugs [17]. )e results
show that 75% of the adverse reaction signals mined by this
model could be verified by relevant medical literature or
drug instructions. In the same year, Santiago et al. proposed
a new ADR detection method, which compared and
screened the drugs involved in the adverse reaction signals,
and then obtained the final mining results [18]. In this
way, the sensitivity of mining adverse reactions related to
rhabdomyolysis reached 70%, and the positive detection rate
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reached 45%. In 2013, Chen et al. realized the identification
of high-risk proteins and the discovery of potential adverse
reaction mechanisms through the analysis of the high-risk
protein network of ADRs [19]. )is study analyzed the data
of drug target proteins, protein pathways, and proteins
related to adverse reactions. )e results found a total of 41
ADR protein subnetworks, and found that certain biological
enzymes and transport proteins are the key factors causing
adverse reactions.

In the field of risk mining of ADRs, researchers have
conducted a lot of research on various types of spontaneous
report databases and have achieved sufficient results. In 2014,
Roberto et al. used signal detection methods to conduct data
mining, trying to detect the serious cardiovascular adverse
reaction signals of triptans drugs [20]. )e results show that
triptans drugs are related to a variety of adverse reactions such
as ischemic cerebrovascular complications. In 2015, Mai et al.
conducted data mining in the spontaneous report database
and found that the use of statin drugs may increase the risk of
rectal cancer or pancreatic cancer [21]. In 2018, Scholl et al.
proposed a prediction-model-based approach to improve the
efficiency of full database screening [22]. )e AUC value and
the ratio of potential signals of this method have been greatly
improved compared with traditional signal detection
methods. In 2019, to resolve entity-level ADR classification
tasks, Alimova and Tutubalina investigated deep neural
network models in the natural language processing (NLP)
field based on various ADR corpus [23].

In recent years, researchers have analyzed ADR from
multiple perspectives such as patient age and drug inter-
action, and have proposed many new risk detection
methods. In 2020, Martocchia et al. evaluated the incidence
of adverse events and drug-drug interactions exposed to
polypharmacy and proposed that the application of certain
software programs could significantly reduce the incidence
of adverse events at every level of healthcare [24]. In 2021,
Giangreco and Tatonetti pointed out that detection of ADR
is challenging due to dynamic biological processes during
ontogeny, which alter pharmacokinetics and pharmacody-
namics [25]. )e population modeling technique they
proposed exhibited normally distributed and robust ADR
risk estimation at all development stages of children. In the
same year, Mehta et al. reviewed the risk assessment
methods of prescription drug and developed more than two
dozen prescription drug-based risk indices, which differ
significantly in design, performance, and application [26].

Regarding China’s spontaneous report data, scholars
have integrated and evaluated ADR information, and have
begun to measure drug risks in an intelligent way. In 2015,
Ge et al. used the NLP method to extract knowledge of
adverse reactions in a large number of Chinese clinical
narrative texts [27]. Based on the results of knowledge ex-
traction, they established a knowledge base corresponding to
drugs and adverse reactions, and set up a website to provide
online query and to download ADR information. In 2020,
we compared four drug-risk prediction models using ma-
chine-learning methods as classifiers, and determined the
best risk prediction framework [28], with a classification
accuracy rate of 95%.

In order to further improve the classification accuracy so
that the risk prediction model can be applied in practice, this
paper is based on the previous research, and realizes the
feature enhancement of high-dimensional ADR feature space
through the combination of GAN and feature selection.
Furthermore, by comparing with our previous models, we
propose a better predictive model for evaluating drug risks.

3. Materials

ADR reports used in this study were obtained from the
CFDA in Jiangsu Province. )e data set covered a total of
985,960 ADR reports in Jiangsu Province from 2011 to 2018,
including report ID, report address, patient age, gender,
drug name, and ADRs symptom. Due to invalid and du-
plicate reports, we deleted data with no reference value and
standardized the names of drugs and ADR symptoms. )en
1,047 drug names and 751 ADR symptoms were prepared. In
more detail, for each drug, the ADRmentioned in one report
would increase the total of corresponding ADR symptoms
by one.)e result of the final statistics is a table with the drug
names corresponding to the frequency of all types of ADRs.
Data set could be described as the following.

Sample space:

X � x1, x2, . . . , xm􏼈 􏼉. (1)

Here, m� 1047. )e drugs and ADRs make up the
sample space together. Drugs are the samples and ADRs are
the features.

Feature vector:

xi � xi1, xi2, . . . , xi d( 􏼁 ∈ X. (2)

Here, d� 751. Every sample is composed of d features,
and xi is one of the feature vectors in sample space, where
xi d represents the frequency under the matching drug-ADR
pairs.

According to the China Medical Information Platform,
we manually labeled all drug samples, with values 0, 1, and 2
representing Rx, OTC-A, and OTC-B, respectively.

)e statistical results in Table 1 show that Rx drugs
account for a high proportion, while the two categories of
OTC drugs are the opposite, which means that the classes in
the data set are imbalanced.

4. Methods

4.1. Model Framework. Figure 1 shows the flowchart of the
proposed model. )e model is mainly divided into four
stages: signal detection stage, feature enhancement stage,
minority expansion stage, and RF classification stage.

(1) Signal detection stage: the first step of the proposed
model is to use signal detection on the preprocessed
spontaneous report data, and calculate the PRR value
of the drug-ADR pairs to obtain the ADR imbal-
anced data set.

(2) Feature enhancement stage: based on the ADR
imbalanced data set, the model selects the top 200
features of classification importance, and uses GAN
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to generate artificial features that meet the real data
distribution. )e generated features are added to the
imbalanced ADR data set, so that the feature space

contains more effective features, which can improve
the classification accuracy. So far, the feature-en-
hanced ADR imbalance data set has been obtained.

Spontaneous
report data

Extract
Drug-ADR event PRR analysis ADR imbalanced

data set

Set generation
ratio

Expand the
minority samples

Feature-enhanced
ADR balanced

data set

Rank feature
importance

Select the top 200
features

Train GAN model

Expand effective
features

Feature-enhanced
ADR imbalanced

data set

Generate artificial
features

Train RF classifier

Predict drug
category

Signal Detection

Feature
selection

ADR feature enhancement
GAN

SMOTE
RF

Classification

Evaluate drug risk

Figure 1: Flowchart of the proposed model.

Table 1: Quantity information of drugs in data set.

Drug category Label Sample size Percentage
Rx 0 887 84.72
OTC-A 1 113 10.79
OTC-B 2 47 4.49
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(3) Minority expansion stage: SMOTE is used to expand
the minority samples (OTC-A and OTC-B) to
equalize the number of the three categories of drugs,
which helps to obtain a feature-enhanced ADR
balanced data set.

(4) RF classification stage: the RF algorithm is used to
classify the feature-enhanced ADR balanced data set.
Finally, we analyze the results of the proposed model
based on multiple indicators, and further evaluate
the risks of postmarketing drugs.

4.2. SignalDetection. )eDPAmethod is currently the most
used ADR signal detection technology [29]. DPA is used to
measure the disproportion or imbalance of the sample
distribution in the database. If the number of occurrences
associated with drug and adverse event is greater than the
expected number or the number of other combinations, it is
considered that there is a potential connection between the
drug and the adverse event, which may be a positive ADR
signal. Calculation of DPA is based on the principles using
the two-by-two contingency table.

Proportional reporting ratio (PRR) is one of the DPA
methods, which was proposed in 2001 by Evans of the British
Medical Regulatory Authority [30], and it is a key method
for ADR signal detection in the world. )e calculation of
PRR is similar to the relative risk in epidemiological studies,
which is used to quantify the strength of the drug-ADR
association. According to Table 2, the formula to compute
PRR value is

PRR �
(A/(A + B))

(C/(C + D))
. (3)

Formula (3) indicates that if the PRR value of a drug-
ADR pair is larger, the relative risk is higher, so the risk of
the adverse reaction corresponding to the drug is greater. In
our study, after calculating the PRR value of all drug-ADR
pairs based on statistical data, the data matrix is established
with drugs as the sample, ADR as the feature, and PRR
results as the matrix value. )e last column of the data
matrix is the category label of each drug, where Rx is “0,”
OTC-A is “1,” and OTC-B is “2.” Due to the quantitative
difference among the three categories of drugs, we got the
ADR imbalance data set.

4.3. Feature Enhancement. Since the overall data contain
many types of ADRs, and only part of the adverse reactions
is caused by one drug, this data matrix obtained by PRR is
high-dimensional and sparse. In order to improve the
model’s classification accuracy of this data set, we expand the
effective ADR data in the feature space to achieve feature
enhancement.4.3.1. Algorithm ID4 is Used for Feature Se-
lection (FS)

In the process of decision tree attribute splitting, the Gini
index is used to calculate the contribution of a single feature
for the correct classification. During tree growth, the purity
measure of split at node k is:

Gini pk( 􏼁 � 􏽘

n

k�1
pk 1 − pk( 􏼁 � 1 − 􏽘

n

k�1
p
2
k. (4)

In formula (4), pk represents the probability that the
sample is correctly classified at node k. )e sample is divided
into different branches to produce their branch sets Tv, and
the purity measure is as follows:

Giniindex(T,k) � 􏽘
V

v�1

T
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|T|
Gini T

v
( 􏼁. (5)

T represents the current divided set, and the Gini index
reflects the probability that any two branch sets are in-
consistent. A smaller Gini index in formula (5) indicates that
the branch set is purer, which also means that the classifi-
cation accuracy will be higher. )erefore, node k strives to
meet the minimum purity:

k
∗

� argmin
k

Giniindex(T,k). (6)

)e feature fi is the classification basis of node k, and left
and right branches can be obtained. )ey are measured
according to the Gini changes of the branches:

Gini fi,k( ) � Gini Pk( 􏼁 − Gini P1( 􏼁 − Gini Pr( 􏼁. (7)

Gini(P1), Gini(Pr) represent the Gini index of the left
and right branches, respectively. After calculating Gini(fi,k)

in formula (7), the importance of the feature fi in the j-th
tree is:

ImGini
j � 􏽘

m∈M
Gini fi,k( ). (8)

)e importance of feature fi on a single tree is calculated
by formula (8). Furthermore, in the total number ofm trees,
the feature fi appears when part of the tree nodes split.)en,
the overall importance of measuring feature fi is:

Imfi
� 􏽘

m

j�1
ImGini

j . (9)

In order to select features that are more effective for
classification, the features are ranked in the descending
order of importance calculated by formula (9). )e first 200
main features are retained as the basis for the next step of
GAN feature generation.

4.3.1. Use GAN to Generate New Features. GAN is a gen-
erative model based on zero-sum game theory. It includes a
generative model (G) and a discriminant model (D), both of
which are based on neural networks. In the training process
of G and D, G generates data similar to the true value

Table 2: DPA two-by-two contingency table.

Target ADRs Other ADRs Total
Target drugs A B A+B
Other drugs C D C+D
Total A+C B+D A+B+C+D
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through the noise space z. )e goal of D is to distinguish
between real data or generated data. Generator and dis-
criminator are iteratively optimized with each other, so that
their performance continues to improve. In the end, the two

models reached a Nash equilibrium. At this time, the data
generated by GAN approximates the real data [31, 32]. )e
evaluation formula of GAN is as follows:

min
G

max
D

V(D, G) � Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(x)))]. (10)

In formula (10), x is the real data, which conforms to the
Pdata(x) distribution; z is the hidden space noise, which
conforms to the Pz(z) distribution. V(D, G) represents the
degree of difference between the real sample and the gen-
erated sample. Formula (10) indicates that when the dis-
criminator maximizes the difference and the generator
minimizes the difference between the real samples and the
generated samples, after multiple rounds of iterative
training, realistic data can be obtained.

We use two sets of neural networks to constructG andD,
respectively. )e key factors in the training process are
gradient descent, alternate training, and back propagation.
)e training steps in the experiment are summarized as
follows:

Step1: select some samples z1, z2, . . . , zm􏼈 􏼉 from the
input random noise Pz(z).
Step2: sampling from the original training set, the
number of samples x1, x2, . . . , xm􏼈 􏼉 is the same as the
noise samples.
Step3: set the parameter ofD to θd, and use the gradient
ascent algorithm in formula (11) to update the
discriminator:

∇
1
m

􏽘

m

i�1
log D xi( 􏼁 + log 1 − D G zi( 􏼁( 􏼁( 􏼁􏼂 􏼃. (11)

Step4: repeat steps 1–3 for k times, and then update G
once.
Step5: set the parameter ofG to θg, and use the gradient
descent algorithm in formula (12) to update the
generator:

∇
1
m

􏽘

m

i�1
log 1 − D G zi( 􏼁( 􏼁( 􏼁. (12)

Step6: repeat steps 1–5 until the GANmodel converges.

Input the features selected in Step 4.3 (1) into GAN to
generate an equal number of artificial ADR features. )ese
generated features satisfy the real value distribution and are
consistent with the original data. Use generated ADR fea-
tures as real data to expand the feature space in order to
enhance the risk characteristics of the drugs. Now, we obtain
a feature-enhanced ADR imbalance data set.

4.4. Synthetic Minority Over-Sampling Technique (SMOTE).
After adding the generated ADR features to the data set, the
number of effective features in the sample is increased,

which is helpful for subsequent classification. However, the
proportions of Rx, OTC-A, and OTC-B drugs in the data set
are quite imbalanced. Traditional classification algorithms
will seriously bias the majority class and ignore the minority
class, leading to deviations in the result. )erefore, for the
imbalanced data set in this experiment, we use the SMOTE
algorithm to expand the minority samples before
classification.

)e core of SMOTE is to insert randomly generated new
samples between the minority samples and their neighbor
samples [33]. )is can increase the number of minority
samples and improve the class imbalance distribution of the
data set [34]. )e steps of the SMOTE are as follows:

Step 1: the number of majority samples in the data set is
N+, and the number of minority samples is N− . Cal-
culate the imbalance ratio IR and oversampling rate K
of the original data set:

IR �
N

+

N
−. (13)

Round down IR in formula (13) to get the oversampling
rate K:

K � ⌊IR⌋, (14)

(⌊⌋ means rounding down the data.)
Step 2: for each minority sample xi, calculate the
Euclidean distance with other minority samples, and
find the k nearest neighbors. )e Euclidean distance is
calculated as follows:

d xi, xj􏼐 􏼑 �

����������������������������������

xi1 − xj1􏼐 􏼑 + xi1 − xj2􏼐 􏼑 + · · · + xip − xjp􏼐 􏼑

􏽱

.

(15)

Step 3: according to the oversampling rate K in formula
(14) and Euclidean distance d(xi, xj) in formula (15), K
samples are randomly selected from the k nearest
neighbors with replacement, and mark them as
xi(i � 1, 2, . . . , K). Calculate the difference between x
and xi as (x − xi).
Step 4: use formula (16) to synthesize each new sample
xi
new:

x
i
new � x + rand(0, 1) × x − xi( 􏼁, i � 1, 2, . . . , K,

(16)

(rand(0, 1) returns a random value in the interval
(0, 1).)
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Step 5: repeat the above steps to synthesize K · N− data
artificially for the minority samples.

After the above steps, the three categories of Rx, OTC-A,
and OTC-B in the data set have reached the same number,
which improves the data distribution in the sample space. As
a result, we obtained the feature-enhanced ADR balanced
data set, which laid a data foundation for classification.

4.5. Random Forest Classifier. We use the random forest
(RF) algorithm to classify the feature-enhanced ADR bal-
anced data set. )e RF algorithm is a machine-learning
method proposed by Breiman in 2001 [35]. Its main idea is to
build a forest containing multiple decision trees. Each de-
cision tree adopts a random decision-making method in this
process and remains independent during classification. Each
decision tree in the RF will predict the outcome. Finally, all
the outcomes are integrated by voting, and the class with the
highest probability is selected as the classification result [36].
)e steps of RF classification are as follows:

Step 1: assume that the number of samples in the
training set (S) is N. We randomly select N samples
from the training set with replacement as the training
set Si of the decision tree Ti. A total of K training sets
are extracted to construct K decision trees.
Step 2: the dimension of the features in each sample is
M. In the process of training the decision tree, m
subsets are randomly selected from all the features of
each node.
Step 3: the decision tree selects a node with the best
splitting ability in the feature subset to split.
Step 4: each decision tree grows to the maximum extent
and does not require pruning.
Step 5: all decision trees constitute the final RF, and
the result of the classification is determined by
voting.

4.6. EvaluationMetrics. Traditional classification algorithms
use precision metric to determine the performance of the
classifier on the data set. Although it is effective for balanced
data, there will be obvious deviations for unbalanced data.

For example, for tumor detection data, the proportion of
benign is very high, and the proportion of malignant is very
low. High accuracy can be obtained by classifying all tumors
as benign. However, this classification is meaningless, be-
cause for issues such as disease detection, disaster prediction,
and credit fraud, the minority samples are of great signifi-
cance and need to be focused on.

For a given sample set, we can get the confusion matrix
by comparing the real class with the class predicted by the
classifier [37]. As shown in Table 3, there are four situations:

According to the confusion matrix in Table 3, the fol-
lowing evaluation metrics can be calculated:

(1) Precision: Tthe precision rate reflects the proportion
of true positive samples in the positive class judged
by the classifier.

Precision �
TP

TP + FP
. (17)

(2) Recall: the recall rate reflects the proportion of
positive classes that are correctly classified in the
total positive classes.

Recall �
TP

TP + FN
. (18)

(3) Accuracy: the accuracy rate reflects the classifier’s
ability to predict the positive and negative classes
correctly.

Accurary �
TP + TN

TP + FN + FP + TN
. (19)

(4) F-measure: F1 is the harmonic mean of precision and
recall [38], and is a commonly used evaluation
criterion for classification of imbalanced data sets.
After obtaining Precision and Recall in formulas (17)
and (18), F1 can be calculated as

F1 �
1 + β2􏼐 􏼑∗Recall∗ Precision

β2 ∗Recall + Precision
, (20)

β is the scale factor, and its usual value is 1.
(5) Macro-avg: macro average is a commonly used

evaluation index for multi-classification prob-
lems, which can measure the overall situation of
the classifier [39]. For formulas (17), (18), and
(20), the values of each class are first calculated,
and then the average values of all the classes are
calculated.

MacroP �
1
n

􏽘

n

i�1
Pi. (21)

MacroR �
1
n

􏽘

n

i�1
Ri. (22)

MacroF1 �
2∗MacroP ∗MacroR

MacroP + MacroR

, (23)

n represents the number of classes, i represents each
class.
Macro average in formula (21)–(23) treats each class
equally, and its results are more susceptible to

Table 3: Classification in the confusion matrix.

Positive Negative
True True positive (TP) True negative (TN)
False False positive (FP) False negative (FN)
TP: the number of samples that predict the positive class as a positive class.
TN: the number of samples that predict the negative class as a negative class.
FP: the number of samples that predict a negative class as a positive class.
FN: the number of samples that predict a positive class as a negative class.
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minority samples. In other words, macro average has
advantages in highlighting the classification per-
formance of minority samples.

(6) Weighted-avg: )e weighted average can compre-
hensively evaluate the accuracy of classification [40].
By assigning weight to each class, the average value of
all classes is calculated according to Precision, Recall,
and F1 in formulas (17), (18), and (20).

WeightedP � 􏽘
n

i�1

Ci

|C|
∗Pi,

WeightedR � 􏽘
n

i�1

Ci

|C|
∗Ri,

WeightedF1 � 􏽘
n

i�1

Ci

|C|
∗ F1i,

(24)

n represents the number of classes, i represents each
class, |C| represents all samples, andCi represents the
samples included in one class.

(7) Receiver Operating Characteristic (ROC) Curve
Among the evaluation criteria for imbalanced data
sets, the ROC curve is a generally accepted and
comprehensive evaluation criterion [41]. )e ROC
curve has a false positive rate (FPR � FP/(FP + TN))
on the horizontal axis and a true positive rate
(TPR � TP/(TP + FN)) on the vertical axis. )rough
the cross-validation method, multiple sets of point
pairs (FPR, TPR) of the classifier can be obtained.
)en, draw them to a plane and connect them to
form the final ROC curve. )e ROC curve is a very
intuitive way to evaluate the classifier. )e closer the
curve is to the upper left corner, the better the
performance of the classifier.
Area under curve (AUC) refers to the area enclosed
by the ROC curve and the coordinate axis. )e value
of this area will not be greater than 1. Since the ROC
curve is generally above the line y � x, the value of
AUC ranges between [0.5, 1]. )e closer the AUC is
to 1, the higher the accuracy of classification.

4.7. Experiment Design. In order to observe the effect of the
abovementioned methods on the classification of CFDA’s
spontaneous reporting data, this paper designs three com-
parative models.

In the first model (Model 1. RF), we use the data set after
PRR signal detection as the basis (ADR imbalance data set).
)e total number of three categories of drugs is 1047, in-
cluding 887 Rx drugs (label� 0), 113 OTC-A drugs (label-
� 1), and 47 OTC-B drugs (label� 2). )e data space
contains 751 features (ADRs). Use traditional RF algorithm
for classification.

In the second model (Model 2. SMOTE+RF), we use the
SMOTE algorithm to expand the data set after PRR signal
detection, so that the quantity of each category reaches a
balance (ADR balanced data set). )e total number of drugs

is 2661, and the number of Rx (label� 0), OTC-A (label� 1),
OTC-B (label� 2) drugs are equal, all of which are 887. )e
data space contains 751 features. )en, use RF for
classification.

In the third model (Model 3. FS_GAN+ SMOTE+RF),
we will use the model proposed in this paper. )e ADR data
set used by this model has also been improved in terms of
samples and features (feature-enhanced ADR balanced data
set).)e total number of drugs is 2661, and the number of Rx
(label� 0), OTC-A (label� 1), and OTC-B (label� 2) drugs
are equal, all of which are 887. )e data space contains 951
features (751 original + 200 generated). Finally, the RF al-
gorithm is used for classification.

)e experiment in this article consists of two sections. In
the first section, the above three models all use 70% of the
sample space as the training set, and the remaining 30% as
the test set. )en, we observe the classification results based
on the test set. In the second section, we input the actual
ADR data collected by CFDA into all three trained models
and observe the results. Furthermore, it means that the three
models use the same actual ADR data after PRR (1047
samples) as the test set.

5. Results

5.1. Results of theClassifiersUsing theTest Set. In this section,
the three models use 70% of their sample space for training,
and use the remaining 30% as the test set. )e sample size in
the test set of each model is calculated as follows:

Sample size (model 1)� 1047× 30%� 315
Sample size (model 2)� 2661× 30%� 799
Sample size (model 3)� 2661× 30%� 799

)erefore, the sample size of test sets used by each model
is 315 (Model 1), 799 (Model 2), and 799 (Model 3). )e
confusion matrices obtained by classification are shown in
Figure 2:

Figure 2 shows three confusionmatrices of three models,
from which it can be seen that Model 3
(FS_GAN+SMOTE+RF) has the largest proportion of
results on the diagonal, which means it has the highest
accuracy of classification. More detailed evaluation indica-
tors are shown in Table 4.

Table 4 shows the evaluation metrics of the three models
based on their test set. Model 1 is biased towards the ma-
jority class, so the prediction results for OTC-A (label� 1)
and OTC-B (label� 2) are very poor, and its accuracy is the
lowest, only 84.44%. Model 2 balances the data set and can
predict most of the OTC drugs (label� 1, 2), with an ac-
curacy rate of 91.99%. Model 3 has the highest prediction
accuracy for minority samples, reaching 96.25%. From the
macro average and weighted average metrics, Model 1 is the
worst, Model 2 ranks second, and Model 3 has the best
performance.

5.2. Validation Results Based on Actual ADR Data. In the
verification section, the actual ADR data are used as the test
set to validate the prediction results of the three trained
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models in Section5.1. )e test sample size of the three
models equals to that of the actual ADR data, which is 1047.

)e confusion matrices corresponding to the three
models are shown in Figure 3.

Figure 3 illustrates the confusion matrices of the three
models using the actual ADR data after PRR signal detection
as the input (sample size1,2,3 � 1047). In the confusion
matrix, the blocks on the diagonal indicate the number of
correctly classified labels. For each model, the sum of cor-
rectly predicted data is calculated as follows:

Sum (Model 1)� 874 + 41 + 13� 928
Sum (Model 2)� 845 + 102 + 44� 991
Sum (Model 3)� 876 + 105 + 44�1025

Under the verification of the same data set, the number
of samples correctly predicted by Model 3 is the largest,
reaching 1025, which is higher than 928 of Model 1 and 991
of Model 2. )is result means that Model 3 has the highest
prediction accuracy. More detailed evaluation metrics are
shown in Table 5.

Table 5 shows the evaluation metrics of the three models
using the same actual ADR data. Among them, the accuracy
of Model 1 is the lowest, only 88.63%. Model 2 has sig-
nificantly improved its ability to recognize minority classes,
with an accuracy rate of 94.65%. )e results indicate that

Model 3, which uses the combination of feature enhance-
ment (FS_GAN) and SMOTE, has a higher accuracy than
Model 2, which only uses SMOTE, reaching 97.90%. )e
other metrics such as macro average and weighted average
also indicate that the performance of Model 3 is the best.

Figure 4 shows the ROC curves and AUC values of the
three models. It indicates that Model 1 using only the RF
algorithm has the worst classification result for the imbal-
anced ADR data set, and its AUC value of 0.85 is also the
lowest. For the latter two models after SMOTE, the ROC
curve of Model 3 with feature enhancement (FS_GAN) is
closer to the (0, 1) point. )e AUC value of Model 3 is also
the highest among them, reaching 0.99.

6. Discussion

)e classification results on CFDA’s actual ADR data show
that the accuracy of Model 1 reaches 88.63%, which seems to
be a good result. However, by observing the index of the
recall rate of Model 1, we can find that the recall rate of label
1 is 0.36, and the recall rate of label 2 is 0.28. In other words,
Model 1 predicts most of the samples as the majority class
(label� 0), so it obtains high accuracy. As mentioned in Part
4, such classification is meaningless, because the minority
classes are not identified. )e latter two models use SMOTE
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Figure 2: Confusion matrices based on the test set.

Table 4: Evaluation metrics based on the test set.

Classifier Label Precision Recall F1 Accuracy (%)

Model 1 (RF)

0 0.85 0.99 0.92
1 0.50 0.03 0.06 84.44
2 0.00 0.00 0.00

Macro-avg 0.45 0.34 0.32
Weighted-avg 0.78 0.84 0.78

Model 2 (SMOTE+RF)

0 0.91 0.85 0.88
1 0.91 0.94 0.92 91.99
2 0.94 0.97 0.96

Macro-avg 0.92 0.92 0.92
Weighted-avg 0.92 0.92 0.92

Model 3 (FS_GAN+SMOTE+RF)

0 0.93 0.96 0.94
1 0.98 0.94 0.96 96.25
2 0.98 0.98 0.98

Macro-avg 0.96 0.96 0.96
Weighted-avg 0.96 0.96 0.96
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to expand the minority samples, and the number of Rx (label
0), OTC-A (label� 1), andOTC-B (label� 2) drugs reached a
balance. )erefore, the recall rate and F1 index are both very
high, which indicates that they have a good classification
effect on the three categories of drugs.

By comparing the three models, we found that Model 3 is
the best, with an accuracy of 97.90%. )e Precision, Recall,
and F1 index corresponding to the three categories of labels

in Model 3 are all higher than Model 2. Especially, for the
recognition of minority classes (label� 1 and label� 2), their
prediction success rates in Model 3 have been greatly
improved.

From the perspective of macro averaging, Model 3 has
achieved excellent performance.)emacro average takes the
arithmetic average of all classes, which means that each class
is treated equally during classification, so that the impact of

Table 5: Evaluation metrics based on the actual ADR data.

Classifier Label Precision Recall F1 Accuracy (%)

Model 1 (RF)

0 0.89 0.99 0.94
1 0.80 0.36 0.50 88.63
2 0.72 0.28 0.40

Macro-avg 0.81 0.54 0.61
Weighted-avg 0.88 0.89 0.87

Model 2 (SMOTE+RF)

0 0.98 0.95 0.97
1 0.80 0.90 0.85 94.65
2 0.72 0.94 0.81

Macro-avg 0.83 0.93 0.88
Weighted-avg 0.95 0.95 0.95

Model 3 (FS_GAN+SMOTE+RF)

0 0.99 0.99 0.99
1 0.92 0.93 0.93 97.90
2 0.96 0.94 0.95

Macro-avg 0.96 0.95 0.95
Weighted-avg 0.98 0.98 0.98
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Figure 4: ROC curves and AUC values based on the actual ADR data.
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Figure 3: Confusion matrices based on the actual ADR data.
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small samples on the results can be more clearly highlighted.
)e macro-average value of Model 3 is higher than Model 1
and Model 2, so Model 3 is more suitable for the classifi-
cation of imbalanced samples.

Compared with the macroaverage, the weighted average
is more inclined to be affected by the majority class, because
the majority category accounts for a larger proportion of the
entire samples, and the corresponding weight is also larger.
)e weighted average of each metric of Model 3 is 0.98,
which is the highest among all classifiers.

From the perspective of the ROC curve, the ROC curve
of Model 3 is closest to the (0, 1) point among the three,
which indicates that Model 3 has the highest classification
accuracy rate for imbalanced data sets. )is result is con-
firmed again from the perspective of AUC.)eAUC value of
Model 3 is 0.99, which is higher than 0.85 of Model 1 and
0.97 of Model 2.

Based on the same CFDA’s ADR data, we compared the
model proposed in this paper (Model 3) with the model
established by our previous work in multiple evaluation
indicators. Previously, we compared the prediction results of
four machine-learning algorithms, including RF, gradient
boost (GB), logistic regression (LR), and AdaBoost (ADA),
in the steps of PRR signal detection and SMOTE over-
sampling, and finally obtained the optimal combination
PRR-SMOTE-RF. )rough the comparison of experimental
results, the accuracy of Model 3 proposed in this paper is
0.98, which is higher than the 0.95 of the previous model
PRR-SMOTE-RF. )is comparison shows that for ADR
samples with obscure features, Model 3 will achieve better
prediction results. From the perspective of ROC curves,
Model 3 in this paper also has better performance. )e AUC
value of Model 3 reached 0.99, higher than the 0.97 of PRR-
SMOTE-RF, which means that Model 3 has better classifi-
cation performance for imbalanced data sets. Finally, we can
determine that the model with feature enhancement pro-
posed in this paper has better performance on actual ADR
data, and has a higher accuracy rate for drug risk prediction.

For the high-dimensional ADR feature space, it is dif-
ficult for us to remove redundant features to improve the
classification accuracy. )e reasons mainly include the
following two points. On the one hand, the feature space
contains the adverse reactions corresponding to the drugs. If
a part of the features that have no effect on the classification
are deleted, the potential risks of some drugsmay be ignored,
leading to deviations in the classification of drugs. For drugs
with serious adverse reactions, ignoring their ADR features
is fatal, which will cause great harm to patients in the future.
On the other hand, additional experiments prove that de-
leting some redundant features does not improve the
classification accuracy very well. We hope to add some
effective data that are helpful for classification in the feature
space to achieve feature enhancement. In addition, GAN has
great advantages in data generation. )rough multiple
training iterations, GAN can learn about the potential data
distribution in the samples and generate similar artificial
data. )erefore, when the number of samples is sufficient,
GAN-based feature enhancement is an efficient method to
solve such problems.

)e experimental results prove that it is effective to use
feature enhancement technology andminority oversampling
at the same time for high-dimensional imbalanced data sets.
Compared with the previous PRR-SMOTE-RF framework
that does not use feature enhancement, the model proposed
in this paper has a higher classification accuracy on the same
ADR data set. Other evaluation indicators also confirmed
this conclusion. Furthermore, the results indicate that it is
effective to use GAN to generate artificial data to improve
the overall data distribution in the feature space. In other
words, on the basis of minority oversampling of imbalanced
data sets, feature enhancement can help achieve more ac-
curate classification. At the same time, this method retains
all existing ADR features, thus avoiding the risk evaluation
deviation caused by lack of features.

Furthermore, we compare the artificial data generated by
GAN with the real data in the ADR data set. Since the data
set contains a variety of ADR symptoms, and a drug causes
only a small part of the adverse reactions, the data matrix
after PRR signal detection is high-dimensional and sparse.
)e proportion of nonzero elements in the original ADR
imbalanced data set is 1.73%. For the top 200 features
screened by FS, the proportion of nonzero elements is 5.02%;
while for the artificial data generated by GAN, its proportion
is 4.85%.)is result indicates that artificial data and real data
have a high degree of similarity in numerical form. )e
artificial features generated by GAN satisfy the spatial dis-
tribution characteristics of the original data. More specifi-
cally, the data distribution of artificial data and real data is
similar. )erefore, adding artificial features to the ADR
imbalanced data set can improve the sparsity of its feature
space. )is once again verified that it is feasible to use GAN
to achieve feature enhancement.

)rough the above analysis, we can draw conclusion that
Model 3 (FS_GAN+SMOTE+RF) is more suitable for the
prediction of CFDA’s spontaneous report data. When
choosing this model to evaluate drug risks, we need to
conduct further analysis on misclassified drugs. On the one
hand, the proposed model has deviation, which can make
some medicines misclassified. On the other hand, the ad-
verse reaction corresponding to the drug does not match the
class it belongs to, which leads to the wrong classification. In
view of the above two situations, experts will reevaluate the
misclassified drugs. For drugs that do not match their
category, they need to switch among Rx, OTC-A, and OTC-
B to control the risks of drugs.

However, this study has several limitations including the
following:

(1) Sample size: the research used 985,960 spontaneous
reports from 2011 to 2018 provided by CFDA in
Jiangsu Province as experimental data, which can
visually verify the effectiveness of the proposed
model. However, it is difficult to verify the model’s
evaluation results of drug risks on a larger scale
because the sample size is not sufficient. Since
Chinese spontaneous report database is not open to
the public, we cannot further obtain more updated
samples. )is results in the limited availability of
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relevant data due in part to the high cost of collection
of such specialized data. During the preprocessing
stage, we deleted a large amount of incomplete and
worthless ADR data, which led to a reduction in the
sample size. At the same time, the time span and the
quality of the SRS are also key factors affecting
sample size.

(2) Feature enhancement: in the process of feature se-
lection, we use the relative importance score to rank
the ADR features. )is selection method may cause
some features that have an important impact on the
classification to be ranked lower, or even be ob-
scured. We discussed the characteristics of artificial
data and real data above, and proved the similarity
between the two in terms of data distribution.
However, how to further measure the difference
between artificial data and real data requires in-
depth research in the follow-up work.

(3) Drug interaction: in this study, aspects such as ad-
verse reactions caused by drug interactions are not
investigated as these factors are beyond the scope of
this research. Potentially, the analysis of ADRs
caused by the interaction of different drugs involved
in the collected spontaneous reports will help us
understand the process of adverse reactions and
further clarify the risks of drugs.

In summary, the results of this study indicate that it is
feasible to use GAN and SMOTE to classify imbalanced
ADR data from CFDA’s spontaneous reporting database.
)is classification can help us understand the applicable
population of drugs. )rough the evaluation of the classi-
fication results, we can further identify the drug risks faced
by consumers in a variety of situations, so as to reduce the
occurrence of unexpected problems. At the same time, the
evaluation of drug risks may help to develop new inter-
ventions to deal with adverse reactions after medication.

)emain contributions of this study include the accurate
classification of actual ADR data, as well as the GAN and
SMOTE methods used in this process, in an effort to realize
the feature enhancement and minority oversampling. We
verify that the model combining PRR, feature enhancement
(FS_GAN), SMOTE, and RF classification is optimal for
CFDA’s spontaneous reporting data, and gives the evalua-
tion metrics suitable for imbalanced data set. )is study also
provides reference for medical experts on the risk evaluation
and status switch of post-marketing drugs.

7. Conclusions

)is paper proposes a model combining feature enhance-
ment (FS_GAN) and SMOTE for drug risk evaluation in
CFDA’s spontaneous reporting data. Based on the com-
parison of three sets of models, the classification accuracy of
the proposed model is nearly 98%. )e results suggest that
the combination of PRR, FS_GAN, SMOTE, and RF method
is determined to be the optimal framework for class-im-
balance problems in ADR data. At the same time, the ef-
fective features generated by GAN have a significant

contribution to the classification performance. )is means
GAN can be used in more classification scenarios to obtain
better results.

)is model has the potential to be generalized to more
drug regulatory agencies, because it can provide a conve-
nient and reliable way for the ADR signal detection and drug
classification. )e results will serve as a strong basis for
experts to evaluate potential risk of drugs and help them
make more judgmatic decisions for the switch of drug status.
In the future, it is necessary to pay attention to the adverse
reactions caused by the mutual influence of multiple drugs,
which will help to further explore the relationship between
different ingredients and reduce the risk of medication.
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