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1. Introduction

Copyright © 2021 Xi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To analyze the brain CT imaging data of children with cerebral palsy (CP), deep learning-based electronic computed tomography
(CT) imaging information characteristics were used, thereby providing help for the rehabilitation analysis of children with CP and
comorbid epilepsy. The brain CT imaging data of 73 children with CP were collected, who were outpatients or inpatients in our
hospital. The images were randomly divided into two groups. One group was the artificial intelligence image group, and hybrid
segmentation network (HSN) model was employed to analyze brain images to help the treatment. The other group was the control
group, and original images were used to help diagnosis and treatment. The deep learning-based HSN was used to segment the CT
image of the head of patients and was compared with other CNN methods. It was found that HSN had the highest Dice score
(DSC) among all models. After treatment, six cases in the artificial intelligence image group returned to normal (20.7%), and the
artificial intelligence image group was significantly higher than the control group (X*=335191, P <0.001). The cerebral he-
modynamic changes were obviously different in the two groups of children before and after treatment. The VP of the cerebral
artery in the child was (139.68 + 15.66) cm/s after treatment, which was significantly faster than (131.84 + 15.93) cm/s before
treatment, P <0.05. To sum up, the deep learning model can effectively segment the CP area, which can measure and assist the
diagnosis of future clinical cases of children with CP. It can also improve medical efficiency and accurately identify the patient’s
focus area, which had great application potential in helping to identify the rehabilitation training results of children with CP.

rescue technology, more and more ultrapremature babies
are able to survive. These premature babies are extremely
immature and face severe challenge such as breathing,

Cerebral palsy (CP) is one of the common causes of disability
in children. It is the brain tissue damage caused by the
immature brain (fetal period to within one year of life) due
to congenital malformations or hypoxia, trauma, infection,
and other factors after birth, which further causes a group of
neurological syndromes in children with nonprogressive
movement abnormalities and postural abnormalities as the
main manifestations, accompanied by cognition, sensory,
and communication disorders and other complications [1].
With the continuous development of perinatal medicine and
neonatal life support technology and the improvement of

nutrition, metabolism, and infection. Their brain damage
easily occurs, CP is caused, and the risk of disability is in-
creased [2, 3]. Neuroimaging examination is an important
auxiliary examination for central nervous system damage,
which can provide objective basis for changes in tissue
morphology for clinical diagnosis and treatment. The tra-
ditional cranial CT has been widely used in the cranial
imaging examination of children with CP and has accu-
mulated certain experience [4]. The other functional im-
aging examinations developed based on traditional
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techniques such as magnetic resonance imaging (MRI),
ultrasound (US), positron emission tomography (PET), and
other devices can assess the function of brain tissue through
local blood flow changes, water molecular activity, and
metabolic status. The lesions associated with the occurrence
of CP were mapped in more detail to provide evidence of
functional and metabolic abnormalities for some lesions
with insignificant morphological changes. Up to now,
medical imaging is an indispensable part of the clinic, and it
plays an irreplaceable role in diagnosis and treatment.
However, the workload of doctors is huge. Studies showed
that, in some cases, general radiologists must make a di-
agnosis every three to four seconds in an 8-hour working day
to meet the needs of the workload [5]. The accuracy of
doctors’ diagnosis results will be greatly affected by such a
large work intensity, and misdiagnosis and missed diagnosis
will be caused. However, there are also obvious problems in
the current study. (I) The commonly used brain images have
millimeter resolution. However, some diseases do not cause
significant structural changes and require high resolution
and small-scale brain imaging techniques. (II) The sample
data only contains a certain kind of special diseases and
health data. In actual diagnosis, the patient may suffer from
ten related diseases. (III) The excessive number of extracted
features consumes a large amount of storage space and at the
same time greatly increases the computational complexity
and leads to dimensional disaster. (IV) The classification
accuracy should be further improved to meet the require-
ments of practical use. (V) The generalization performance
of the classifier is poor, and the prediction effect of the new
samples is obviously lower than that of the training samples.

With the development of artificial intelligence (AI),
people began to try to use computer technology to assist
doctors in diagnosis, which produced a computer-aided
diagnosis (CAD) [6]. Taking the most widely used mam-
mography CAD screening as an example, more than 74% of
mammograms in the United States were performed with the
aid of the CAD system by 2010 [7]. However, the advantages
of CAD were questionable; several large trials concluded that
there was little benefit from CAD. The accuracy of radiol-
ogists” diagnoses was reduced; thus high biopsy rates were
caused. To eliminate the false alarms generated by these
systems, the diagnostic process becomes more complex [8].
At present, diagnosis based on medical imaging mainly relies
on radiologists’ manual review of images and manual
analysis of radiological images. This is a very time-con-
suming work, requiring radiologists to consult hundreds of
sections and multiple lesions through three-dimensional CT
scanning equipment [9]. For early detection, detecting le-
sions that are “too small to characterize” is particularly
important, which requires time and effort on the part of the
radiologist. In addition, the increasing huge amount of
image data also brings great challenges for image reading. To
effectively improve the efficiency of medical image reading,
reduce the error rate of diagnosis, and provide effective
auxiliary information for imaging physicians, the auxiliary
diagnostic technology based on intelligent image analysis is
becoming more and more important. In recent years,
computer-aided diagnosis based on intelligent image
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analysis has gradually become a research hotspot in the
medical field. Artificial intelligence algorithms have been
used in the field of medical image data analysis and pro-
cessing. By integrating these algorithms into clinical prac-
tice, effective and accurate diagnostic results are obtained.
The traditional method of intelligent imaging diagnosis
compares the automatically labeled or segmented area with
the predefined benchmark template, but it still needs the
imaging expert to give the final diagnosis result. In the ap-
plication of disease diagnosis, abdominal CT imaging is the
most important imaging means in the clinical diagnosis and
follow-up of tumor diseases, which is widely used in the
detection, segmentation, and diagnosis of lesions. Since dif-
ferent types of lesions correspond to different characteristics,
how to separate the lesion area from the image is the key to the
success of the high-precision diagnosis system [10]. To im-
prove the accuracy of the automatic diagnosis system, the
medical image assisted diagnosis system based on artificial
intelligence mainly includes four aspects as follows: (I) image
preprocessing, which improves the image quality and en-
hances the contrast of lesions; (II) detection and segmentation
of the region of interest (ROI), which reduces the influence of
interference background on the system; (III) feature extrac-
tion, selection, and classification, which improve the char-
acterization ability of the target; (IV) the semantic
segmentation of tumor, which can obtain the semantic fea-
tures of lesions and improve the accuracy of recognition. The
extraction of efficient features in the four key steps of the
auxiliary diagnosis system is the core technology of the
system. At present, the performance of medical image aided
diagnosis system based on shallow learning completely de-
pends on the characterization ability of features and the
generalization performance of classification diagnosis model.

In short, the development of AI technology has provided
new ideas to solve such medical problems. In particular,
multidisciplinary knowledge such as radiology and com-
puter science was integrated by imaging omics. High-
throughput features can be mined from medical images and
modeled and analyzed to provide clinical decision support
for rehabilitation training for children with CP.

2. Methods

2.1. Research Object. Children with CP who were outpatient or
hospitalized in our hospital from June 2017 to June 2020 were
taken as research subjects. A total of 73 cases met the re-
quirements; 44 were males and 29 were females. The age range
was 1 to 14 years and the average age was 47.7 + 37.2 months.

The classification was carried out according to the gross
motor function classification system (GMFCS) [11]. There
were 8 cases of GMFCS I (4 males, 4 females), 21 cases of
GMFCS II (12 males, 9 females), 23 cases of GMFCS III (13
males, 10 females), 11 cases of GMFCS IV (8 males, 3 females),
and 10 cases of GMFCS V (7 males, 3 females).

2.1.1. Inclusion Criteria. The abovementioned children met
the diagnostic criteria for CP and must meet the following
four necessary conditions: (a) nonprogressive aggravating
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dysfunction that persisted, which was caused by central
nervous system damage; children with complications such as
muscle damage and joint deformation as the course of CP
was prolonged; (b) children with deviations in motor de-
velopment and abnormal postures (motor development was
included or not included); (c) the original reflex not dis-
appearing or the erection reflex and balance response
delayed or absent, which may be accompanied by a positive
pathological reflex; (d) children with abnormal muscle tone
and strength. In addition, there were two reference condi-
tions whether it met the diagnosis of CP: (a) children with a
history or risk factors that cause CP; (b) children with cranial
imaging evidence.

2.1.2. Exclusion Criteria. The exclusion criteria included (a)
the diagnosis of abnormal motor development in children
that was consistent with general developmental retardation
and developmental coordination disorder; (b) children with
induced epileptic seizures caused by acute ketoacidosis,
water and electrolyte disorders, acute brain injury, febrile
convulsions, hypoglycemia, and drug poisoning, etc.; (c)
children with metal implants or other contraindications for
CT examination; (d) children with abnormal motor function
caused by other genetic metabolic reasons; (e) children with
motor dysfunction and epileptic seizures caused by tumors,
peripheral neuropathy, and genetic metabolic diseases, etc.

A total of 73 children with CP met the above inclusion
criteria and were included in the research. The research had
been approved by the medical ethics committee of X hos-
pital, and the informed consent form had been signed by the
families of the children involved in the research.

2.2. Experimental Equipment. 74 contrast-enhanced CT
samples constituted the dataset of the research. The Philips
Brilliance 1281 CT scanner (Philips Healthcare, Amsterdam,
Netherlands) was used. The tube voltage and current were
120kV and 220 mA, respectively, the size of the collimator
was 64x0.625mm, and the Fov was 20x20cm. The
512 x 512 size imaging matrix was used, the pixel size range
was 0.58 to 0.98 mm, and the reconstruction interval was
5mm. All scans were manually segmented by two radiol-
ogists using Itk snap software (version 3.4; http://www.
itksnap.org), and the segmentation differences were re-
solved through discussion until a consensus was reached.
The data set was randomly divided into three subsets, and 84,
20, and 30 samples were included for training, verification,
and testing, respectively.

2.3. Experimental Environment

2.3.1. CNN Model. The proposed CNN model is shown in
Figure 1, which was similar to 3D U-NET. The image fea-
tures can be extracted layer by layer by the encoder, and the
segmentation map can be generated by the decoder. The 3D
U-Net was modified to be suitable for this task. In the
original 3D U-Net, there were two 3 x3 x3 convolutions
included in each level, which was replaced by two modules.

To reduce the size of the feature map, the step S3D con-
volution was used to replace the pooling operation. The goal
of the decoder was generating high resolution feature maps.
First, the feature graph was upsampled, and then the
upsampled feature graph was cascaded with the feature
graph from the corresponding level of the encoder. After
cascading, the MSC module was used to adjust the number
of feature graphs. The lightweight 3D CNN had fewer pa-
rameters and computational costs compared to the original
3D U-NET.

2.3.2. Deep Learning Mode. The Python deep learning
framework was used to write code, which was trained on
NVIDIA GeForce GTX 1080TIGPU. There were 100
training cycles and the training time was about 12 hours. The
Adam optimizer was used with an initial learning rate of
0.001. The GDL loss function similar to the previous chapter
was used to optimize network parameters. If the validation
set loss was not decreased in the last 20 training cycles, the
learning rate was reduced to 1/5 of the original. The rotation,
scaling, deformation, mirroring, and other data were not
used to enhance technology to focus on the impact of
network structure. The LeakyReLU was used as the acti-
vation function. The negative part of the feature information
can be retained by LeakyReLU to prevent falling into a local
minimum compared with the standard ReLU. For 2D CNN,
batch normalization was used to reduce internal covariant
offset problems. For 3D CNN, a number of criteria were
calculated using instance normalization as performance
indicators to quantify the segmentation results, including
DSC, sensitivity, and positive predictive value (PPV).

2.4. Comparative Test with 3DCNN Method. Compared with
the 3D CNN method, each CT was first resampled to
256 x 256 x 64 to maximize the utilization of 11 GB of GPU
memory. In the decoder, each layer was composed of a
trilinear upsampling layer with a factor of two, followed by
two 3 x 3 x 3 convolutions, and instance normalization and
LeakyReLU were used to activate each layer. The jump
connection was used to provide the decoder with spatial
information from the encoder. Finally, the nearest neighbor
sampling was used to upsample the segmentation result to
the size of 512 x 512 x 64.

2.5. Treatment Methods. The physical therapy (PT), occu-
pational therapy (OT), and speech therapy (ST) were used as
the main treatment methods. The selected method was
Bobath’s method to suppress the abnormal posture, ab-
normal posture reflex, and abnormal movement patterns of
children with CP. The facilitating techniques were used to
promote cervical erection, sitting erection, standing erec-
tion, and static and dynamic balance in children with CP.
The German Voyt method was selected to perform reflex
movement of the body to promote normal motor devel-
opment and induce training with reflex turning over and
reflex abdominal crawling. According to the child’s condi-
tion, one-to-one rehabilitation training was carried out by
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FIGURE 1:

the rehabilitation therapist. The training was one to two
hours a day, and 90 days was a course of treatment. The
rehabilitation training for children with mild CP was one to
two courses, and the rehabilitation training for children with
severe CP was three to four courses.

2.6. Observation Indicators. Before and after treatment, the
cerebral artery blood flow velocity (VP) and the vascular
pulse index (PI) of the children in both groups were ex-
amined by Libong CBC-II transcranial doppler (TCD) ce-
rebrovascular ultrasound to understand the recovery of
cerebral blood circulation. The routine EEG and single
photon emission cranial computed tomography (SPELT)
were performed before and after treatment to assess cerebral
perfusion and neuronal functional status. The CT scans of
the head were performed after three to six months of
treatment to observe the morphological and structural re-
covery of the brain. The development quotient (DQ) of the
children was assessed using the Geisel method to assess the
children’s social adaptability, personal social ability, lan-
guage ability, general motor, and fine motor recovery before
and after treatment.

2.7. Statistical Analysis. SPSS 20.0 was used for statistical
analysis of the data. Measurement data such as body weight
and scores were expressed as mean + standard deviation, and
t-test was used to compare the data of normal distribution
between the two groups. When three groups or more were

32x16x 16

CNN model.

compared, analysis of variance was carried out first, and then
pairwise comparison was made. Enumeration data were
expressed as percentage (%), and comparison between two
groups was performed by y” test or corrected y test. P < 0.05
was considered statistically significant.

3. Results

3.1. Comparative Test with 2DCNN Method. It was compared
with 2D CNN method. The 2D models allowed larger images
as input than 3D models (Figure 2). Therefore, full-reso-
lution CT slices were used to collect detailed contextual
information. The 2D CNN similar to 3D CNN was con-
structed, and the difference was that 3D convolution was
replaced with 2D convolution. The 3D trilinear upsampling
layer was replaced with 2D bilinear upsampling layer, and
batch normalization was used in convolution.

3.2. Segmentation Results in Different Ways. Figures 3 and 4
show the segmentation results of 2D CNN and 3DCNN on
the test set, respectively. The blue represented the gold
standard for segmentation, and the red represented the
result of automatic segmentation. These segmentation re-
sults indicated that 3D CNN can segment cancer regions
more accurately than 2DCNN.

3.3. Comparative Experiment of Loss Correspondence
Teaching. The choice of loss function was crucial to obtain
accurate segmentation results when dealing with serious
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FIGURE 2: The average validation set DSC of 2D CNN and 3D CNN in 100 training cycles.

Ficure 3: 2D CNN.

F1Gure 4: 3D CNN.

category imbalance. The GDL loss function was used to solve
the class imbalance problem in CT images. Since many
works proved that Dice loss can obtain more reliable results
than cross-direction loss, there was a performance difference
between Dice loss and GDL loss. Figures 5 and 6 show the
average DSC on the validation set, and the loss of the model
trained with GDL was smaller than the loss of the model

trained with Dice. The DSC curve of the model’s validation
set was smoother when GDL was used for training, which
indicated that GDL was more stable for CT image
segmentation.

3.4. Quantitative Results of the Test Set. Figure 7 shows the
quantitative results of the test set. The model with Dice loss
training had lower DSC, lower PPV, and higher sensitivity
compared with HSN, but all the deviations were large. The
results showed that the problem of category imbalance can
be effectively solved by GDL.

3.5. Spatial Convolution Contrast Experiment. The goal of 2D
CNN was providing fine-grained semantic information
about smaller and less salient objects for accurate seg-
mentation. Therefore, the high spatial resolution must be
retained in the output feature map. A simple reduction of the
pooled or stepped convolution layer resulted in a reduction
of the receptive field. Therefore, the cavity convolution was
proposed to enlarge the receptive field and the resolution of
the feature map was maintained. To study whether the hole
convolution helped to learn fine-grained semantic infor-
mation, it was compared with the standard 2D convolution
version (HSN-N). The standard 2D convolution version
(HSN-N) had the same architecture as HSN, but all 2D
convolution layers did not use hole convolution. The con-
volution kernels with large void ratios may be too sparse to
capture local features, which led to the “grid problem.” To
investigate the effect of large void rate on segmentation
performance, another HSN model (2D HSN-L) with larger
void rate was evaluated. The void rate of the original HSN
was increased from three to five by this model. Figure 8
shows the qualitative segmentation results of different ex-
periments on the test set. The blue represented the gold
standard, and red represented the result of automatic
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segmentation. These segmentation results showed that HSN
performed well in segmenting lung cancer even in a small
area. This was because the model can learn remote 3D
context information and fine-grained 2D semantic
information.

3.6. Results of Children’s Rehabilitation Data. The SPECT
examination showed hypoperfusion of cerebral blood flow
and decreased functional activity of neurons in the treatment
group before treatment, and 27 cases returned to normal
after treatment (96.4%). There were 29 cases of
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FiGURE 8: Qualitative segmentation results of different experiments on the test set (red was the artificial segmentation area, and blue was the

model segmentation area). (a) HSN; (b) HSN-Dice; (c) HSN-S3D.

hypoperfusion of cerebral blood flow and decreased func-
tional activity of neurons in the control group before
treatment, and 6 cases returned to normal after treatment
(20.7%). The return to normal rate of SPECT in the treat-
ment group was significantly higher than that in the control
group (XPINGFANG =33 5191, P<0.001). The cerebral
hemodynamic changes of the two groups of children before
and after treatment showed that VP of the cerebral artery in
children was (139.68 + 15.66) cm/s after treatment, which
was significantly faster than that before treatment
(131.84 +15.93) cm/s, P < 0.05. The cerebral artery PI of the
children was 0.91 +0.19 after treatment, which was signifi-
cantly lower than that of 1.18+0.24 before treatment,
P <0.05. However, in the control group, the cerebral artery
VP and PI of the children had no significant difference
before and after treatment, P >0.5. After treatment, there
were significant differences in VP and PI between groups
(P <0.05). The changes in DQ of the two groups of children
before and after treatment are shown in Figure 9. The dif-
ference of GM FM scale scores before and after treatment in
the two groups of children is shown in Figure 10.

4, Discussion

A large amount of image data was generated in the process of
diagnosis and treatment of CP lesions. These data were
usually subjectively evaluated by doctors based on experi-
ence, and then the corresponding diagnosis and treatment
plan were made. However, the features observed by doctors
with only naked eyes from image data were very limited, and
the potential of image data was often not fully utilized. For
many years, the quantitative information that was not
available to the human eye was extracted by many scholars
with the help of complex mathematical and statistical al-
gorithms, based on which the corresponding diagnosis and
treatment plan were carried out, and even the progress of the
disease was predicted. The image omics came into being with
the development of Al technology. The machine learning
algorithms were used to mine high-throughput features
from medical images and perform modeling analysis [12].
More and more evidence showed that imaging omics can be
used for the quantitative characterization of CP lesions for
the diagnosis, treatment planning, and prognosis of the
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Figure 10: Difference of GM FM scale scores before and after
treatment in the two groups of children (*indicated significant
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disease. Thus, an important research direction of Al tech-
nology in the field of medical applications was constituted
[13-17].

In recent years, with the rise of deep learning technology
and computer vision technology, it has become more and
more urgent to develop automatic segmentation algorithms
with high accuracy and high stability [9]. The problem of CT
image segmentation was studied based on the brain MRI and
lung CT images and the use of deep learning technology. In



addition, for the grading of brain lesions, the impact of deep
learning segmentation results and manual segmentation
results on imaging omics research was compared in the
research. For the prediction of chemotherapy outcomes in
patients with CP, imaging omics models were also con-
structed and analyzed in combination with clinical features.
The reproducibility of imaging omics research was still an
unresolved problem, and the clinical application of imaging
omics was greatly affected by this problem. Studies showed
that more than 90% of research had not undergone rigorous
external verification and lacked multicenter diversity data
[18, 19]. A hybrid segmentation network based on deep
learning (HSN) was used for CT brain image segmentation
and the accuracy of image analysis of brain cell function in
children with CP can be improved. The language function,
motor function, cognitive function, language quotient, great
motor development quotient, fine motor development
quotient, personal social, and social adaptation development
of the brain of children with CP in the HSN group were
significantly improved after treatment compared to before
treatment.

In this research, a hybrid segmentation network HSN
based on deep learning was proposed for CT brain tissue
image segmentation. CT images often have higher resolution
than MRI images. How to segment CT images effectively is
always a difficult problem. HSN can effectively solve this
problem. HSN includes a lightweight 3D CNN and a refined
2D CNN. 3D CNN uses desampled images and spatio-
temporal separable 3D convolution to reduce memory re-
quirements and computational costs. 2D CNN can learn
fine-grained semantic information while maintaining a high
spatial resolution. A hybrid feature fusion module was
proposed to effectively integrate 2D and 3D features. This
network structure combines the advantages of 3D CNN
learning long-range contextual information and 2D CNN
learning semantic information. The results showed that this
model can segment CP lesion area accurately on CT images.
The development of deep learning and imaging omics has
promoted the progress of medical imaging. Radiology using
artificial intelligence can automate certain clinical tasks to
some extent. In addition, it can reduce the heavy workload of
doctors and improve the diagnostic efficiency, so as to
optimize the allocation of social medical resources. How-
ever, there are still some shortcomings, which need to be
further strengthened in the future. For example, traditional
image omics feature extraction methods have certain limi-
tations without adoption of deep learning in feature ex-
traction. Deep learning methods, especially CNNs, can learn
rich texture information from medical images in a hierar-
chical manner. Deep features have a more powerful feature
representation than hand-designed features. In the future
work, we will carry out related studies on feature extraction
based on deep learning to further explore the potential of
image data.

5. Conclusion

In this study, a hybrid segmentation network HSN based on
deep learning was proposed for CT brain tissue image
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segmentation. After treatment, six patients in the artificial
intelligence group returned to normal (20.7%), which was
significantly higher than the control group (X*=335191,
P <0.001). Cerebral hemodynamic changes were obvious in
both groups before and after treatment. VP of the cerebral
artery was (139.68 + 15.66) cm/s after treatment, which was
greatly faster than that before treatment (131.84 + 15.93) cm/
s, P <0.05. In general, the deep learning model can effec-
tively segment the CP area and assist in the clinical case
measurement and diagnosis of future CP children. In ad-
dition, the deep learning model can improve medical effi-
ciency and accurately identify patients’ focal areas, which has
great application potential in helping to identify the reha-
bilitation training results of children with CP.
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