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Electrocardiogram (ECG) is commonly used biological signals that show an important role in cardiac analysis. +e interpretation
and acquisition of QRS complex are significant measures of ECG data dispensation.+e Rwave has a vital character in the analysis
of cardiac rhythm irregularities as well as in the determination of heart rate variability (HRV). +is manuscript is proposed to
design a new artificial-intelligence-based approach of QRS peak detection and classification of the ECG data. +e design of
reduced order IIR filter is proposed for the low pass smoothening of the ECG signal data. +e min-max optimization is used for
optimizing the filter coefficient to design the reduced order filter. In this research paper, elimination of baseline wondering and the
power line interferences from the ECG signal is of main attention. +e result presented that the accuracy is increased by around
13% over the basic Pan–Tompkins method and around 8% over the existing FIR-filter-based classification rules.

1. Introduction

It has been found by the World Health Organization that
heart arrest is the world’s most common cause for death [1].
+erefore, a strong focus has been put on cardiac health
research with a focus on medicine, prevention, and tech-
nology which sequentially led investigators to work on
educating cardiovascular skills that are usually applied in
clinics and hospitals to make predictable diagnoses.
+erefore, ECG signal analysis in the clinical heart test used
to screen various heart defects is of prime importance.
Digital signal processing has therefore been widely used to
analyze the ECG signal over the past three decades.

Electrocardiogram (ECG) is an irregular signal that
replicates cardiac activities. Most understanding of heart
pathology is possible by studying ECG signal [1]. +e
evaluation matrix for healthy heart is heart rate and ECG
signals. If we capture ECG signal from a patient and if there
is any nonlinearity, then this is termed as cardiac arrhythmia
[2]. Figure 1 shows a typical ECG beat.

+e length and amplitude of the PQRS-TU wave have
valuable evidence on the condition of the heart-related

illness. +e ECG signal aspects different varieties of noises
during acquisition in the clinical field. +e artifacts usually
occurring are exterior electromagnetic field intrusion, noise
from instruments, interference with the power line, clamor
from electromyography (EMG), and noise from electrode
connection. +ese artifacts influence frequency determina-
tion and signal superiority and have a strong effect on the
morphology of the ECG data that contains essential cardiac
foundations [3]. +e problem of removing infected noises is
recommended, which is important in the ECG data, and
promotes accurateness.

ECG is a significant implementation for medical prac-
titioners in the arena of cardiac health assessment and
recognition. ECG is often adopted as a diagnostic approach
for the detection of cardiovascular diseases by cardiologists
[4]. +e beginning of heart disease is extremely important
because it can reduce sudden heart failure [5]. A high quality
of ECG signals is required for precise diagnoses. Electrodes
pasted on the body’s skin are used to show and capture
electrical heart activity [2, 3, 6]. +e ECG signals include
some of the following features: atrial depolarization of the
P-wave component, the QRS complex designating
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ventricular depolarization, and a ventricular repolarization
designated by T wave. Although the ECG signal is non-
stationary in nature, a solid filters algorithm and well-known
Hilbert transform can visually detect R-position peak’s in
order to derive analysis for the ECG data.

+e R-peak finding work is carried out by the Hilbert
transformation [6] using a cleaned ECG data taken out from
the MIT-BIH arrhythmia database [5]. +e suggested
technique provides an improved measurement of accuracy,
sensitivity, and predictivity in comparison of the previous
results published.

Figure 1 represents the significant characteristics of an
ECG wave whose significant features are P, Q, R, S, and T,
and certain periods, such as P-R, S-T, and Q-T intervals, are
shown in the typical scalar-electrocardiographic waveform.
Healthy heart has regular rhythm which is also called a
normal sinus rhythm (NSR). P-waves signify atrial depo-
larization [1]. +e regular Q wave is an early descending
deflection of the P wave and signifies septal depolarization.
+e R wave is the most usual waveform for the ECG to detect
and characterize early ventricular depolarization. +e S
wave, which represents the late ventricular depolarization, is
the first negative deflection after the R wave. +e T-wave
characterizes ventricular repolarization. U waves are a re-
polarization of the Purkinje fibres which show the latest
ventricular residuals.

2. ECG Dataset

In order to implement this research in the MATLAB en-
vironment, a total of 18 ECG records have been adopted.+e
duration of each record is 30minutes and 5556 seconds; the
length below is rounded to the next second; due to accu-
mulated rounding error, it cannot be exactly 30 : 06. Heart
rates are measured over 3 R-R intervals in beats per minute
[7].

3. Related Work

+e papers on processing ECG data and QRS complex
detection were developed by Peterkova et al. +e QRS

complex is detected using QRS online detector to determine
the different peaks in the ECG using the state-owned logic,
based on average and adaptive noise-and-signal thresholds
[8]. Based on digital analysis of the pitch and amplitude, a
real time algorithm was developed in this research article
proposed by Jiapu Pan et al. to detect QRS complexes with
ECG signals. +e procedure inevitably regulates verges and
parameters to adjust regularly for ECG fluctuations such as
QRS morphology and heart proportion with increased de-
tection sensitivity. 99.3% of the QRS complexes [9] are found
in the accuracy of this algorithm.

+ree methods for detecting QRS complex were imple-
mented in a research paper projected byVandana verma et al.;
one is the adaptive threshold where the Pan–Tompkins
Procedure was applied to identify the QRS complex. +e
Dynamic Quantized +reshold was another procedure. +is
method was used to eliminate entire frequencies, which is not
essential to detect the section of the QRS complex by But-
terworth filter having passing ensemble of 1–13Hz.+emean
was removed from the signal for the removal of the baseline.
By quadrupling the signal, the gradient and moving average
integrator detected four components. Finally, the preferred
ultimate QRS feature was imitative by keeping the amplitude
of G4 that is more than dynamic [10].

Using PNDM, Sameer K. Salih and coworkers were able
to detect QRS complexes in ECG signals and evaluate related
R-R intervals. Compared to other ECG signal waves, de-
flection QRS complexes occurring between R&S waves were
found to have a large positive and negative interval. +e
proposed detection process followed a new fast direct algo-
rithm applied to the ECG record itself, without any further
transformations, such as the discrete wavelet transformation
(DWT), or any filtering sequence [11]. According to Sharma
et al., QRS complex can be detected using the syn-
chrosqueezed wavelet transform (SSWT), which synchronizes
with the wavelet’s continuous transformation. +e R peaks
were detected using the nonlinear mapping technique [12].

Naaz et al. projected research work compacts with the
extraction by wavelet decomposition of the QRS complex.
+e first preprocessed ECG signal was noisy for removing
the walking mark and the base mark.+e STsubdivision was
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Figure 1: Two cycle regular ECG waveform.
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also carried out to verify that the ECGmodel belongs or does
not belong to patients with heart attack [13]. A paper
proposed by Sivakumar et al. was used to represent the
method of Empirical Mode Decomposition as arithmetic
sum of zero mean AMFM constituents, in adaptive format.
QRS complex detection was completed with EMD and
combination of Haar wavelet transform to work better than
other methods. +e nonstationary signal such as ECG was
directly applied to a notch filter with a ringing effect [14].

Yan sun et al. proposed a wave detection including QRS
complex by using a transformation-based unique detector
named multiscale morphological derivative [15].

Pan and Tompkinsmethod [16] is used to calculate slope,
amplitude, and width of ECG signal. After the preprocessing
step, two sets of thresholds are applied to the signal to
remove noise, smooth the waveform, and amplify the QRS
slope and width to locate the true positive R peaks. In [17],
which reproduced the same preprocessing phase, an evo-
lution in the Pan and Tompkins procedure [16] is indicated.
However, by performing performance tests on three esti-
mators for the adaptive threshold (mean, median, and it-
erative maximum level), decision rules can be improved.

Using a robust algorithm, the Hilbert transformation is
indicated in [18]. Using a Finite Impulse Response (FIR)
filter window and Kaiser Bessel window, the ECG signal will
be filtered to remove muscle artefacts and motion artefacts,
as well as baseline noise. To determine the R peak, the first
differential of the ECG signal is Hilbert.

+e ECG database is stored in various cloud databases
which can be accessed as per requirement [19–21] and these
further discussed algorithms will be helpful to preprocess the
ECG signal. +e precisely cleaned ECG will support phys-
iologists in the accurate detection of heart disease and ac-
cordingly the best possible treatment.

4. Problem and Challenges

+e baseline wandering noise makes it difficult to analyze
ECG data. For the correct evaluation of ECG, it is therefore
necessary to suppress this noise. +e basis of an ECG
waveform can be significantly different. A variety of fre-
quencies are diverted by both high and low amplitude.
Before processing the ECG data, the major concern is
therefore to remove the additive noise and the baseline noise.

A recorded signal is filtered, termed as online filtering. In
the direction of examining the real time properties of stress
on electrical heart activities, the signals are filtered and
analyzed simultaneously.

An important research challenge is a reduced order filter
for ECG processing hardware in real time. With the filter
order reduced, the size of the filter over the hardware is
lesser, but the accuracy of the ECG detection feature should
not be decreased. +e filter design coefficients can be op-
timized for this purpose. +e algorithms applied for existing
issues are discussed below.

4.1. Algorithms. +ere are many methods designed for
improving the performance of ECG artifact removal in the

front end processing. It is expected that peak detection and
classification efficiency directly depends on the efficiency of
methodology adopted at preprocessing stage. +us in this
paper two existing filtering strategies as Pan–Tompkins [17]
and 60 order FIR filter are presented as shown in Algo-
rithms 1 and 2, respectively.

+e method of Pan and Tompkins is most widely used
for the peak detection [17] as described in Algorithm 1.
However, for improving the classification efficiency of ECG
signal, many variants of Pan and Tompkins method were
designed. Algorithm 2 is the modified peak detection
method using the 60 order FIR filter for preprocessing ECG
for peak detection. In addition, this method also classifies the
ECG as the regular or irregular heart.

5. Contribution of Work

+is paper demonstrated the efficient use of optimization-
based filter for ECG peak detection and classification. It
contributes in the two passes. In the first pass, an efficient
QRS peak detection algorithm is proposed using the de-
signing of reduced order IIR filter using the transfer function
optimization. +e IIR filter is combined with Hilbert
transform for performance improvement of peak detection.
+e filtering performance for baseline wondering is com-
pared for three different approaches. In the second pass, the
paper proposed a fuzzy ECG classification rule based on
HRV parameters in time history analysis. +e performance
of the proposed rule is compared with two existing methods
as Pan–Tompkins and FIR filter approach. +e classification
efficiency is compared based on true positives.

6. Proposed Methodology

+e manuscript projected to design a new approach of QRS
peak detection and classification in the ECG data using the
reduced order IIR filter for the low pass smoothening of the
ECG data. +e optimization technique is proposed to
minimize the order of the anticipated IIR filter design. +e
block illustration of the projected ECG classification method
is presented in Figure 2.

+e proposed IIR filter is a two-stage filter designed with
the arrangement of the pass band and stop band filter as
shown in Figure 3.

Let X(n) be the input ECG data to be filtered; then, the
basic design of IIR filter in terms of transfer functions is
defined as

Y(n) � X(n)∗ h1 ∗ h2, (1)

where h1 is the transfer function of the pass band filters; an
example of transfer function for ECG data of 106 MIT-BIH
is given as

h1 �
0.2066 s

4
− 0.4131 s

2
+ 0.2066

s
4

+ 0.5488 s
3

+ 0.4535 s
2

+ 0.1763 s + 0.1958
, (2)

where h2 is the transfer function of the stop band filter; an
example of transfer function for ECG data of 106 MIT-BIH
is given as
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h2 �

0.3201 s
16

+ 4.517 s
15

+ 30.45 s
14

+ 130 s
13

+ 393.2 s
12

+

892.9 s
11

+ 1574 s
10

+ 2196 s
9

+ 2452 s
8

+ 2196 s
7

+ 1574 s
6

+ 892.9 s
5

+ 393.2 s
4

+ 130 s
3

+ 30.45 s
2

+ 4.517 s + 0.3201
s
16

+ 12.12 s
15

+ 70.25 s
14

+ 258.1 s
13

+ 672.2 s
12

+1316 s
11

+ 2004 s
10

+ 2419 s
9

+ 2340 s
8

+ 1819 s
7

+ 113 s
6

+559.4 s
5

+ 214.8 s
4

+ 62 s
3

+ 12.7 s
2

+ 1.649 s + 0.102

.

(3)

Transfer function for IIR filter, pass band filter, and stop
band filter is shown in equations (1), (2), and (3).

6.1. Methods. Most frequently applied ECG processing
methods are discussed below.

6.1.1. Pan and Tompkins (PT). When Pan and Tompkins
introduced the low-pass differentiation procedure (LPD) in
1985 [17], it revolutionized the ECG signal processing field.
When detecting QRS, amplitude and width data applied
algorithmic complexes in PT and the QRS finding [22] was

not successful. +ere are three steps in the detection process.
It is possible to create a digital system for the use of filtering,
nonlinear transformations, and decision rules.

With the PT method, there is no significant power
consumption. After being filtered with an analogue band-
pass filter to limit the ECG signal’s frequency range to about
50Hz, the raw ECG signal is fed into an A/D converter,
which digitizes the signal at about 200Hz.

In order to perform pattern recognition, a band-pass
filter is connected in sequence of low pass (LP) and high pass
(HP) filter arrangement. To limit the ECG signal’s operating
range and to reduce higher frequency noise, a low pass filter
(LPF) is used; whereas a high pass filter (HPF) highlights
each QRS complex.

It is possible to process data in real time by using a
digital filter with integer coefficients. All types of unwanted
interferences and frequency noise impacts are greatly re-
duced by the overall band-pass filter. To identify and mark
all of the R-peaks [23, 24], the ECG signal is conceded
through a local peak recognition procedure. Using a set of
thresholds, this algorithm selects the QRS complexes that
are required. Adapting the threshold based on the peak’s
amplitude.

+is algorithm uses a human factor to help determine
thresholds. +e leading source of fault in this Pan and
Tompkins technique could be the operator’s experience in
setting thresholds.

6.1.2. Hilbert Transform (HT). As a result of the physio-
logical state, all physiological signals are nonlinear and
nonstationary. +e Hilbert transform is the finest technique
for analyzing signals that do not typically trail an even ar-
rangement or stay stagnant (HT). All of the limitations of
FFT and DWT are overcome by HT.

+e first signal is decomposed into intrinsic mode
function (IMF) and then the Hilbert transform is used to
convert this IMF into frequency domain signal. It is defined
as the phase angle shift of all components of a signal h(t) by
90o in the Hilbert transform. With h(t) as its signal repre-
sentation, the Hilbert transform of h(t) can be inscribed as

􏽢h(t) �
1
π

􏽚
∞

−∞

h(p)

t − p
dp. (4)

Researchers in [13, 25–28] used HT as an imple-
mentation for ECG QRS recognition using the HT
technique.

6.1.3. Optimum Reduced Order Filter Design. As it can be
perceived from the above equations that basic IIR filter
requires higher order filter of 16 orders, in this paper MIN-
MAX optimization is proposed to diminish the order of the
transfer function. +e numerator and denominator coeffi-
cient vectors of the IIR filter as [b1, a1] are optimizing Min-
Max optimization.

I. Optimization problem: this paper formulates the blind
min-max optimization problem for ECG peak detection. In
themin-max optimization, the problem is tomaximize inner

(1) Load ECG data
(2) Parameter Deceleration Fs,
(3) 32 order low pass Filter⟵ [b1 a1, ]

b1 � 1/32∗[1 0 0 0 0 0–2 0 0 0 0 0 1];, a1, � [1–2 1];
(4) 32 order high pass filter.

b� [−1/32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/32];, a� [1–1];

(5) Derivative filter⟵ [b a, ]

b� [1/4 1/8 0–1/8–1/4]; a� [1];
(6) Apply average filter and take threshold

threshold�mean(sigAV);
P_G � (sigAV>0.01);

(7) Peak detection RR(t), R-lo
End algorithm

ALGORITHM 1: Pan–Tompkins.

(1) Load ECG data
(2) Deceleration Fs, QRS(t)stadard
(3) Baseline wondering using

60order high pass Filter⟵ [b1 a1, ]

Window based FIRREGULAR filter W� 1/36000
(4) 60 order low pass filter.

Window� 150/180.
(5) Remove power line noise, using

100coefficient stop band filter
(6) Peak detection

Determine RR(t), R–to–R interval
Determine peaks

(7) Disease detection: calculate regular and irregular
distance heart rate measure, classify as regular
and irregular

End algorithm

ALGORITHM 2: FIRREGULAR filter.
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and minimize outer objective function f (x1, x2) which can
be mathematically given as

min
x1∈X

max
x2∈X

f x1, x2( 􏼁, (5)

where x1 and x2 are optimization variables, differentiable
objective function is f, and X ⊂ Rdx1 , Y ⊂Rdx2 are convex
sets.

Transfer function coefficients are optimized sequentially
as shown in sequential procedure for Min-Max
optimization.

(1) +e long-term and short-term ECG peak detection
samples are proposed to evaluate a specific case.
Short-term alphabet ECG peak detection samples are
recorded.

(2) +ey are proposed to design optimization method
for minimized order IIR filter denoising of herring
aid signal.

(3) Proposed IIR filter has to be deliberated by the pass
band and stop band filter for denoising.

(4) Adoptive amplitude and threshold scaling is pro-
posed for short-term ECG peak detection.

(5) It is also proposed to evaluate the FFT of the filtered
responses for data preservation.

(6) +e transfer function comparison is used for eval-
uating the performance of filtering.

+e transfer function of the condensed order optimum
IIR filter corresponding to the previous shown 16 order IIR
filter transfer functions is given as discussed below.

II. Transfer functions analysis: the transfer functions for
different stages of the propose reduced order IIR filter design
are presented in Table 1. It can be perceived that our method
significantly minimizes the filter order and also simulta-
neously preserves the nature of ECG signal as already dis-
cussed previously. It can be observed that IIR filter is
designed with 16 order and after optimization the reduced
order filter has order of 2.

7. The Proposed Algorithm

All the steps followed in the proposed algorithm are men-
tioned below:

(1) +e ECG data having arrhythmia cases have 48
channels. 30 channels data are loaded as mat files
for classification

(2) Define actual array of ECG features
(3) Set sampling frequency Fs (500Hz) and standard

QRS interval (0.099 sec.), i.e., QRS(t)
(4) Baseline wondering is performed by using 60 order

FIR high pass filter
(5) Design an optimum 150Hz IIR low pass filter

(5.1) Design a pass band butter worth filter having lower
and upper cutoff frequencies FL and FH.

(5.2) Design a stop band Butterworth IIR filter with
lower and upper cutoff frequencies FL1 and FH1

(5.3) Apply min-max optimization over filter
coefficients

(5.4) Reduce the order of IIR filter
(6) Remove power line interference with 100 coeffi-

cient FIR stop band filter
(7) Plot and evaluate the filter coefficients
(8) Implement the Hilbert transform on filtered ECG

signal
(9) Obtain QRS peak and the RR and QRS interval

heart rate for peak detection and ECG signal
feature extraction

(10) Calculate the mean of regular heart rate and ir-
regular heart rate

(11) Calculate the database distances between regular
and irregular data and apply threshold-based de-
tection approach to detect regular and irregular
ECG data

+e proposed algorithm flow chart is as follows Figure 4.

8. Result and Description

In this paper, the prime concern is to demonstrate the
performance improvement of ECG classification by using
the optimized IIR filter design. +e MIT-BIH Arrhythmia
ECG bed database [7] is applied for the classification of the

Read ECG
Signal

Load Actual 
Training

Data

Pre Filtering for
Baseline Wondering

and de noising

Determine the ECG
Peaks

Calculate the RR and 
QRS intervals

Classification and
Disease detection

Determine
Accuracy

Display
Results

Figure 2: Sequential processes of ECG peak detection and classification.

X (n) Stop Band
Filter

F (n)  Y (n)Pass Band
Filter

Figure 3: Two-stage basic IIR filter design process.
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regular and irregular ECG data. Out of the 48 available
channels of the humans, the 30 ECG data are selected for the
current study, having the versatile range of the ECG data.
+e input ECG data are presented in Figure 5. +ese ECG
data are recorded at the rate of the 360 samples per second.
+e description of MIT-BIH database used and the details of
the cases considered in Figure 5 for study are shown in
Table 2.

In Figure 5, (x)-axis denotes time in seconds and y-axis
denotes amplitude. Figure 5 gives details plotting of database
and we can observe that each input has different behavior.

Among all the 30 ECG channels, six ECG channels as
102, 106, 109, 200, 208, and 228 are selected with different
features difficulties to represent the visual results for the peak
detection algorithm. +ese ECG data are presented in
Figures 6(a)–6(f). +ese channels have the most of the ir-
regular variations in the ECG data. +us, it becomes sig-
nificant to demonstrate the efficient peak detection method
over them. Another reason of selection of these channels is
that they are also considered by many existing ECG peak
detection methods as in [29].

In Figure 6, (x)-axis signifies the number of ECG samples
and y-axis signifies amplitude of ECG signal. Figure 6(a)-
6(f) represents the waveform plot of channel number 102,
106, 109, 200, and 208 and channel number 228. From
Figure 6 we can observe that 6(b), 6(d), and 6(f) present a
good peak detection which can be used for ECG peak in peak
detection. Moreover, Figures 6(a), 6(c), and 6(e) have peaks
very close to each other.

8.1. Min-Max Optimization for Optimum Filter Design.
When it comes to designing an optimal reduced order IIR
filter, this paper proposes a primary modification to the
process of ECG signal processing. Smoothening is achieved
by replacing the conventional FIR low-pass filters with the
proposed reduced order IIR filter design.

Figure 7 presents the sequential results for the ECG
signal filtering using the proposed IIR filter with optimi-
zation techniques. It is clearly observed that band pass filter
and the IIR filter stages do not clearly represent the Q and S
peaks signals although the R peaks are preserved. But as our
goal is to design the QRS interval based classification
method; thus, it is proposed to improve the performance of
the IIR filtering. +erefore, a min-max optimization is used
for scheming the condensed order transfer function for ECG
filtering. It is clear from the final row in Figure 7 that the
projected approach considerably smoothens the artefacts
and also preserves the features of the QRS peaks [22, 29]. It
can also be perceived that the amplitude of the minimized
order filter is also much better than the amplitude of the
band-pass filter and IIR filter design. +ere are no negative
values in the reduced order filtered signals. It is because min-
max optimization eliminates the negative coefficients from
transfer function, thus all the values are positive only. +e
amplitude range is cut down from the 800–1600 to the vi-
cinity 300 to 600 m-volt.

8.2. Results of Hilbert Transforms. In this paper the pre-
processing stage is followed through the Hilbert transform
stage. +e filtered ECG signal is passed to the Hilbert
transform block in order to improve the efficiency of the
peak detection method. +e basic uses of the Hilbert
transform (HT) is to improve the efficacy of the R peak
recognition for envelop detection.+e use of HT [18] usually
shifts positive and negative frequency components by −90°
and +90°, respectively; on the other hand, all the amplitudes
of transform domain function F[x(t)] remains constant as
the R peaks of the ECG. In this way, it is determined that the
orthogonality of x(t) with respect to the harmonic conjugate
xH(t) is established, which is harmonic conjugate of x(t).

+e results of introducing the Hilbert transform over the
filtered signal using the optimum reduced order filter design

Table 1: Transfer functions for different filters used for filter design of ECG peak detections.

Filter method Designed transfer functions

FIR filter 60 order
low pass filter

h_60� -4.168e-19 ŝ60 + 0.0004528 ŝ59 0.0008864 ŝ58 + 0.001208 ŝ57–0.00127 ŝ56 + 0.0009014 ŝ55–5.451e-
18 ŝ54–0.001371 ŝ53 + 0.002909 ŝ52–0.004086 ŝ51 + 0.004272 ŝ50–0.002955 ŝ49 + 3.791e-
17 ŝ48 + 0.004159 ŝ47–0.008473 ŝ46 + 0.01146 ŝ45–0.01158 ŝ44 + 0.00778 ŝ43–2.215e-
17 ŝ42–0.01052 ŝ41 + 0.02122 ŝ40–0.02865 ŝ39 + 0.02921 ŝ38–0.02005 ŝ37 + 2.962e-

17 ŝ36 + 0.02986 ŝ35–0.06616 ŝ34 + 0.1037 ŝ33–0.1364 ŝ32 + 0.1587 ŝ31 + 0.8331 ŝ30 + 0.1587 ŝ29–0.1364 ŝ28 +
0.1037 ŝ27–0.06616 ŝ26 + 0.02986 ŝ25 + 2.962e-

17 ŝ24–0.02005 ŝ23 + 0.02921 ŝ22–0.02865 ŝ21 + 0.02122 ŝ20–0.01052 ŝ19–2.215e-
17 ŝ18 + 0.00778 ŝ17–0.01158 ŝ16 + 0.01146 ŝ15–0.008473 ŝ14 + 0.004159 ŝ13 + 3.791e-
17 ŝ12–0.002955 ŝ11 + 0.004272 ŝ10–0.004086 ŝ9 + 0.002909 ŝ8–0.001371 ŝ7–5.451e-
18 ŝ6 + 0.0009014 ŝ5–0.00127 ŝ4 + 0.001208 ŝ3–0.0008864 ŝ2 + 0.0004528 s - 4.168e-19

Pan–Tompkins 32
order LPF h32 � (0.03125 s12 − 0.0625 s6 + 0.03125)/s2 − 2 s + 1

Band pass filter h1 � ( 0.2066 s4 − 0.4131 s2 + 0.2066)/s4 + 0.5488 s3 + 0.4535 s2 + 0.1763 s + 0.1958

IIR filter 16 order
h2 �

0.32s
16

+4.517s
15

+30.45s
14

+130s
13

+393.2s
12

+

892.9s
11

+1574s
10

+2196s
9

+2452s
8

+2196s
7

+1574s
6

+892.9s
5

+393.2s
4

+130s
3

+30.45s
2

+4.517s + 0.320
/
s
16

+12.12s
15

+70.25s
14

+258.1s
13

+672.2s
12

+1316s
11

+2004s
10

+2419s
9

+2340s
8

+1819s
7

+113s
6

+559.4s
5

+214.8s
4

+62s
3

+12.7s
2

+1.649s +0.102

Optimum reduced
order IIR filter hopt � (3s + 14)/41
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for three signals 104m, 109m, and 228m are presented in
Figures 8, 9, and 10 correspondingly. In Figures 8, 9, and 10,
for the sake of clarity, portions of the filtered signal are
shown as zoom version in the two columns of the same
figure, respectively, for signals in column one. It is clear that
using the Hilbert transform may improve the gain of the Q,
R, and S lower peaks. +us in turn it may improve the peak
detection and also preserve the original ECG signal pattern.

8.3. Results of Filter Design. +e visual representation of the
result comparison for the proposed IIR filter design is shown

in Figure 11. +e figure presets the proposed ECG signal
preprocessing results plotted for the full ECG length of
samples. Figure 11(a) represents the results for 100th ECG
data and Figure 11(b) represents results for of the 106th ECG
data, where x-axis signifies the number of samples taken and
y-axis signifies the amplitude of ECG signal.+e filtered data
have three stages of the proposed IIR filter designs. +e first
stage is baseline wondering noise removal using band pass
filter. Secondly, results are shown after stop band as IIR filter
and finally results with min-max optimization for reduced
order filter are represented in the figure. It can be observed
that the proposed filter design enhances the magnitude of

Start

Load the ECG database

Define Actual array of ECG
Features

Set Sampling frequency Fs and
Standard QRS interval QRS (t)

Filtering
Baseline Wondering

60 Order FIR high pass filter

Design an Optimum 150 Hz
IIR Low Pass Filter

Power Line Interference Removal
100 coefficient FIR band stop Filter

Plot and Evaluate Filtering
Performance

Implement the Hilbert Transform
on Filtered ECG to find envelop

Find QRS peak and the RR and
QRS Intervals heart rate

Calculate Mean Normal Heart rate
and Mean Abnormal Heart rate.

Calculate Normal and
Abnormal database Distance

Disease Dictions and Classification

K=K+1

Optimum

Pass Band Butterworth Filter
with FL,Fh

Stop Band Butterworth IIR
Filter with FL1,FH1

M iB-Max Optimization Over
filter coefficients

Reduced Order IIR
Filter design

QRS Complex

Peak Detraction &

Feature Extraction

Normal

end if K>m

Abnormal

If (QRS_Int (t) <
QRS (t)

&
(Dn<DA)))

Filter design

Figure 4: Flow chart of the proposed QRS peak detection and disease detection algorithm.
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signal and also preserve the nature of the original ECG signal
as there is no negative coefficient after the optimization.

Further analysis is much clear with the better repre-
sentation of filtering for 3500 and 2000 initial samples shown
in Figure 12 with clear view. +e figure represented the
results for the ECG 100m signal. +e baseline filtering effects
are clearly visible in Figure 12(b)) for 2000 samples as it gives
zoomed view of filtering. Here in Figures 12(a) and 12(b)
also x-axis characterizes the number of samples considered
for experiment and y-axis characterizes amplitude of ECG
signal.

From Figures 12(a) and 12(b), it can be easily concluded
that baseline wandering is removed and the signal got
smoothened after this filtering.

8.4. Results of QRS Peak Detection. +is section presents the
consequences of QRS peak recognition for the four input
ECG signals in Figure 13. It can be observed that peaks are
efficiently identified for Q, R, and S peaks for all four cases
with the proposed method.

For QRS detection, we have considered ECG signal of
channel no. 102m in Figure 13(a), channel no. 109m in
Figure 13(b), channel no. 208m in Figure 13(c), and channel
no. 228m in Figure 13(d). In these figures, x-axis charac-
terizes number of samples and y-axis characterizes voltage of
ECG signal for that particular channel. With the analysis of
all these figures, we can conclude that filtering of the ECG
signal peaks is efficiently detected which helps in Q, R, and S
peaks accurate detection.
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Figure 5: Input MIT-BIH/PhysioNet ECG Arrhythmia database of 30 persons recorded for over 30min, 5.556 sec, used for the current
study.+ese data are 100,101,102,103,104,105, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 113, 114, 200, 201, 202, 203, 207, 208, 209,
210, 212, 213, 214, 215, 217, 219, 221, 222, 228.

Table 2: Description of MIT-BIH database used for the study.

Data from samples numbered as
Futures 100 101 102 103 104 105 106 107 108 109 111 113
Beats 2273 1865 2187 2084 2229 2572 2027 2173 1774 2532 2124 1795
Gender M F F M F F F M F M F F
Age 69 75 84 — 66 73 24 63 87 64 47 24
Data from samples numbered as
Futures 114 200 201 202 203 207 208 209 210 212 213 214
Beats 1879 2601 2000 2273 1865 2187 2084 3005 2650 2748 3251 2262
Gender F M M M F F M M M F M M
Age 72 64 68 69 75 84 - 62 89 32 61 53
Data from samples numbered as
Futures 215 217 219 221 222 228 215
Beats 3363 2208 2287 2427 2483 2053 3363
Gender M M M M F F M
Age 81 65 — 83 84 80 81
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In the next section, we will discuss the evaluation of the
proposed ECG signal classification.

8.5. Evaluation of Proposed ECG Classification. In this sec-
tion, the paper compares the classification efficiency of the
three different approaches of the QRS peak detection as
standard Pan–Tompkins [17] method of 60 order FIR filter,
and our proposed approach of optimum reduced order IIR
filter. Our paper presented three different ECG classification
rules. +e rules of the HRV based ECG classifications,
regular or irregular ECGs, are summarized in Algorithms 3,
4, and 5, respectively.

8.6. Parametric Evaluation of Classification. +e major
concern is to demonstrate the improvement in the classi-
fication efficiency with the proposed method. To calculate
efficiency, we will calculate few parameters such as sensi-
tivity, specificity, accuracy, and precision.

A false negative (Fn) is generated when the procedure is
unable to identify an accurate beat. Fns are extracted from
the MIT-BIH record’s equivalent annotation case. A false
positive (Fp) is an untrue beat outcome, where true positive
(Tp) is the precise beat identified based on the procedure
that has been proposed. Moreover, true negative (Tn) is
correct not detected beats. +ese parameters are calculated
by
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Figure 6: Six unique ECG data with different features difficulties are considered for perceptual result representation: (a) 102, (b) 106, (c) 109,
(d) 200, (e) 208, and (f) 228.
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Tn � sum(Diff �� 0&Actual �� 0); (6)

Tp � sum(Diff �� 0&Actual �� 1); (7)

Fn � sum(Diff ∼ � 0&Actual �� 1); (8)

Fp � sum(Diff ∼ � 0&Actual �� 0); (9)

Sensitivity: this refers to the percentage of exact beats
that occur in a given recording session which were correctly
identified by the algorithm and shown in the following
equation:

Sensitivity �
Tp

(Tp + Tn)
∗ 100. (10)

Specificity: the ability to correctly identify people who do
not have a disease using a test. Specificity is shown in the
following equation:

Specificity �
Tp

(Tp + Fn)
∗ 100. (11)

Performance accuracy is the utmost instinctive enactment
metric because it is a simple relationship of appropriately
anticipated interpretations to all interpretations made.

0
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

50 100 150 200 250 300 350 400 450 500

Optimum Filtered ECG

Comparison for channel no 104
48

1.71

1.715

1.72

1.725

1.73

50 52 54 56 58 60 62

Filtered Hilbert Trasform

×10
5×10

5

Optimum Filtered ECG
Filtered Hilbert Trasform

1.71

1.715

1.72

1.725

1.73

Figure 8: Results of the calculated Hilbert transform for increasing efficiency of R peak detection for channel no. 104.

0 50 100 150 200 200
1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

220 240 260 280 300250 300 350 400 450 500

Comparison for channel no 109

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1 ×10
5

×10
5

Optimum Filtered ECG
Filtered Hilbert Trasform

Optimum Filtered ECG
Filtered Hilbert Trasform

Figure 9: Results of the calculated Hilbert transform for increasing efficiency of R peak detection for channel no. 109.

10 Journal of Healthcare Engineering



Precision: it is defined as the number of correctly pre-
dicted positive observations divided by the total number of
predicted positive observations. Accuracy and precision are
mathematically represented as

Accuracy �
(Tp + Tn)

(Tp + Tn + Fn + Fp)
∗ 100, (12)

Precision �
Tp

(Tp + Fn)
∗ 100. (13)

In this article, we have evaluated Tn, Tp, Fn, and Fp by using
different classification rules like Pan–Tompkins, FIR filter, the
proposed methodology of QRS detection and the proposed
methodology of fuzzy methods encapsulated in Table 3.

Moreover, precision, accuracy, specificity, and sensitivity
parameters are evaluated by using different classification
rules like Pan and Tompkins, FIR filter, the proposed

methodology of QRS detection, and the proposed meth-
odology of fuzzy methods encapsulated in Table 4.

Further, HRV rules are applied to check the classification
of irregularity for all of the ECG signal channels from our
database and compared with actual training data to check
the efficiency of our proposed method.

From Table 5 we can conclude that the proposed fuzzy
HRV rule based classification is very close to actual training
data for irregularity detection.

8.7. Time Domain HRV Parameter Analysis. +e analysis of
time domains statistical HRV parameters are presented for
the proposed ECG classification and peak detection method.
Various parameters in time domain are calculated using the
RR intervals used for analyzing the ECG signal. +e pa-
rameters used for analysis in this paper are defined as
follows:
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Figure 11: +e proposed ECG signal preprocessing plotted for the 3500 samples (a) 100th ECG data and (b) of the 106th ECG data.
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Figure 12: Better representation of ECG signal artifact removal results shown for sample length of 2000 for the 100m signal.
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Figure 13: Results of the QRS peak detection for four ECG signals with the proposed optimum IIR filter method.
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(a) Standard deviation of NN interval (SDNN): the R to
R time is calculated for each pair of RR interval. +e
SDNN is defined as the standard deviation (SD) of
the RR intervals.

(b) Root mean square SD (RMSSD): the RMSSD value is
calculated by mean square differences of the calcu-
lated approximate derivatives using RR interval,
mathematically defined as

RMSSD �

������������������
1

M
diff RRRegion􏼐 􏼑

2
􏼒 􏼓,

􏽲

(14)

where M is the length of the RR interval vector
represented as RRRegion. .

(c) NN50 value: the NN50 value is defined as the
number of R to R intervals greater than the 50ms
interval.

(1) Standard QRS interval ← QRS(t)S tan
(2) Compare the QRS intervals
(3) Classify as
(4) If QRS_Interval(k) < QRS(t)S tan

Result(k)� 1;
Else

Result(k)� 0
End of algorithm.

ALGORITHM 3: Using QRS Interval.

(1) Standard QRS interval ← QRS(t)S tan
(2) Compare the QRS intervals
(3) Compute regular and irregular heart beats
(4) Calculate regular and irregular distance
(6) DNormal � |(HR − E((HRNormal))| abs
(7) DAbNormal � |(HR − E((HRAbNormal)| abs
(8) Classify as
if ((QRS_Interval(k) < QRS(t)S tanand (DNormal (k)< . D AbNormal (k)))
Result(k)� 1;
Else
Result(k)� 0

]
End of algorithm

ALGORITHM 4: Using QRS +HRV.

(1) Standard QRS interval ← QRS(t)S tan
(2) Compare the QRS intervals
(3) Compare the RR intervals RR(t)

(4) Compute heart rate e ←HR � (1/60)RR(t)

(5) Compute regular and irregular heart beats
(6) Calculate regular and irregular distance
(7) DNormal � |(HR − E((HRNormal)| abs
(8) DAbNormal � |(HR − E((HRAbNormal )| abs
(9) Classify as
if ((QRS_Interval(k) < QRS(t)S tanand

(DNormal (k)< . DAbNormal (k)))
If HR> 60 and HR< 90

Result(k)� 1;
Else
Result(k)� 0

End of algorithm

ALGORITHM 5: Fuzzy QRS+HRV.
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+e statistical values of measured parameters are shown
in Table 6 for six input ECG signals with the proposed
method of peak detection.

From Table 6, we can conclude that SDNN is obtained
maximum for 228m channel and minimum for 106m ECG
channel. +e parameter RMSSD is evaluated maximum for

Table 3: Comparison of parameters of different preprocessing approaches for different classification methods.

Classification rule Tn Tp Fn Fp
Pan–Tompkins [16] 5 152 2 8
FIR filter 6 16 7 1
Proposed_QRS_Dist 6 15 8 1
Proposed fuzzy 0 23 0 7

Table 4: Comparison of accuracy and precision for different preprocessing approaches for two different classification rules.

Classification rule Precision Specificity Sensitivity Accuracy
Pan–Tompkins [16] 65.2174 86 75 66.6667
FIR filter 69.5652 69.5652 72.7273 73.3333
Proposed_QRS_Dist 65.2174 65.2174 71.4286 70
Proposed fuzzy 100 100 100 76.667

Table 5: Result comparison of HRV rules for ECG signal classification for irregularity.

Records Actual training data Pan–Tompkins With FIR filter Proposed fuzzy HRV rule
100 Regular Regular Irregular Regular
101 Irregular Irregular Irregular Regular
102 Irregular Irregular Irregular Regular
103 Regular Irregular Irregular Regular
104 Irregular Regular Irregular Regular
105 Regular Regular Regular Regular
106 Regular Irregular Irregular Regular
107 Irregular Irregular Irregular Regular
108 Regular Irregular Irregular Regular
109 Regular Regular Regular Regular
111 Regular Irregular Irregular Regular
113 Regular Irregular Irregular Regular
114 Regular Irregular Regular Regular
200 Regular Regular Regular Regular
201 Regular Regular Regular Regular
202 Irregular Irregular Regular Irregular
203 Regular Regular Regular Regular
207 Regular Regular Regular Regular
208 Regular Regular Regular Regular
209 Regular Regular Regular Regular
210 Regular Regular Regular Regular
212 Irregular Regular Regular Regular
213 Regular Irregular Irregular Regular
214 Regular Regular Regular Regular
215 Irregular Irregular Irregular Regular
217 Regular Irregular Irregular Regular
219 Regular Regular Regular Regular
221 Regular Regular Regular Regular
222 Regular Regular Regular Regular
228 Regular Regular Regular Regular

Table 6: Statistical values of measured parameters for HRV analysis.

ECG signals parameters ECG 102m ECG 106m ECG 109m ECG 200m ECG 208m ECG 228m
SDNN 80.3078 9.1564 35.4786 13.82 42.2744 49.3268
RMSSD 104.9028 9.9598 20.0403 12.6611 55.5034 66.5002
NN50 76 70 67 85 82 70
Heart beats 0.0099 0.0106 0.0079 0.0085 0.0092 0.0096
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Figure 14: Results of the Poincare plot for HRV analysis of the six ECG signals. (a) For 102m.mat, (b) For 106m.mat, (c) For 109m.mat,
(d) For 200m.mat, (e) For 208m.mat, and (f) For 228m.mat.
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102m ECG channel and minimum for 106m ECG channel.
NN50 parameter is the highest for 200m ECG signal and the
lowest for 109m ECG signal. +e heart beat is evaluated
maximum for 106m ECG channel and minimum for 106m
ECG channel.

8.8. Nonlinear HRV Analysis. +e analysis of Poincare ar-
chitecture is a nonlinear geometric way to test the HRV
dynamic nature. Poincare plots are a visual graphs where
each RR interval is arranged as a function of the previous RR
interval as shown in Figure 14. Poincare plots were assessed
in a qualitative manner using their visual pattern when
constructing the structure divided into functional categories
that reflect that range of heart failure.

Plots can be evaluated extensively by calculating the SD
indicators of the structure. +e Poincare plot provides ab-
stract details and detailed details of beat-to-beat nature of
conduction of the heart. Poincare plotting can be the best way
to monitor the dynamic change of self-care during anesthesia.

+e value of each consecutive RR intervals pair is rep-
resenting the point on the plot.

9. Conclusion

+e QRS peak detection is having significant role for disease
detection and identification of heart rate variability (HRV).
+e time history analysis plays impactful role for HRV
detections. +erefore, this paper proposed to design a new
approach of QRS peak detection and classification of the
ECG data. +e design of reduced order IIR filter is proposed
for the low pass smoothening of the ECG signal data. +e
min-max optimization is used for optimizing the filter co-
efficient for designing the reduced order filter design. In
addition, the ECG classification based on the HRV pa-
rameters is presented to demonstrate the efficiency of the
proposed filter design. +ree approaches of HRV-based
classification are presented using the Pan–Tompkins [17]
approach, using FIR filter of 60 order and the proposed filter
design. In this paper, for performance improvement, a new
fuzzy-based ECG classification rule is proposed. +e rule
takes the QRS interval, HRV distance measure, and the heart
beats count into consideration to categorize the ECG data as
regular or irregular. +e proposed method uses the true
actual training states of ECG data for indicating the clas-
sification efficiency of the projected filtering method. +e
proposed QRS peak detection and classification are simple
and suitable to use for real time applications.

+e 30 ECG Arrhythmia data from MIT-BIH is used for
experimentation and classification. +e proposed filter is
combined with the Hilbert transform for Q and S peak
detection. It is determined that the projected optimum filter
enhances the amplitude and preserves the ECG nature,
therefore improving the detection efficiency. +e true
positives are increased and false negatives are reduced with
the use of the proposed classification rule. +is paper pre-
sented the results of Poincare plots for ECG analysis. It can
be determined that the use of the projected filter with op-
timization method outpaces since 100% precession is

achieved and the accuracy is increased by around 13% over
basic Pan–Tompkins method and around 8% over the
existing FIR-filter-based classification rules. In the future, we
would like to apply our analysis method to finding other
peak spots in ECG signals. Detecting various forms of peaks
in ECG signal can provide more valuable information for
detecting CVDs and create a number of related applications.

Data Availability

+e data underlying this article are derived from online
sources in the public domain as PhysioNet. +ese heart rates
(ECG) are measured over 3 R-R intervals in beats per minute
and available at https://physionet.org/physiobank/database/
html/mitdbdir/records.htm.
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