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Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy. Understanding the basic
mechanisms of the metabolism in MM may lead to new therapies that benefit patients. We collected the gene expression profile
data of GSE39754 and performed differential analysis. Furthermore, identify the candidate genes that affect the prognosis of the
differentially expressed genes (DEGs) related to the metabolism. Enrichment analysis is used to identify the biological effects of
candidate genes. Perform coexpression analysis on the verified DEGs. In addition, the candidate genes are used to clusterMM into
different subtypes through consistent clustering. Use LASSO regression analysis to identify key genes, and use Cox regression
analysis to evaluate the prognostic effects of key genes. Evaluation of immune cell infiltration in MM is by CIBERSORT. We
identified 2821 DEGs, of which 348 genes were metabolic-related prognostic genes and were considered candidate genes.
Enrichment analysis revealed that the candidate genes are mainly related to the proteasome, purine metabolism, and cysteine and
methionine metabolism signaling pathways. According to the consensus clustering method, we identified the two subtypes of
group 1 and group 2 that affect the prognosis of MM patients. Using the LASSO model, we have identified 10 key genes. )e
prognosis of the high-risk group identified by Cox regression analysis is worse than that of the low-risk group. Among them,
PKLR has a greater impact on the prognosis of MM, and the prognosis of MM patients is poor when the expression is high. In
addition, the level of immune cell infiltration in the high-risk group is higher than that in the low-risk group. In the summary,
metabolism-related genes significantly affect the prognosis of MM patients through the metabolic process of MM patients. PKLR
may be a prognostic risk factor for MM patients.

1. Introduction

Multiple myeloma (MM) is a hematological malignant
tumor derived from abnormal monoclonal plasma cells. )e
main clinical symptoms include anemia, infection, bone
destruction, and renal insufficiency [1]. Due to the lack of
specificity of these clinical symptoms for the diagnosis of
MM, this has also led to the current lack of time-sensitive
methods for the diagnosis of MM [2]. In recent years, with
the rapid increase in the morbidity and mortality of MM, its
occurrence and development factors and prognosis have
gradually been paid attention to [3]. It is currently known
that MM is prone to occur in middle-aged and elderly men,
and the median survival time is about six years [4].
Meanwhile, the World Health Organization classification
system specifically distinguishes MM from other plasma cell

diseases [5]. Moreover, MM has also become the second
most common hematological malignancy after non-Hodg-
kin’s lymphoma [6]. In general, MM can be alleviated by
many clinical drugs and treatment techniques, for example,
high-dose chemotherapy, hematopoietic stem cell inhibi-
tion, and proteasome inhibitors (bortezomib and immu-
nomodulator lenalidomide) [7]. However, these treatments
cannot make MM patients escape the fate of disease re-
currence and aggravation [8]. )erefore, exploring new
therapeutic targets and disease prognostic indicators for
MM is of great significance for the treatment of MM
patients.

)e tumor is known for its special function of promoting
the unlimited proliferation of tumor cells [9]. Its particu-
larity is partly due to the generation or inhibition of me-
tabolites in tumor cells and the changes of metabolic
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pathways, which include the changes of glycolipid and
protein metabolic pathways [10], which provide sufficient
energy and nutrition supply for the unlimited and rapid
proliferation of tumor cells [11]. In addition, changes in
metabolic pathways also affect the expression of transcrip-
tion factors involved in regulating tumor cell proliferation
and apoptosis [12]. )erefore, understanding the metabolic
changes and the upstream and downstream regulatory genes
of metabolic changes in tumor cells can not only provide
early warning for tumor occurrence but also provide a
reference and qualitative gold standard for tumor treatment
and improving the prognosis of tumor patients.

Metabolic changes are a common feature of most tu-
morigenesis. As a nonsolid tumor in the bone marrow, the
metabolic process of MM has gradually been clarified with the
deepening of research and the development of research
methods. Moreover, changes in metabolic pathways also affect
the efficacy of different treatment methods in MM. In this
process, different targeted treatment methods are also being
developed and applied. However, the diagnosis, treatment, and
prognosis of MM are still trouble people. )erefore, this study
intends to evaluate the impact of metabolism-related genes on
the prognosis of MM patients by transcriptome sequencing
and predict the risk factors of MM prognosis, in order to
provide a theoretical basis for the treatment of MM patients
and improve their prognosis and survival rate.

2. Materials and Methods

2.1. Data Procession. )e gene expression profiles of
GSE39754 were downloaded from the Gene Expression
Omnibus (GEO) database. )e GSE39754 included gene
expression profiles of CD138 purified myeloma plasma cells
from 170 newly diagnosed MM patients and 6 CD138 pu-
rified plasma cells from healthy donors. )e data were
analyzed with the Affymetrix package. )e differentially
expressed genes (DEGs) were calculated by limma package
[13]. Set the filtering threshold |log2 fold change (FC)|> 1
and P< 0.05. Genes associated with the metabolism were
accessed in the MSigDB database.

2.2.CoxRegressionAnalysis. )e “survival” package of R was
used to do the Cox single factor analysis, and then, meta-
bolic-related genes affecting MM patient survival were then
screened. Candidate genes were used to build a binomial
least absolute shrinkage and selection operator regression
(LASSO) model using the glmnet R package [14]. MM
samples were divided into high and low-risk groups based
on the median level of score in Cox multivariate regression
analysis. Kaplan–Meier (KM) curves were generated to
assess the prognostic value of high and low-risk groups using
the survival R package.

2.3. Identification of MM Subtypes. )e Consensu-
sClusterPlus package was used to cluster the expression of
candidate genes in MM samples. 170 samples of
GSE39754 MMwere divided into two subtypes (group 1 and
group 2).

2.4. Enrichment Analysis. Gene Ontology (GO) and KEGG
pathway analysis of candidate genes were carried out by
enrichGO and enrichKEGG functions of clusterProfiler
package. Terms in enriched GO and KEGG pathways were
identified according to the cutoff criterion of P< 0.05.

2.5. Immune Score. )e CIBERSORT was used to quantify
the immune infiltration level of MM through the 22 immune
cells. )e limma package was used to calculate the difference
between high and low-risk groups.

3. Results

3.1. Differentially Expressed Genes in Multiple Myeloma.
To identify gene expression abnormalities of multiple my-
eloma, we identified differentially expressed genes between
MM and controls in GSE39754. A total of 2821 differentially
expressed genes (DEGs) were identified, including 1317
upregulated and 1504 downregulated expressions
(Figure 1(a)). Subsequently, we identified 576 DEGs related
to the metabolism (DEMRGs) using the MSigDB database.
In a Cox regression analysis of metabolism-related genes in
the MSigDB database, we identified 2151 genes significantly
associated with overall survival (OS) in MM. )us, we
obtained 348 DEMRGs significantly affecting OS of MM,
which was identified as candidate genes (Figure 1(b)). )ese
genes were significantly differentially expressed in MM and
controls (Figure 1(c)).

3.2. Biological Roles Related to Candidate Genes. To identify
the mechanism of action of candidate genes in MM, we
performed an enrichment analysis. Results of GO showed
that (Figure 2(a)) candidate genes significantly enriched in
regulation of the cellular amine metabolic process, regula-
tion of the cellular amino acid metabolic process, and
regulation of mRNA stability of the biological process (BP).
)e ficolin-1-rich granule lumen, ficolin-1-rich granule, and
cytoplasmic vesicle lumen in cellular composition (CC) were
significantly enriched by candidate genes. Peptidase activity,
acting on L-amino acid peptides, RNA binding, and oxi-
doreductase activity, acting on the CH-OH group of donors,
NAD or NADP as an acceptor of molecular functions (MF)
were significantly involved by candidate genes. In addition,
KEGG signaling pathways enriched by candidate genes
mainly included proteasome, purine metabolism, and cys-
teine and methionine metabolism (Figure 2(b)).

3.3. IdentifiedKeyGenes forMultipleMyeloma. MM samples
were divided into group 1 and group 2 by candidate genes
using consensus clustering (Figure 3(a)). Survival analysis
results showed that patients in group 2 had better prognosis
compared to group 1 (Figure 3(b)). In addition, there were
differences in the expression of candidate genes in group 1
and group 2 (Figure 3(c)). It is suggested that candidate
genes may differentiate MM patients by prognostic status.

To identify specific prognostic genes among the candi-
date genes, we performed LASSO regulation analysis. When
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Figure 1: Identification of metabolism-related differentially expressed genes in multiple myeloma. (a) Volcano plot of differentially
expressed genes between MM and controls. Red is upregulation and green is downregulation. (b) Intersection of genes affecting MM
survival andmetabolism-related differentially expressed genes. (c) Expression heatmap of candidate genes inMM and control samples. MM,
multiple myeloma.
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log(λ)� 78 was selected, a model was developed based on a
78-gene signature in candidate genes (Figures 4(a) and 4(b)).
)e top 10 genes with the largest absolute values of the lasso
regression coefficients were further screened as key genes.
Moreover, to further evaluate the prognostic role of the key
genes, we constructed nomograms using Cox regression
analysis. Among the key genes, we found that downregulated
PKLR contributed the most to the good prognosis of MM
patients (Figure 4(c)).

3.4. Risk Score of Key Genes. To evaluate candidate genes, we
utilized Cox regression analysis to divide the MM sample
into high and low-risk groups by the median of the risk
scores (Figure 5(a)). )ere were fewer patients with MM
who ultimately survived in the high-risk group compared
with the low-risk group. )e expression of candidate genes
differed in the high-risk and low-risk groups. Among them,
the higher the expression of PKLR, the worse the prognosis
of MM patients. In addition, the risk score had a good
predictive ability for the prognosis of patients with MM
(AUC> 0.6) (Figure 5(b)). )e overall survival probability
was significantly lower in the high-risk group than in the
low-risk group (Figure 5(c)).

3.5. Immune Infiltration in Multiple Myeloma. )e method
of CIBERSORT was applied to detect 22 immune cell in-
filtration levels in high-risk and low-risk groups of MM
(Figure 6(a)). Differential analysis revealed that CD4+ T cell

memory resting, NK cell resting, monocyte, macrophage
M0, eosinophil, and neutrophil had higher infiltration levels
in the high-risk group, while B cell plasma had lower in-
filtration levels in the high-risk group, compared with the
low-risk group (Figure 6(b)).

4. Discussion

In this study, 348 metabolism-related prognostic genes were
identified. Further studies showed that the candidate genes
were mainly related to the proteasome, purine metabolism,
and cysteine and methionine metabolism. In addition, the
expression of PKLR was significantly different between the
high-risk group and the low-risk group, suggesting that the
expression of PKLR plays a regulatory role in the prognosis
of MM.

In the process of tumor, many kinds of cell processes
changed in tumor cells of MM. MM tumor cells multiply
rapidly and accelerate the tumor process, which will inev-
itably lead to changes in some traits in tumor cells. Genes are
the individual units that regulate characteristics, and their
expression levels also determine the differences in tumor cell
characteristics. In addition, in order to meet the needs of cell
proliferation in tumor cells, the changes in their metabolic
levels must also be regulated by metabolism-related genes.
)e study of metabolism-related genes can enable us to
better understand the occurrence of tumor cells and pro-
mote the treatment of tumors, which is of great significance.
In this study, 2821 DEGs were identified, of which 576 DEGs
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Figure 2: Enrichment analysis of candidate genes. (a) )e main GO results of candidate genes enriched. (b) )e main KEGG pathways of
candidate genes enriched.
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are related to the metabolism. Research on these DEGs may
have a certain effect on the treatment of MM.

Further analysis of 576 DEGs in MM. We found that
these DEGs are mainly enriched in the process of regulating
the amino acid metabolism. Amino acid metabolism dis-
order is an important indicator of tumorigenesis [15]. )e
uptake of amino acids by tumor cells through the tumor
microenvironment can not only provide raw materials for
nitrogen and carbon sources of protein and nucleotide for
proliferation but also help to maintain the carbon meta-
bolism and redox reaction in tumor cells [16, 17]. In the
current research on the amino acid metabolism of MM,
glutamine is known to play an important role in the process

of MM. Glutamine that enters the cell can be broken down
into glutamate and amines.)is has also become a marker of
the process of MM. Marina et al.’ study showed that the
feasibility of this method was confirmed by drawing bone
marrow and detecting the expression of glutamate and
amine [18]. Meanwhile, inhibiting the intake of glutamine
may provide a new strategy for the treatment of MM [18]. In
addition, changes in the methionine metabolism also play an
important role in tumor progression. Gao et al. [19] found
that restricting methionine intake in cancer patients can
improve the occurrence and development of tumors.
However, research on the effect of changes in themethionine
metabolism onMM is relatively rare. In this study, DEGs are
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Figure 4: Identification of key diagnostic genes for multiple myeloma. (a) Selection of optimal parameter (λ) in the LASSO model.
(b) LASSO coefficient profiles of 78-gene signature. (c) Nomogram to predict the prognosis of MM.
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enriched in the methionine metabolic pathway, which in-
dicates that the methionine metabolic pathway plays an
important role in the occurrence and development of MM.
Meanwhile, the study showed that cysteine is a key amino
acid for the survival of tumor cells. Depletion of cysteine in
mice using cysteinase can promote iron death of tumor cells

[20]. Meanwhile, Nunes et al. [21] have also proved that the
level of cysteine in blood can be used as a detection indicator
for cancer. In the study, DEGs are also enriched in the
molecular functions of peptidase active and acting on
L-amino acid peptides. Moreover, KEGG analysis also
showed that these differential genes are enriched in the
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Figure 5: Risk score analysis of key genes in multiple myeloma. (a) Risk score and survival status distribution according to the median of the
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cysteine andmethionine metabolism, which further suggests
that the occurrence of MM is related to the amino acid
metabolism.

Due to the abnormal chromosomes of tumor cells, the
large and rapid proliferation will also lead to excessive
protein synthesis [22]. )e selective degradation of excess
protein plays an important role in the development of
cancer. )e abundant proteasomes play a major role in the
protein degradation process of cancer [23]. )e high ex-
pression of the proteasome in MM has been reported [24].
Meanwhile, the proteasome also has the role of cancer
antigen production and presentation, which is also an in-
dispensable condition for immune surveillance and tumor
treatment [22, 25]. )erefore, artificial intervention in the
expression of proteases in MM cells is of great significance
for the treatment of tumors. In this study, metabolism-re-
lated DEG is enriched in the proteasome metabolic pathway,
which indicates that the proteasome plays an important role
in the occurrence of MM. )is also further confirmed the
role of the aforementioned proteasome in MM.

5. Conclusion

Glycolysis is a reaction system for tissue cells in the body to
maintain normal physiological functions and provide energy
[26]. In the cancer process, a variety of important functional
enzymes in the glycolysis process are strengthened to pro-
duce more energy, and its glycolysis metabolite lactic acid
can also provide energy for tumor cells in a series of fer-
mentation processes [27]. )is feature of glycolysis is also
valued in prognostic testing of cancer patients [28]. )en,
there are a wide variety of genes and enzymes involved in
glycolysis [29]. Researchers have also screened different
genes and key enzymes in the glycolysis process through
different research methods to predict prognostic conditions
[30]. Regrettably, there is still no gold standard for a good
prognosis in the process of glycolysis. In this study, we
screened the metabolic-related DEGs and found that the
higher the expression of PKLR, the worse the prognosis of
MM, which indicated that PKLR had a better diagnostic
value in the prognosis diagnosis.
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Figure 6: Immune cell infiltration in high and low-risk groups. (a) Heatmap of immune cell infiltration in high and low-risk groups of
multiple myeloma. (b) Differences in infiltration of immune cells between high and low-risk groups.

10 Journal of Healthcare Engineering



In summary, MM differentially expressed genes are
mainly enriched in metabolic signaling pathways. Further
research shows that PKLR can be used as a key marker for
the prognosis of MM.
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