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For deep learning, the size of the dataset greatly affects the final training effect. However, in the field of computer-aided diagnosis,
medical image datasets are often limited and even scarce. We aim to synthesize medical images and enlarge the size of the medical
image dataset. In the present study, we synthesized the liver CT images with a tumor based on the mask attention generative
adversarial network (MAGAN). We masked the pixels of the liver tumor in the image as the attention map. And both the original
image and attention map were loaded into the generator network to obtain the synthesized images. (en, the original images, the
attention map, and the synthesized images were all loaded into the discriminator network to determine if the synthesized images
were real or fake. Finally, we can use the generator network to synthesize liver CT images with a tumor. (e experiments showed
that our method outperformed the other state-of-the-art methods and can achieve a mean peak signal-to-noise ratio (PSNR) of
64.72 dB. All these results indicated that our method can synthesize liver CT images with a tumor and build a large medical image
dataset, which may facilitate the progress of medical image analysis and computer-aided diagnosis. An earlier version of our study
has been presented as a preprint in the following link: https://www.researchsquare.com/article/rs-41685/v1.

1. Introduction

Medical image analysis and processing is the core of
computer-aided diagnosis, which has been greatly prompted
by deep learning. And the training of deep learning can be
extensively influenced by the size of the dataset; that is, the
more datasets can be obtained, the better the performance
the trained deep learning model can achieve. However, in
the field of computer-aided diagnosis, the medical image is
very limited and even scarce, due to the privacy of patients,
the expense of medical image acquisition, and so on.
(erefore, synthesized medical images can be seen as the
only feasible way to solve this problem, and generative
adversarial networks (GAN) [1, 2] provide us a powerful tool
to realize it.

GAN was firstly proposed by Goodfellow and colleagues
in 2014 and was widely used in various fields, such as image
processing, natural language processing, and even medical
image synthesis [3]. For skin lesion images, Baur and

colleagues synthesized the images of skin lesions with GAN
[4], which enlarged the skin image dataset and improved the
performance of lesion segmentation. For liver CT images,
GAN was mainly used for expanding the dataset of the liver
lesion [5] or image denoising [6], but the focus of GAN was
only on the liver lesion, not on the whole liver CT images.
For brain images [7], there are many image modules, such as
CT images, magnetic resonance (MR) images, and positron
emission tomography (PET), and different modules have
different image acquisition methods and different influences
on human brains. Dong Nie and colleagues used GAN to
synthesize 7T images from 3T MR images [8] because 7T
magnetic resonance (MR) images were very rare due to the
expensive image acquisition costs and the side effects of high
magnetic field strength. Moreover, some studies proposed to
train a GAN to generate CTimages fromMR images to avoid
the radiation from the CT image acquisition [9, 10]. For
retinal images, the image resolutions were generally smaller
than 100×100, and the image contents were only limited to
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single color background and vessels. Based on the charac-
teristics, some studies [11] used GAN to synthesize the whole
retinal image to enlarge the retinal image dataset, but the
method cannot be generalized to other medical image
modules with bigger image resolution and more organs,
such as liver CT image or brain MR image.

Above all, all these medical image synthesis methods can
be categorized into three types: (1) transformation of dif-
ferent modules, such as from CT images to MR images, (2)
transformation between the different parameter of image
acquisition, such as from 3T MR images to 7T MR images,
and (3) image synthesis of the small resolution, such as skin
and retinal images. Although there were many existing
methods, medical image synthesis is far from clinical ap-
plications, since there are still some shortcoming.

1.1. Image Resolution. Many current medical image syn-
thesis methods can only synthesize images with low reso-
lution, which were lower than 128×128. However, most of
the medical images in the clinical application were high
image resolution, such as 512× 512 CT images and 512× 512
MR images.

1.2. Lesions or Tumors. (e current existing medical image
synthesis methods cannot synthesize images with abnor-
malities, such as liver lesions and liver tumors. As we know,
the size and variety of the training dataset are essential to the
performance of deep learning methods. During the training
of medical images’ classification and analysis, it was essential
to have both normal images and abnormal images to create
an effective data set, but the medical images with abnor-
malities were relatively rare due to the hospital policy, pa-
tients’ privacy, and so on. (erefore, synthesizing medical
images with abnormalities can enlarge the dataset of deep
learning methods and upgrade the performance.

To solve the shortcomings, we proposed a novel image
synthesis model for normal liver CT images and liver CT
images with tumors based on mask attention generative
adversarial network (MAGAN). Using this model, we can
build a liver CT image dataset consisting of thousands of
synthesized 512× 512 slices; furthermore, it also can facili-
tate the progress of computer-aided diagnosis and the
training of deep learning models.

(emain contributions of our work are as follows: (1) we
combined GAN with attention mechanism and proposed a
novel MAGAN model and (2) we proposed an effective
method of enlarging the existing medical image dataset.

2. Materials and Methods

In the present study, we synthesized liver CT images with
tumors based on the mask attention generative adversarial
network (MAGAN) model [12], whose framework is shown
in Figure 1. Firstly, all the pixels of liver tumors in the
original image were labeled by the white color and used as
the attention map. According to the attention mechanism,
liver tumors were the highlighted relevant features of the CT
images, and the attention map was also the key part of the

success of the proposed algorithm. In the procedure of image
synthesis, the liver tumor was the saliency map in the whole
liver CT image, which meant that all the pixels of the liver
tumors were masked by the attention map. (e original
image and the attention map were paired together and called
“pairing A.” (en, the original image and the attention map
were loaded into the generator network to obtain a syn-
thesized image, and the attention map and the synthesized
image were paired together and called “pairing B.” Next,
pairing A and pairing B were both loaded into the dis-
criminator network to determine if the synthesized image
was real or fake. (e generator network and the discrimi-
nator network were trained with adversarial learning so that
both of them can become more and more powerful. After
training, the generator network can fill the pixels of the
attention map with similar gray values, texture, and shape of
liver tumors, to synthesize liver CT images with tumors.
More details of our model can be obtained from Sections
2.1∼2.3.

2.1. Attention Model. All liver CT images used in our
method were from a public liver CT dataset, Liver Tumor
Segmentation (LiTS) [13, 14], which was from the MICCAI
2017 competition. In the LiTS dataset, the pixel distance was
from 0.55mm to 1.0mm, the slice spacing was from
0.45mm to 6.0mm, and the image resolution was 512× 512.
LiTS consisted of 131 enhanced CT image sequences, and all
the tumors in the liver CT images were manually labeled by
radiologists. We aimed to synthesize liver CT images with
tumors, and the synthesized materials were from two as-
pects, liver CT images from healthy controls and liver tumor
CT images from patients. Moreover, the liver tumor was the
most salient region for clinicians and was also the most
difficult part of the whole synthesis procedure. (erefore,
according to the tumor labels from the LiTS dataset, the
image values of all the corresponding pixels in the tumors
were changed to 4096, which meant “white color,” and
represented as an attention map in our model. Based on the
attention mechanism, the original image and the attention
map were transformed into feature maps A and B by using
1× 1 convolution, respectively, and then all these feature
maps were concatenated by using matrix multiplication,
shown in Figure 2:

Si,j � A
T
i Bj. (1)

(en, we performed softmax on the concatenated feature
maps Si,j to calculate the distribution of attention Di,j on the
ith position of the jth synthetic region:

Di,j �
exp si,j 


N
i�1 exp si,j 

. (2)

(erefore, the liver tumor mask images were used as
attention maps to efficiently find the liver tumors’ internal
and external characteristics of the images.
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2.2. Generator Network. (e structure of our generator
network is shown in Figure 3, which consisted of two
contracting paths and an expansive path, showing the
U-shape architecture [15]. (e input of these two con-
tracting paths was the original image and attention map,
respectively; both of them consisted of nine blocks, and each
block was composed of the ReLu layer, convolutional layer,
and batch normalization (BN) layer.

In the contracting path, the image resolution was re-
duced but the feature information was increased. To over-
come the drawback of a regular convolution operator, whose
receptive field was small, we used a dilated convolution
operator [16] in the first four layers of the contracting path,
so that we can capture image features from a larger scale.
And we used a regular convolution operator in the other five
layers of the contracting path because the sizes of the images
were already smaller than 32× 32, which cannot support a

dilated convolution operator. (e feature maps from both of
the two contracting paths were firstly loaded as input to the
attention model, whose framework is shown in Figure 2, and
then the distribution of attention value was transferred via
residual connections. In the expansive path, the spatial in-
formation and the feature information were combined
through a sequence of upconvolutions layer, BN layer, ReLu
layer, and residual connections with high-resolution features
from the attention model. Residual connections played
important roles in MAGAN, which were used to bypass the
nonlinear transformation, accelerate the training speed, and
upgrade the performance of our model in the training of the
deep CNN.

512× 512 original image and attention map were loaded
as inputs into the generator network, and the image reso-
lution was reduced by half while passing each block in the
contracting path. After nine blocks in the contracting path,

Original image
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network

Synthesized image

Pairing A

Pairing B
Discriminator

network

Real/fake?

Figure 1: (e framework of our model: ⊗ represents matrix multiplication.
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Figure 2: (e framework of the attention model.
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the input images became 1× 1 with 1024 feature maps.(en,
these feature maps were upconvolved in the expansive path,
and the size of the image increased one time while passing
each block in the expansive path. After nine blocks in the
expansive path, the image was restored as a 512× 512 res-
olution image. In the generator network, the whitened re-
gions in the liver CT images can be transformed into tumor
regions.(e loss function of our generator network is shown
as the following formula:

Ladv(G) � Εv,r∼pdata(v,r) ‖r − G(v)‖1 , (3)

where r denotes the real image, v denotes the concatenated
image, and G(v) denotes the synthesized image calculated by
the generator network.

2.3. Discriminator Network. (e structure of our discrimi-
nator network is shown in Figure 4, which consisted of six

blocks, and each block was composed of a convolutional
layer, ReLu layer, BN layer, or sigmoid layer.

(e inputs of the discriminator network were two
pairings, which were pairing A (original image, attention
map) and pairing B (synthesized image, attention map).
Inspired by PatchGAN [12], all the 512× 512 resolution
images were divided into 900 patches, whose size was
142×142. After going through six blocks of the discrimi-
nator network, the sizes of output probabilities maps were
30× 30, which indicated each pixel in the output proba-
bilities maps corresponded to one patch of the input images.
(e mean value of all the pixels in the probabilities maps can
be recognized as the result of the discriminator network.

(e loss function of our discriminator network is shown
as the following formula:

Ladv(D) � Ev,r∼pdata(v,r) log D(v, r)real  + Ev∼pdata(v) log 1 − D(v, G(v, r))fake(  , (4)

where r denotes the real image, v denotes the attention map,
G(v, r) denotes the synthesized image calculated by the
generator network, and D(v, r) denotes the discrimination
probability calculated by the discriminator network.

(e total loss function of our GAN is shown as the
following formula:

L � argmin
G

max
D

λ1Ladv(G) + λ2Ladv(D), (5)

where λ1 and λ2 are coefficients.

3. Results

In our experiments, we used LiTS as our image dataset of
liver CT images with tumors, which consisted of only 131
sequences. (e size of LiTS was not big enough for the

training of deep learning algorithms, such as liver tumor
segmentation or classification. To enlarge the LiTS, we chose
4555 2D slices with tumors from 131 sequences of liver CT
images. (en, all the images were normalized by using the
following formula:

valuenormalized �
valueoriginal − mean

std
, (6)

where valueoriginal and valuenormalized represent the original
and normalized image pixels value, respectively. Mean in-
dicate the mean value of image pixels, and std indicate the
standard deviation of image pixels. Moreover, we specially
cut the tumor regions from the liver CT images and built a
liver tumor dataset; then, we augmented the tumor dataset
by flipping, rotating, and scaling the original tumor region so
that we can create a liver tumor dataset of 50000 slices from
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Figure 3: (e framework of our generator network.
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the original 4555 slices, which were used as the mask at-
tention map in our method.

(e hardware and software configuration of our ex-
periments are shown in Table 1. (e quantitative evaluation
metric used in our experiments was the peak signal to noise
ratio (PSNR). (ere were four sections in our experiments,
including training of our model, quantitative comparison
between our method and other state-of-the-art methods,
Turing test for the synthesized images by radiologists, and
the evaluation of the synthetic dataset for the medical image
segmentation.

3.1. Training of Our Model. (e configurations of hyper-
parameters in our model during the training are shown in
Table 2. (e proposed MAGAN network was implemented
by Python 2.7 and TensorFlow 1.1 and trained on an
NVIDIA GeForce GTX 1080 GPU using Adam optimizer

with a learning rate of 0.0002. It costs about ten hours for the
whole procedure of the training.

As shown in Figures 5(a)–5(d), we can find that, as the
number of iterations increased, the performance of the
synthesized CT liver images became better and better. After
the first iteration of training (in Figure 5(a)), the perfor-
mance of the synthesized image from the generator network
was terrible; for example, most pixels were black and the
contour was blurring, intense chessboard effect. All these
bad performances indicated that the training had just
started, andmore iterations were needed. After ten iterations
(in Figure 5(b)), the whole image was more clear, the
contour was more vivid, but the chessboard effect still
existed. After one hundred iterations (in Figure 5(c)), the
performance of the synthesized image was much better and
closer to the real image, more details can be visualized,
human organs were vivid, the chessboard effect was weaker
but still existed, and whitened regions were not filled with
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Figure 4: (e framework of our discriminator network.
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tumor texture. After one thousand iterations (in
Figure 5(d)), the chessboard effect disappeared, all details of
liver CTwere restored, and it was hard to tell the differences
between synthesized image and real image.

(e loss function of the generator network, discrimi-
nator network, and total network during the training is
shown in Figures 6–8, respectively, and we can conclude that
the loss functions decreased as the number of iterations
increased and became steady after about 10000 iterations,
which indicated that our model performed well during the
training.

Results of the synthesized image are shown in Figure 9:
three liver tumor images with tumor masks were in the first
row, which was used as inputs of our model, and we can
obtain the synthesized images in the second row. We
compared the synthesized images and the real images and
calculated the differences between them. (e color image of
the differences is shown in the fourth row. All these results
showed that our method can synthesize liver CT images with
tumors, and the synthesized images were almost identical to
the real images.

To test the impact of the dilated convolution operators in
the MAGAN, we replaced the dilated convolution operators
with the regular convolution operators in the contracting
path of the generator network and quantitatively compared
the PSNR of these two GAN networks. And we found that
the network with regular convolution operators can provide
a PSNR of 59.66, while the MAGAN with dilated convo-
lution operators can provide a PSNR of 64.72, which in-
dicated the effectiveness of the dilated convolution operators
in our network.

To test the impact of the residual connections in the
MAGAN, we removed the residual connections and
quantitatively compared the PSNR of these two GAN

networks. And we found that the network without residual
connections can provide a PSNR of 55.23, while the
MAGAN with residual connections can provide a PSNR of
64.72, which indicated the effectiveness of the residual
connections in our network. (e running time of the pro-
posed method was 0.087 seconds per frame.

Besides, we can also manually or automatically “add”
tumor regions on the healthy liver CT images using our liver
tumor dataset of 50000 slices, to create a diseased liver CT
image, shown in Figure 10.(e healthy liver CT images were
in the first row. In the second row, manually change the pixel
values of two regions to white color, which meant that these
two regions were the selected tumor regions. Using our
method, the results of the synthesized images are shown in
the third row. All these results showed that our method can
intelligently create liver CT images with tumors based on the
healthy liver CT images, and the synthesized diseased images
were almost identical to the real ones.

3.2. Quantitative Comparison. In this section, we quantita-
tively compared our method with other seven state-of-the-art
medical synthesis methods using the same dataset as ours: (1)
atlas-based method [17]; (2) sparse representation (SR) based
method; (3) structured random forest with ACM (SRF+) [18];
(4) manipulable object synthesis (MOS) [19]; (5) deep con-
volutional adversarial networks (DCAN) method [8]; (6)
multiconditional GAN(MC-GAN) [20]; and (7) mask em-
bedding in conditional GAN (ME-cGAN) [21]. (e first four
methods were implemented by our group, and the source
codes of DCAN, MOS, and ME-cGAN were downloaded
from GitHub (http://www.github.com/ginobilinie/
medSynthesis, http://www.github.com/HYOJINPARK/
MC_GAN, and http://www.github.com/johnryh/
Face_Embedding_GAN). (e results of the quantitative
comparison are shown in Table 3, which indicate that our
method outperformed the other seven approaches and
benefited from attention mechanism, dilated convolution
operator, and residual connections.

3.3. Turing Test. To further verify the effectiveness of our
method, we did the Turing test. Two experienced radiologists
from Shengjing Hospital of China Medical University were
asked to classify one hundred liver CT images into two types:
real image or synthesized image. (e radiologists were not
aware of the answer to each image before the Turing test.(e
one hundred liver CT images consisted of fifty real CT
images and fifty synthesized images.(e results of the Turing
test are shown in Table 4: radiologist number 1 made correct
judgments for 74% real image slices and 64% synthesized
image slices and radiologist number 2 made correct judg-
ments for 84% real image slices and 12% synthesized image
slices. (e radiologists made correct judgments for most of
the real images and may be psychologically influenced by the
existence of a synthesized image, so they made some errors
about the real images. Furthermore, the radiologists made
difficult judgments for the synthesized images and cannot
tell the obvious differences between the real images and the
synthesized images. And according to radiologist #1, his

Table 2: Hyperparameters of our model.

Parameter Value
Initial learning rate 0.0002
Adam momentum 0.5
λ1 in formula (5) 100
λ2 in formula (5) 1
Exponential decay 0.99
Batch_size 1
Epoch 10
Dropout 0.5
Frequency of saving loss value 100
Frequency of saving model 500

Table 1: Hardware and software configuration of our experiments.

Item Configuration
Operating system Ubuntu 16.04
GPU NVIDIA GeForce GTX 1080
CPU Intel Core i5-7500 @3.4GHz
Software toolkit Python 2.7; TensorFlow 1.1; MATLAB 2016b
Disk 500GB
GPU memory 8GB
System memory 16GB
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(a) (b)

(c) (d)

Figure 5: Synthesized image during the training of the proposed model: (a) after one iteration of training, (b) after ten iterations of training,
(c) after one hundred iterations of training, (d) after one thousand iterations of training.
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Figure 6: (e loss function of the generator network during the training.
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most reliable evidence of telling the difference was the color
of the tumor region was a little darker than the real ones,
which was also the improvement we needed to do in the
future. All these results of the Turing test indicated that our
method can synthesize liver CT images with a tumor, which
were almost identical to the real ones.

3.4. Evaluation of Synthetic Dataset for Medical Image
Segmentation. To evaluate the effectiveness of the synthetic
dataset in the training of deep learning models, we used a
fully connected network (FCN) [15] to perform the tumor
segmentation task in the liver CT images and trained the
FCN model using the LiTS dataset (images from 131 sub-
jects) and the new dataset obtained by our method (images
from 131 real subjects and 865 synthetic subjects). And we
used the Dice Index to quantitatively evaluate the perfor-
mance of the segmentation results from the two trained FCN
models. (e FCN model trained by the LiTS dataset can
provide a Dice value of 0.611 for the tumor segmentation,

and the FCN model trained by a new dataset can provide a
Dice value of 0.658 for the tumor segmentation. (e result
indicated that the synthesized liver CT images obtained by
the proposed method can effectively enlarge the original
dataset, and as the number of images in the dataset in-
creased, the performance of the training of the deep learning
model can become better, which resulted in the higher Dice
value for the liver tumor segmentation.

4. Discussion

In the present study, we combined the attention mechanism
and GAN model and proposed a novel CT image synthesis
algorithm, which was MAGAN. As far as we know, the
existing medical image synthesis methods mainly focused on
the transformation of different modules or transformation
between the different parameter of image acquisition, and
our study was the first research of synthesizing the liver CT
images with tumors in high resolution and enlarging the size
of the medical image dataset.
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Figure 7: (e loss function of the discriminator network during the training.
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Suppose that we had a dataset of chest CT images with
lung nodules, whose size was one hundred. While we used
this dataset for the training of deep learning, we may find
that the trained model was not good enough due to the small
size of the dataset. Under these circumstances, the proposed
MAGAN can be used to synthesize thousands of chest CT
images with lung nodules based on the original one hundred
images. (is kind of similar requirements from clinical
researches and deep learning studies is very common. And
the proposed method can meet the requirements.

From the quantitative comparison between the proposed
method and the other seven state-of-the-art medical image
synthesized methods, we can conclude that the proposed

method outperforms the others, and the main reasons were
the attention map, which mainly focused on the regions of
interest in the medical images, such as liver tumors or lung
nodules.

During the Turing test, two experienced radiologists
cannot clearly distinguish the synthesized liver CT images
and the real liver CT images. We used the judgments of
experts as the golden standard, and we may conclude that
the synthesized liver CT images with tumors can be used as
the real ones, and the size of the training dataset of medical
images can be enlarged from one hundred to thousands.(e
bigger the medical image dataset is, the better the training
performance can be.

4003002001000–100–200–300–400

Differences between
synthesized and

real images

Real images

Synthesized
images

Liver CT images
with tumors

Figure 9: Results of the synthesized images and the comparison between the synthesized images and real images. (e pixel values of the
fourth rows are weak and low because the differences between the real images and synthesized images were very small.
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5. Conclusions

In the present study, we proposed a method of synthesizing
liver CT images with tumors based on mask attention
generative adversarial networks. (e experimental results
showed that our method outperformed the other seven
widely used approaches and can achieve 64.72 db mean
PSNR, and the Turing test indicated that even the experi-
enced radiologists cannot tell the differences between the
synthesized images from our method and the real ones. All

these results meant that, using our method, we can build a
huge medical image dataset to facilitate the diagnosis of
computer-aided diagnosis and the training of deep learning.

Data Availability

Liver CT images used in our method were from a public liver
CT dataset, which is Liver Tumor Segmentation (LiTS), and
the data can be obtained from https://academictorrents.
com/details/27772adef6f563a1ecc0ae19a528b956e6c803ce.

Healthy liver
CT images

Whitened regions were
added in the liver

Results of synthesized
images

Figure 10: Adding tumor regions on the healthy liver CT images and synthesizing diseased liver CT images using our method.

Table 4: (e Turing test of our method.

Real image (50 slices) Synthesized image (50 slices)
Be judged as real

images
Be judged as synthesized

images
Be judged as real

images Be judged as synthesized images

Radiologist number
1 37 13 18 32

Radiologist number
2 42 8 44 6

Table 3: (e quantitative comparison between our method and seven other approaches.

Method
Atlas [17] SR SRF+ [18] MOS [19] DCAN [8] MC-GAN [20] ME-cGAN [21] Our method

Mean PSNR(dB) 45.15 49.77 55.30 60.11 58.26 59.29 61.35 64.72
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