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)e breast cancer microscopy images acquire information about the patient’s ailment, and the automated mitotic cell detection
outcomes have generally been utilized to ease the massive amount of pathologist’s work and help the pathologists make clinical
decisions quickly. Several previous methods were introduced to solve automatedmitotic cell count problems. However, they failed
to differentiate betweenmitotic and nonmitotic cells and come up with an imbalance problem, which affects the performance.)is
paper proposes a Representation Differential Learning Method (RDLM) for mitosis detection through deep learning to detect the
accurate mitotic cell area on pathological images. Our proposed method has been divided into two parts: Global bank Feature
Pyramid Network (GLB-FPN) and focal loss (FL). )e GLB feature fusion method with FPN essentially makes the encoder-
decoder pay attention, to further extract the region of interest (ROIs) for mitotic cells. On this basis, we extend the GLB-FPN with
a focal loss to mitigate the data imbalance problem during the training stage. Extensive experiments have shown that RDLM
significantly outperforms on visualization view and achieves the best performance in quantitative matrices than other proposed
approaches on the MITOS-ATYPIA-14 contest dataset. Our framework reaches a 0.692 F1-score. Additionally, RDLM achieves
5% improvements than GLB with FPN in F1-score on the mitosis detection task.

1. Introduction

According to the World Health Organization (WHO), over
2 million new cases were reported in 2018; furthermore,
worldwide incidence and mortality ratios were 11.6% and
6.6% [1]. Breast cancer is the second most common cancer
globally, usually in women in both developed and under-
developed countries. It has been considered that breast
cancer occurrences approximately exceed more than 50%
from 2011 to 2030 [2]. As stated to the histologic tumour
grade also named the Nottingham Grading System (NGS)
from various expert global institutions, for instance, WHO,
American Joint Committee on Cancer (AJCC), the Royal
College of Pathologists (UK RCPath), College of American
Pathologists (CAP), and the European Union (EU) [3], NGS
has consisted of three morphological features including
nuclear pleomorphism, tubule formation, and mitotic index,

which are themost challenging part of breast cancer analysis.
Each characteristic is given a score from 1 to 3. )e ultimate
NGS lowest possible score is 3 and highest possible score is 9,
and NGS is divided into three grades: Grade 1 has been
assigned for a total score of 3–5, also named well-differ-
entiated; Grade 2 has been given for a total score of 6–7, also
called moderately differentiated; and Grade 3 has been
assigned for a total score of 8–9, also named poorly dif-
ferentiated [4].

Automatic mitosis detection is a challenging task in
microscopy images of breast cancer, especially in clinical
practice. Detecting mitosis from stained high-power fields
(HPFs), deal with difficulties such as whether the mitosis is
in one of the four main phases; prophase, metaphase,
anaphase, and telophase during mitosis development, which
increases the complexity of the detection task as shown in
Figure 1. Moreover, every phase has a very disparate shape
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and texture configurations in four phases. For instance, a
nucleus in telophase is split into two distinct regions, even
though they are still one connected mitotic cell. Nonmitotic
cells such as apoptotic, dense nuclei, and lymphocytes
similar to mitotic cells on the slides have a similar mor-
phological appearance. )e dealing slide obtainment can
present artefacts and undesirable objects, distinguishing cells
difficultly and leading tomany false positives in the detection
process [5]. In the last few years, various efficient automatic
mitosis systems have developed to detect mitotic cells on
pathological images. Automatic mitosis detection has been a
very active research area because of the recent advancement
in digital medication, especially helping pathologists to make
clinical decisions. Some machine learning handcrafted
features approaches [6–12] have been used to extract the
features. However, these traditional approaches always
suffer from the large shape variations of mitosis and also
need a very much high exertion time to approve and cannot
signify characteristics or features adequately of mitosis re-
gions, resulting in low performance on the different contest
dataset such as ICPR 2012 [13] contest, AMIDIA 2013 [14]
contest, and ICPR 2014 [15] contest datasets.

Computer vision is one of the areas advancing rapidly
[16]. Deep learning (DL) computer vision has helped to ease
the massive amount of pathologists’ work, and the pathol-
ogists are making fast clinical decisions. DL also makes
mitosis detection work much easier than before such as in
mitotic cell classification task [17–20], mitotic cells detection
task [21, 22], and mitotic cells segmentation task [1, 23–25].
Deep learning techniques outperform preliminary research
techniques, for instance, handcrafted features that capture
specific mitosis features for automatic detection. Deep
learning techniques are based on CNN and a deep classifier
like Deep Cascade Neural Network (CasNN). CNN is first
used to extract candidate regions, and a deep classifier is
used to differentiate cancer and noncancer cells [17]. Deep
Mitosis (DM) technique, which consists of segmentation
task, detection task, and classification task [21], always fails
to differentiate between mitosis and nonmitosis cell shape.
Recently, the object detection and instance segmentation
framework Feature Pyramid Network (FPN) have been used
to tackle different kinds of medical problems, such as
detecting the porosity and cracks in concrete CTimages [26],
automatic segmentation of cervical nuclei [27], thyroid
nodule detection from medical ultrasound images [28],
detection of teeth and their components in X-ray images
[29], lung nodule detection in chest X-rays images [30], and
having attained outstanding results. )e focal loss (FL) has
been used to solve the data imbalance problem in the various

kinds of biomedical datasets and performed well for mi-
nority class, such as classification of red blood cells mor-
phology [31], colon gland instance segmentation [32], and
localization of cell organelles [33]. )e mitoses are em-
bedded in complex backgrounds and influenced by various
factors containing, staining, lightning condition, tissue ac-
quisition, and similar appearance of nonmitosis. In 2019, the
global bank (GLB) feature fusion method was proposed to
tackle the complex background problem on the 2015 Gland
dataset. )is feature fusion method achieved outstanding
results on both segmentation and cancer embolus detection
tasks compared to other proposed approaches [34].

Inspired by the above object detection framework and the
GLB feature fusion method, we considered the mitosis de-
tection task as an object detection problem.We proposed a new
method for mitosis detection through deep learning to detect
the mitotic cell area on a pathological image, called RDLM,
which is fast and accurate to detect mitotic cells for both slide
scanner Aperio-type and Hamamatsu-type images as shown in
Figure 2. Our proposed framework is divided into two parts:
GLB and FL. )e GLB feature fusion method with FPN es-
sentially calibrates the encoder-decoder and further makes
encoder-decoder pay attention to extract the region of interest
(ROIs) for mitotic cells. GLB has three phases. In the first
phase, the encoder connects the layer at multiple-scales by
including features. )e second phase reconnects and removes
the background noise to acquire a suitable feature map that
further pays attention to the region of interest for mitotic cells.
In the final phase, the featuremap is generally transferred to the
decoder by convolutions. Besides, GLB outperforms on the
MITOS-ATYPIA 2014 contest dataset comprised of HPF large
shaped variations of mitosis and the similar appearance of
nonmitosis that creates severe problems during the training
phase. However, the training process cannot learn full infor-
mation on positive samples because most of them are easy and
simple disguisable negative samples, bringing the imbalance
problem. We adopted the FL to alleviate this scenario and
obtained good mitosis detection results on both slide scanners.
To validate the effect of our proposed method RDLM in vi-
sualization view and quantitative matrices, we conducted ex-
periments on the MITOS-ATYPIA 2014 contest dataset.
Extensive experiments show that RDLM attained outstanding
results compared to other state-of-the-art methods on both
slide scanners.

)is research’s main contributions could be summarized
as follows: first, we introduced the feasibility and superiority
of a global bank and focal loss in mitosis detection tasks.
Second, we proposed a newmethod called RDLM formitosis
detection through deep learning to detect the mitotic cell

(a) (b)

Figure 1: (a) Blue rectangle represents the actual mitotic cells, and (b) red rectangle represents the nonmitotic cells, which have a similar
morphological appearance.
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area on pathological images. )e GLB makes encoder-de-
coder to pay attention further to extract the ROIs for mitotic
cells while the FL alleviates the imbalance problem resulting
from the predicted detection of mitotic cells results. )ird,
we applied extensive experiments to validate the effective-
ness of the proposed method. )e results showed that our
proposed method attained the best performance in mitosis
detection tasks on both slide scanners in terms of visuali-
zation view and quantitative metrics compared to other
state-of-the-art approaches.

2. Methodology Motivation

)is section describes our proposed method for mitosis
detection through deep learning to detect the mitotic cell
area on a pathological image, as shown in Figure 3. )e FPN
framework builds feature pyramids inside the convolution
neural network (CNN). Moreover, FPN delivers a top-down
pathway to produce higher-resolution layers from a se-
mantic rich layer. )e GLB feature fusion method part
essentially calibrates the encoder-decoder and makes the
encoder-decoder pay attention further to extract the ROIs
for the mitotic cells detection task. We adopted the FL to
alleviate the imbalance problem during the training stage,
and each component’s details as described in the following
sections.

2.1. FPN. Feature Pyramid Network is a newer, clean, and
simple framework for building feature pyramids inside the
CNN. It delivers a top-down pathway to produce higher-
resolution layers from a semantic rich layer. Simultaneously,
the region proposal network (RPN) used a sliding subnet-
work at every location over the multilevel feature maps to
generate an object proposal. An anchor defines every object
proposal, and each anchor scale has a corresponding level in
the features pyramid [35]. Besides, CNN has been employed
to extract each patch’s comprehensive features from the
input image. We used ResNet-50, which is the most efficient
and powerful in image classification. )e WSI sampled

patches are fixed size 1040 × 1040 pixels, so we have resized
the patches to 600 × 600 pixels and then fed them into the
FPN.

2.2. GLB

2.2.1. #e Vault Layer. In short, the vault layer stores the
well-chosen features compared to other layers in the equal
phase. In the encoding phase, various consecutive layers
construct the result maps of the equal dimension that are
reckoned in a similar network phase. In a phase of encoder,
we represent the last layer by ENi, i ∈ [1, s] , where s denote
the encoder number of phases. ENi extracts better-quality
features than different layers extracted features in a similar
phase. By accumulating all ENi, we can link the layers of
phases in the encoder. )ough, every ENi has a unique
dimension and depth, before accumulating them, the di-
mension of ENi to upsample them and later utilize 3 × 3 × k

convolutions, where k denote hyperparameter. Finally, we
include an entire ENi elementwise and 3 × 3 × m convolu-
tions utilized to specifically store the accumulated features in
the vault layer, wherem is a hyperparameter. )e vault layer
equation can be described as

VL � f
A
3×3 f

EN1
3×3 (EN1) + 

s

i�2
f

ENi

3×3 up ENi( ( ⎡⎣ ⎤⎦, (1)

where fA
3×3 represents 3 × 3 × m convolutions. f

ENi

3×3 for
∈∈[1, s] represents 3 × 3 × k convolutions corresponding to
ENi, where s denotes the encoder number of phases. up
describes upsampling of ENi to the dimension of EN1.

2.2.2. Calibration Layers and Gain Layers. In general, for
detection tasks, a calibration layer is denoted by
CALi, i ∈ [1, s] , where s denotes the decoder number of
phases during decoding phases. Every calibration layer has
an altered resolution and depth. )e vault layer extracted
features maps refer to gain layers and represent them

(a) (b)

Figure 2: Example of ICPR2014 contest dataset two slide scanner HPF images: (a) taken from Aperio-type scanner and (b) taken from the
Hamamatsu-type scanner.
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through GAINi, i ∈ [1, s] , where s is the number of CALi.
At that point, CALi can be enhanced and calibrated with
comparing GAINi. We equalize the depth by using 3 × 3
convolutions with a stride of 2 and downsampling to the
dimension of CALi as illustrated in equation (2). In one case,
the downsampling operation is avoidable when the cali-
bration layer’s dimension is equivalent to that of the vault
layer and is illustrated in the following equation:

GAINi �
fGAINi

(VL),

down fGAINi
(VL) ,

⎧⎨

⎩ (2)

where fGAINi
denotes 3 × 3 convolutions with a stride of 2

and downsampling operations utilized to equalize the di-
mension of features with that of CALi. At that point, CALi.

can be enhanced and calibrated with comparing GAINi. So,
we include calibrated and gain layers as elementwise, as
illustrated in the following equation:

CALi � CALi⊕GAINi . (3)

)e design of the proposed GLB with FPN is shown in
Figure 4, where we first include elementwise calibration
layers (CALi) and gain layers (GAINi) as illustrated in

equation (3). Using a gain layer to enhance a predicting layer
permits the full attention of local features, powerful rich
semantic features, and the gain layer global features,
resulting in improved predictions.

2.3. An Objective of Focal Loss. In 2017, the focal loss was
proposed by Kaiming He’s team [36]. )e author uses a
piecewise function to represent the cross-entropy of binary
classification problem between foreground and background
classes, and a piecewise function of pt to represent yi with
the value of 1 in binary classification. )e value here is the
category of 1 in one-hot [0 1] or [1 0]:

CE(p, y) �
−log(p), if y � 1,

−log(1 − p), otherwise,


Pt �
p, if y � 1,

1 − p, otherwise,


(4)

where pt denotes the model prediction probability and y

indicates the ground truth label. Hence,
CE(p, y) � CE(pt) � −log(pt), CE with a balancing factor,
where α denotes separate categories:

Patch

CNNsGLB-FPN

Regions of interest

Region proposal network

Regions of interest
pooling

The second step: object detection

Detection result

Regression

Classification

The first step: segmenting the pathological
tissue and sliding window processing

Whole-slide image

Pathological tissue Sliding window processing

Figure 3: A simple overview of our RDLM method for mitotic cell detection on pathological images.
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CE pt(  � −log pt(  � −αtlog pt( . (5)

So, the c factor is introduced to focus more on the hard
negatives samples during training. )us, a focal loss is de-
fined as

FL � −αt 1 − pt( 
clog pt( . (6)

In our case, we have integrated the focal loss to solve the
data imbalance problem in the mitosis detection task in our
proposed method. )e multilabels focal loss formula is
defined as

FL � −αt ∗ z − pt( 
c ∗ log pt(  − 1 − αt( ∗p

c

∗ log 1 − pt( ,
(7)

where alpha is equal to 0.5, gamma is equal to 0.5, pt is equal
to sigmoid (x), and z is equal to the target in equation (7).
)e prediction pt represents the predicted logits for each
class and the target z represents the one-hot encoded
classification targets. α and c are hyperparameters. For the
positive prediction, we only need to consider the front part
loss, and the back part is 0. z has been considered as greater
than zero, less than or equal to zero, and z is equal to 1, so the
positive coefficient is equal to z− pt. For the negative pre-
diction, we only need to consider back part loss, and the
front part is 0; z has been considered as greater than zero, less
than or equal to zero, and z is equal to 1, so the negative
coefficient is equal to 0.

3. Experiments

We have conducted experiments based on the RDLM
method to examine the impact of accurate mitotic cell de-
tection. Besides, we used the FPN baseline, FPN-FL, and
GLB-FPN on both slide scanners. Finally, we obtained

improved results on the RDLM proposed method, verifying
this research work’s success.

3.1. Implementations Details. Our approach is implemented
with python using Tensorflow libraries and tested on a
machine with NVIDIA GeForce GTX 1080 Ti GPU. It takes
4.5 hours for training images and 2.3 minutes for testing
images. ImageNet pretrained models ResNet-50 [18] has
been used as our base network for FPN. )e input image is
resized such that its shorter side has 600 pixels. We adopt the
SGD for optimization, set momentum as 0.9, and set weight
decay as 0.0001. )e learning rate has been set at 0.001 for
20 k iteration steps.

3.2. Dataset. We have conducted experiments on the
MITOS-ATYPIA-14 contest dataset. )e contest data
samples were scanned by two slide scanners Aperio Scan-
scope XT and Hamamatsu Nanozoomer 2.0-HT, and the
whole-slide histological images (WSIs) were stained with
standard hematoxylin and eosin (H&E) dyes. )e training
set of Aperio Scanscope XT scanner data at X40 magnifi-
cation provided 1,136 labelled 1539×1376 pixels HPFs
frames, 749 labelled mitotic cells, and 496 are unlabeled. )e
centroids pixels of mitoses have been manually annotated
via two senior pathologists. In a situation of contradiction
between the pathologists, the 3rd one will provide the last say.
We have divided the training dataset of Aperio-type into two
parts; 300 images used for training, and 92 used for testing in
our experiments.

3.3. Evaluation Metrics. We adopt the same contest evalu-
ation criteria of the MITOSIS ICPR challenges; correct
detection would be considered in this case if the distance to a
ground truth candidate mitosis is less than 8 μm. F1-score,
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Figure 4: Sketch of the GLB feature fusion method consists of three layers: VL layers, gain layers, and calibration layers [34]. )e green line
denotes the Conv+ down, the blue line represents the Conv + up, and the grey line denotes the Conv.
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precision, and recall are used to compute the performance
evaluation of our method:

F1 − score � 2∗
(precision∗ recall)
(precision + recall)

,

precision �
TP

(TP + FP)
,

recall �
TP

(TP + FN)
.

(8)

)e TP, FP, and FN are the number of true positive
detections, the number of false-positive detections, and the
number of false-negative, which means they are undetected.

3.4. Results. Table 1 shows the proposed method RDLM
performance for mitosis detection through deep learning
quantitative results on the Aperio-type slide scanner. )e
first part of the table lists the FPN baseline, FPN-FL, GLB-
FPN, and RDLM results. )e next four parts of the table
represent the hyperparameters; α, c, k, and m, where k
represents the convolutional filters from ENi, m represents
the vault layer depth, α is an imbalance factor, and c focuses
on the hard negatives examples in our experiments on the
training set. Lastly, the last three parts of the table list the
evaluation metrics results. As we can observe from Table 1

when α is 0.5, c is 0.5, k is 256, and m is 256, our proposed
method achieves the best performance F1-score 0.692
compared to other methods. )e number of parameters in
the RDLM is more than other methods of GLB-FPN and
FPN-FL. Instead of the fact that adding more parameters
makes training more complicated in the network architec-
ture, the entire performance of the RDLM is better than that
of the FPN baseline, FPN-FL, and GLB-FPN.

3.5. Discussion. )e mitosis cell detection for the MITOS-
ATYPIA-14 contest dataset is one of the most challenging
compared to other datasets like MITOSIS 2012, AMEDIA
2013, and TUPAC 2016 due to more complicated back-
ground tissue appearance and a variation of shape. Besides,
the samples of this dataset have been weakly annotated.
However, several methods have been proposed, and they
cannot obtain the best F1-score from the challenges dis-
cussed above on this dataset. According to the experimental
evaluation, as shown in Table 1, it can be noted that our
proposed method achieved the best performance result with
F1-score of 0.692 compared with current deep learning
mainstream approaches in Table 2. )e first four methods
results have been taken from the MITOS-ATYPIA-14
contest, and ‘-’ denotes the not released results. Later, several
other CNN based methods have published.)e DeepMitosis
[21] and MaskMitosis [37] yield a good performance on the

Table 1: Mitosis detection performance with the proposed method on the Aperio-type images.

Method α c k m Precision Recall F1-score
FPN baseline — — — — 0.578 0.599 0.589
FPN-FL 0.5 0 — — 0.586 0.613 0.595
FPN-FL 0.5 0.5 — — 0.614 0.645 0.629
FPN-FL 0.5 1 — — 0.563 0.584 0.573
FPN-FL 0.5 2 — — 0.496 0.647 0.561
GLB-FPN — — 256 256 0.614 0.675 0.643
GLB-FPN — — 256 512 0.647 0.685 0.662
RDLM 0.5 0 256 256 0.623 0.654 0.638
RDLM 0.5 0.5 256 256 0.685 0.70 0.692
RDLM 0.5 1 256 256 0.591 0.640 0.614
RDLM 0.5 2 256 256 0.546 0.674 0.602

Table 2: Comparison with other state-of-the-art approaches on the Aperio-type images.

Method Precision Recall F1-score
STRASBOURG — — 0.024
YILDIZ — — 0.167
MINES-CURIE-INSERM — — 0.235
CUHK 0.448 0.300 0.356
DeepMitosis [21] 0.431 0.443 0.437
CasNN [17] 0.411 0.478 0.442
MaskMitosis [37] 0.500 0.453 0.475
LRCNN+ in group [38] 0.654 0.663 0.659
Efficient mitosis detection [39] 0.534 0.661 0.585
SegMitos-r15R30 [5] 0.594 0.512 0.550
SegMitos-random [5] 0.637 0.502 0.562
RDLM 0.685 0.70 0.692
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MITOSIS 2012 dataset but inferior performance on the
MITOS-ATYPIA-14 contest dataset. )ese two segmenta-
tion modules were not reliable enough during the detection
phase and created inferior performance on the weakly an-
notated dataset. )e CasNN [17] approach requires two
different networks: one is used to retrieve the mitosis
candidates, and the other is used to classify the candidates,
leading to less accurate detection. )e LRCNN [38] and
SegMitos [5] approaches reported F1-score of 0.659 and
0.562. In contrast, the proposed method attained better
performance than existing methods on the testing set in
terms of quantitative matrices F1-score of 0.692.

4. Visualization and Discussion

In this section, we will discuss the qualitative results of
mitosis detection. Furthermore, we analyze the effect of FL
in visual view to make the predicted results more reasonable.

4.1. Visualization of Mitotic Cells. )e visualizations of
mitotic cells detection have been done in RDLM, where GLB
is converting them into a heatmap. )e vault layer focuses
more on the HPF tissue regions with Aperio-type and
Hamamatsu-type scanners images, and the gain layer fo-
cuses more on the inside area of the Aperio-type and
Hamamatsu-type scanners images. Moreover, FL makes the
result more sensible from predicted results, as shown in
Figure 5. )e equation of heatmap is defined as

HM � A × α +(1 − α) × Image. (9)

HM represents the heatmap. A means the activation
function. α represents weight coefficient, and the image
represents the feed input images. Figure 5 describes the
results of the mitosis detection examples on the ICPR 2014
dataset where samples were scanned with both slide scan-
ners, left side (a), (b) denote Aperio-type, and right side (c),
(d) denote Hamamatsu-type. (a) and (c) are the predictions
of the RDLM ((k� 256, m� 256 α� 0.5 and c � 0.5) results
on both slides scanner, where red labels denote the ground
truth and blue is the model prediction. (b) and (d) are the
visualization results on both slide scanners where manual
labels are red.

5. Discussion

)is section explains the parameter selection of focal loss from
two aspects: quantitative evaluation and visual perception.
First, we can notice from Table 1 that the quantitative
evaluation of FL decreases the probability of false-positive
predictions and false-negative predictions to make the pre-
dicted results more reasonable when α is 0.5 and c is 0.5. We
set α to 0.5 with different c of 0, 0.5, 1, and 2, respectively.
However, the RDLMmodel performs well compared to other
methods in terms of F1-scoremetrics and achieves the highest
score on Aperio-type test images. Second, to illustrate the
visual effects of FL, we selected three examples from the
Aperio-type slide scanner’s testing set. We can observe from

(a) (b) (c) (d)

Figure 5: Detection results of examples on the testing set from both slide scanners.

Journal of Healthcare Engineering 7



Figure 6 that the RDLM obtained good results when α is 0.5
and c is 0.5. In contrast, the RDLM method poorly performs
over all the examples when c is 0, 1, 2, and the detection
results always have some noise and misclassification regions
of mitotic cells. Finally, we can conclude that the proposed
method performs well and attained high performance in
terms of both quantitative evaluation and visual perception
when α is 0.5 and c is 0.5.

6. Conclusion and Future Direction

In this paper, we proposed a new method for mitosis
detection tasks through deep learning called RDLM. Our
proposed framework has been divided into two parts:
GLB-FPN and FL. )e GLB feature fusion method with

FPN essentially calibrates the encoder-decoder and
makes the encoder-decoder pay attention further to ex-
tract the ROIs for mitotic cells. FL is adopted to efficiently
alleviate the data imbalance problem in mitotic cell de-
tection tasks. Besides, extensive experiments were carried
out on the MITOS-ATYPIA-14 contest dataset to verify
the effectiveness of the proposed method. Results showed
that the proposed approach is superior to most current
mainstream approaches in visualization view and
quantitative matrices. Compared with state-of-the-art
techniques, our framework has achieved a higher score on
the testing set in terms of quantitative metrics F1-score of
0.692. We intend to design a new pipeline for both de-
tection and segmentation tasks of mitotic cells in the
future study.

(a) (b) (c) (d)

Figure 6: visual effects on imbalance factor α� 0.5 with various focusing factors c. (a) α� 0.5, c � 0.5. (b) α� 0.5, c � 0. (c) α� 0.5, c � 1.
(d) α� 0.5, c � 2.
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also cited this dataset in our references.
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