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Traffic accidents are easily caused by tired driving. If the fatigue state of the driver can be identified in time and a cor-
responding early warning can be provided, then the occurrence of traffic accidents could be avoided to a large extent. At
present, the recognition of fatigue driving states is mostly based on recognition accuracy. Fatigue state is currently rec-
ognized by combining different features, such as facial expressions, electroencephalogram (EEG) signals, yawning, and the
percentage of eyelid closure over the pupil over time (PERCLoS). +e combination of these features increases the rec-
ognition time and lacks real-time performance. In addition, some features will increase error in the recognition result, such
as yawning frequently with the onset of a cold or frequent blinking with dry eyes. On the premise of ensuring the recognition
accuracy and improving the realistic feasibility and real-time recognition performance of fatigue driving states, a fast
support vector machine (FSVM) algorithm based on EEGs and electrooculograms (EOGs) is proposed to recognize fatigue
driving states. First, the collected EEG and EOG modal data are preprocessed. Second, multiple features are extracted from
the preprocessed EEGs and EOGs. Finally, FSVM is used to classify and recognize the data features to obtain the recognition
result of the fatigue state. Based on the recognition results, this paper designs a fatigue driving early warning system based on
Internet of+ings (IoT) technology. When the driver shows symptoms of fatigue, the system not only sends a warning signal
to the driver but also informs other nearby vehicles using this system through IoT technology and manages the
operation background.

1. Introduction

Fatigue is a very complex physical and psychological state
that can be divided into mental fatigue and physical fatigue.
In most cases, mental fatigue and physical fatigue are
intertwined and appear at the same time. Mental fatigue is
often caused by long-term cognitive activity in the brain.
Under brain fatigue, people’s cognitive function is limited,
and their alertness is reduced. Drivers are prone to both
mental and physical fatigue during long-term driving, but
mental fatigue is the main problem. Fatigue driving is one of
the major hidden dangers of road traffic safety. Research on
fatigue driving recognition and early warning technology
can reduce the frequency of traffic accidents [1]. Fatigue
driving status recognition is a prerequisite for early warning,
so fatigue driving status recognition is very important. At

present, research on fatigue driving identification methods
mainly focuses on three aspects: (1) identification based on
driver behavior characteristics: the driver’s fatigue state is
judged by the recognition of the driver’s behavior, such as
the movement of the eyelids, the closed state of the eyes [2],
and facial expressions [3]. +e identification method is
simple and easy to implement, but the scoring standard is
easily affected by conditions such as personal behavior, light,
and image acquisition angle.+e collection of various modal
data will inevitably be noisy, causing the recognition result to
fail to correctly identify the driver’s fatigue state. (2) De-
tection based on vehicle parameters: through the detection
of vehicle parameters such as vehicle speed, vehicle position,
and steering wheel rotation angle during driving, the driver’s
operating indicators are obtained, and then the degree of
fatigue is judged. Since vehicle parameters are closely related
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to the actual driving quality of the driver, this method is
closer to the actual driving situation. However, vehicle
parameters need to be measured during actual operation,
which increases the cost of the vehicle. (3) Recognition based
on the physiological parameters of the driver: the driver’s
fatigue state can be judged by identifying the driver’s
physiological characteristics, such as with electrocardio-
grams [4], electroencephalograms [5, 6], electrooculograms
[7], and electromyography [8, 9].

Since the EEG signal directly reflects the driver’s brain
activity and the price of EEG signal acquisition devices are
declining, they are therefore convenient to use. +erefore,
identifying driving fatigue states based on the EEG signals is
considered to be one of the most objective and accurate
analysis methods. Reference [5] proposed a new real-time
fatigue driving detection method based on EEG signals. +e
study combines two characteristics of power spectral density
(PSD) and sample entropy (SampEn) to judge mental fa-
tigue.+e results show that themethod is effective for fatigue
detection because the prediction results of fatigue are
consistent with the phenomena recorded in the simulated
driving process. +is is considered an objective measure of
behavior. Reference [10] proposed a recurrent network-
based convolutional neural network (RN-CNN) method to
detect fatigue driving. +e data used in the experiment are
the EEG signals collected during driving simulation. +is
method can achieve an average recognition accuracy of
92.95%. Reference [11] proposed the detection of the fatigue
driving state based on the feature data of sample entropy,
approximate entropy, and complexity, which can well
identify four different mental fatigue states. Reference [12]
uses five different entropies, the relative energy of the alpha
wave, and (θ + α)/β as indicators for judging fatigue. +e
experimental results show that this fusion method can ac-
curately judge the fatigue degree of the driver. Reference [13]
uses the fast Fourier transform to extract four rhythm
α, θ, β, δ features. By analyzing the trend and mutual rela-
tionship of these four features, it is found that using (θ +

α)/β as the feature to assess the mental state is the most
effective. Reference [14] studied sample entropy, fuzzy en-
tropy, approximate entropy, and spectral entropy as the
inputs of a decision tree. Experiments have shown that this
method has an accuracy of 94% for the identification of
fatigue driving, and it can identify fatigue driving more
accurately. Typical EEG signal characteristic analysis
methods are mainly divided into the time domain [15],
frequency domain [16], and time-frequency domain analysis
methods [17]. +e EEG signal in the frequency domain has
obvious characteristics and strong distinguishability. It is of
great significance to the analysis of EEG signals. EEG signals
in different frequency bands can effectively reflect people’s
mental state and excitement [18]. Reference [19] uses a
convolutional neural network (CNN) to realize emotion
recognition based on the time-frequency diagram of EEG
signals obtained by a wavelet transform. However, the time-
frequency diagram cannot effectively reflect the correlation
of EEG signals between different electrodes. +e above
studies have shown that fatigue driving recognition based on
EEGs is the most objective and accurate fatigue recognition

method and is known as the “gold standard” of fatigue
detection.

Fatigue driving state recognition based on EOGs mainly
separates the horizontal and vertical EOG signals from the
electrode signals of the forehead and extracts a series of
features, such as gaze, blinking, and saccade, for driver fa-
tigue state recognition. Reference [20] found that as driver
fatigue increases, it will be accompanied by long-term
blinking, which reflects the relationship between slow eye
movement and driver fatigue. By extracting the eye move-
ment features in the EOG signal, machine learning algo-
rithms are used to identify the driver’s fatigue state.
Reference [21] detected fatigue driving by extracting the
fatigue characteristics of blinking, slow eye movement,
amplitude, and periodicity in the EOG signal, and the ex-
perimental results showed that the detection effect was ef-
fective. In summary, driver fatigue detection based on EOG
signal characteristics is also feasible.

At present, most studies mainly focus on the fusion of
multiple features and the application of integrated classifiers.
+e purpose of these studies is to maximize the accuracy of
fatigue recognition. However, most studies ignore the real-
time performance of fatigue driving recognition and early
warning. In a real-life environment, the timely identification
and early warning of fatigue driving are more meaningful.
With the rapid development of modern industry, collection
methods of EEG and EOG signals are becoming more ad-
vanced. +e volume of collection equipment is becoming
increasingly miniaturized and portable, their collection
accuracy is increasing, and their production cost is de-
creasing. With the development of Internet of +ings (IoT)
technology in recent years, it is no longer difficult to collect
driver EEG signals without interference. Based on the above
background, this paper proposes a fast identification method
of fatigue driving based on EEG and EOG. +is method can
collect the driver’s EEG and EOG signals in a real envi-
ronment and complete rapid identification and timely
warning.+e contents of this study can be divided as follows:

(1) More objective EEG and EOG signal data are used as
the identification data of the fatigue driving state. For
EEG data, its PSD and differential entropy are
extracted as feature data. For EOG, EOG features
extracted based on independent component analysis
(features_table_ica), EOG features extracted based
on subtraction rules (features_table_minus), and
EOG features extracted using both subtraction rules
and principal component analysis (features_ta-
ble_icav_minh) are used as feature data. +e mul-
tifeature data of the two modalities can represent
more comprehensive sample information.

(2) A fast SVM algorithm based on sample geometric
features is proposed. For the case of nonlinear
separability, the support vector in the high-di-
mensional space should also be on the edge of the
positive and negative classes. Measured by distance,
the support vector is composed of those sample
points with larger distances of the same kind and
smaller distances of different kinds. +e key is to
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find such sample points. FSVM can greatly reduce
the number of training samples and reduce the
number of support vectors, resulting in a reduction
in the training time of the model, and at the same
time, the impact on sample classification accuracy is
minimal.

(3) Based on the results of fatigue driving status rec-
ognition and IoT technology, this paper designs an
early warning system. +e system can realize data
collection, identification, and early warning. When a
driver is detected to be fatigued, the system not only
sends a warning signal to the driver but also informs
other nearby vehicles using this system through the
Internet of +ings technology and manages the
operation background.

2. Related Information

2.1. EEG Multifeature Extraction Method

2.1.1. Differential Entropy Feature Extraction. +e differ-
ential entropy feature is expanded on the basis of Shannon
entropy. In 2013, differential entropy was used for the first
time to characterize EEG characteristics. Compared with the
traditional PSD, it shows superior performance [22]. +e
original definition of calculating differential entropy is as
follows:

h xn( 􏼁 � −􏽚
X

f(x)log(f(x))dx. (1)

When a random variable follows the Gaussian distri-
bution N(u, σ2), the differential entropy can be simply
calculated by the following formula:

h(X) � − 􏽚
+∞

−∞
f(x)log(f(x))dx �

1
2
log 2πeσ2, (2)

where f(x) � 1/
����
2πσ2

√
exp(x − μ)2/2σ2.

2.1.2. PSD Feature Extraction. PSD is used to characterize
the change in signal power with changes in frequency. In
practical applications, the average value of the signal value in
a certain frequency band is generally regarded as the PSD of
the frequency band, and the calculation formula is

p xn( 􏼁 �
1
N

X xn( 􏼁X
∗

xn( 􏼁, (3)

where X(xn) is the discrete Fourier change value of segment
n and X∗(xn) is the conjugate function of X(xn).

2.2. Typical Classification Model. Table 1 gives the relevant
introduction of each commonly used classification model.
At present, the classification model of fatigue driving state
recognition can be divided into machine learning [23, 24]
and deep learning [25, 26]. +e mathematical model of the
machine learning algorithm is simple, and the algorithm
time complexity is relatively low, but the recognition ac-
curacy is not as good as that of the deep learning algorithm.

+e model of the deep learning algorithm is complex, there
are many parameters that need to be adjusted, and the time
complexity of the algorithm is high, but the recognition rate
of the algorithm is high. In summary, the two types of
classification models have their own characteristics and
applicable scenarios. Since the scenarios used in this article
do not belong to the category of large samples and fatigue
driving recognition and early warning have high real-time
requirements, the machine learning algorithm can fully meet
the requirements. +erefore, the classic SVM in machine
learning is used as the basic algorithm to classify datasets.

2.3. Labeling of Fatigue Signal Labels. +e key to fatigue
identification based on EOG is calculating the PERCLOS
value. +e PERCLOS value indicates the degree of closure of
the eyelids per unit time. +e calculation formula is as
follows:

PERCLOS �
eye closing time

total time
. (4)

PERCLOS is marked as P, and the threshold of P is set to
determine whether it is fatigued. When P< 0.35, it indicates
that the driver is awake. When P> 0.35, it indicates that the
driver is tired. According to different P values, two different
states can be obtained.+is type of research can be described
as a binary classification task. +e awake state is recorded as
0, and the fatigue state is recorded as 1. Table 2 shows the
specific labeling method.

2.4. ZigBee Wireless Technology. +e ZigBee standard is a
wireless ad hoc network standard suitable for wireless sensor
networks proposed by the ZigBee Alliance in 2004. ZigBee
chips usually integrate basebands, microcontrollers, and
memory, and ZigBee can work in the frequency bands of
868MHz, 915MHz, and 2.4. +e data transmission rate of
the ZigBee network ranges from 20 to 900 kpbs. Each ZigBee
network contains a coordinator, and the task of the coor-
dinator allows the router to expand the communication
range of the network. Since ZigBee nodes can wake up from
sleep in 30ms, which makes ZigBee’s response delay far
lower than other types of wireless technologies, ZigBee is
very suitable for small data volume burst data transmission.
+e system designed in this paper will not only alert drivers
of fatigue but also transmit alerts to other vehicles. +is
requires the establishment of a suitable wireless network
connection between the vehicles. Since the driver is not
always in a state of fatigue, the exchange of data between
vehicles will be intermittent, and there will be no continuous
data exchange. Moreover, the amount of data carried by each
fatigue alert is very small. Based on the above analysis, this
article selects a ZigBee network suitable for sudden small
data transmission. As a typical protocol for wireless sensor
networks, ZigBee is suitable for the transmission of such
data. +erefore, this article selects ZigBee as the wireless
network standard between vehicles.
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3. Fatigue Driving Status Recognition and Early
Warning System

3.1. System Framework. In this study, a rapid fatigue state
recognition and early warning system was designed. +e
architecture of the system is shown in Figure 1. +e hard-
ware system of the whole systemmainly includes a Bluetooth
headset and a vehicle-mounted terminal. +e Bluetooth
headset is mainly responsible for collecting EEG and EOG

signals.+rough the Bluetooth communication protocol, the
data are transmitted to the vehicle terminal for storage,
processing, and analysis. +e fatigue state recognition
module in the vehicle terminal is responsible for classifying
the received EEG and EOG signals to determine whether the
driver is tired.When the result of the identification is fatigue,
a warning message will be issued to the driver, operation
manager, and surrounding vehicles. A set of equipment can
be installed on each vehicle, and the system includes a
sending end and a receiving end.

3.2. RecognitionModel. +is study uses a fast SVMmodel to
classify feature data. For nonlinearly separable data, the
support vector in the high-dimensional space should also be
on the edge of the positive and negative classes. Measured by
distance, the support vector is composed of those sample

Table 1: Typical classification model.

Model Main idea Advantages and disadvantages

Artificial neural
network (ANN)

+ere are three types of processing units in the network:
input unit, output unit, and hidden unit. +e input unit
receives signals and data from the outside world. +e

output unit realizes the output of system processing results.
A hidden unit is a unit that lies between an input and

output unit and cannot be viewed from outside the system.
ANN is a kind of nonprogrammed, adaptive, and brain-
style information processing mode, whose essence is to
obtain a parallel and distributed information processing
function through network transformation and dynamic

behavior.

Advantages: ① it is a simple application; ② it has more
accurate classification results; and ③ it has the ability to
quickly search for optimization. Disadvantages: ① it

easily enters the local optimum.

SVM

+e algorithm finds a dividing hyperplane that can
correctly separate the two types of data on both sides to
achieve the effect of data classification and prediction. +is

hyperplane is determined by the support vectors.

Advantages: ① the “curse of dimensionality” can be
avoided;② it has a known effective algorithm that can be
used to find the global minimum of the objective function;
③ the generalization ability of the algorithm is good.

Disadvantages: ① it is difficult to implement large-scale
training samples; ② it has difficulty solving the

multicategory problem;③ it is sensitive to parameter and
kernel function selection.

Random Forest
(RF)

+e forest is composed of many trees, so the result of RF
depends on the decision result of multiple trees. +is is an
integrated learning idea. For example, there is a new animal
in the forest, and the forest holds a forest meeting to

determine what kind of animal it is. Every tree must express
its opinions. +e result with the most votes will be the final

result.

Advantages: ① it can handle very high-dimensional
(many features) data, and there is no need to perform
feature selection;② the training speed is fast, and it is easy
to make a parallel method; ③ the implementation is
relatively simple. Disadvantages: ① it is prone to

overfitting; ② for data with attributes with different
values, the attribute weights produced by RF on such data

are unreliable.

AdaBoost

+e algorithm trains several individual learners with a
certain combination strategy so that a strong learner can
finally be formed to achieve the goal of more people and

more power.

Advantage:① under the framework of AdaBoost, various
classification models can be used to build weak learners,
which is very flexible;② given its high precision, it can be
applied to most classifiers without the need to adjust

parameters. Disadvantages:① unbalanced data leads to a
decrease in classification accuracy; ② training is time-

consuming.

CNN

A method consisting of the following layered form: input
layer: data entry

Convolutional layer: for feature extraction
Pooling layer: used to extract features again

Hidden layer: the layer in the middle
Fully connected layer: after vectorizing the extracted

feature matrix, classify its features.

Advantages: it has a high classification accuracy rate.
Disadvantages: ① parameters need to be adjusted; ② it
needs large amount of data;③ it requires a large amount

of calculation.

Table 2: Fatigue marking status.

P value range State Label
P< 0.35 Wide awake 0
P> 0.35 Fatigue 1
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points with a larger distance from the same class and a
smaller distance from the heterogeneous group.+e key is to
find such sample points. First, the distance between any two
points is described. +e following mapping formula is used:

ϕ: x ∈ R
P⟶ ϕ(x) ∈ R

m
, m>p, ∀xi, xj, xj ∈ R

P
. (5)

+e distance between any two points is defined in space
Rm:

d ϕ xi( 􏼁, ϕ xj􏼐 􏼑􏼐 􏼑 � ϕ xi( 􏼁 − ϕ xj􏼐 􏼑
�����

�����,

�

����������������������������

ϕ xi( 􏼁 − ϕ xj􏼐 􏼑􏼐 􏼑 · ϕ xi( 􏼁 − ϕ xj􏼐 􏼑􏼐 􏼑

􏽱

�

�������������������������������������

ϕ xi( 􏼁 · ϕ xi( 􏼁 − 2ϕ xi( 􏼁 · ϕ xj􏼐 􏼑 + ϕ xj􏼐 􏼑 · ϕ xj􏼐 􏼑

􏽱

�

����������������������������

K xi, xi( 􏼁 − 2K xi, xj􏼐 􏼑 + K xj, xj􏼐 􏼑

􏽱

�

������������

2 − 2K xi, xj􏼐 􏼑

􏽱

.

(6)

Assume sample point zk ∈ G+; for any k ∈ I+, it corre-
sponds to point ϕ(zk) in the high-dimensional space.

A pair of distance values (d+
k , d−

k ) is assigned to point
ϕ(zk),

d
+
k �

1
l
+ 􏽘

i∈I+

d ϕ zk( 􏼁,ϕ xi( 􏼁( 􏼁,

d
−
k �

1
l
− 􏽘

i∈I+

d ϕ zk( 􏼁, ϕ xj􏼐 􏼑􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

+e parameter r represents the proportion of possible
support vectors in the training sample set. +ere are critical
values c1 and c2 such that P d+

k > c1􏼈 􏼉 � r and P d−
k < c2􏼈 􏼉 � r.

+at is, we find those points ϕ(zk) with a larger average
distance from the positive point and a smaller average
distance from the negative point. +e support vector is the
point zk that satisfies the condition ϕ(zk)|d+

k > c1,􏼈

d−
k < c2, k ∈ I+}. As shown in Figure 2, the points in set T+

1 �

ϕ(zk)|d+
k > c1, k ∈ I+􏼈 􏼉 correspond to the points in the shape

of① in the figure. +e point in T+
2 � ϕ(zk)|d−

k < c2, k ∈ I+􏼈 􏼉

corresponds to point ② in the figure. +en, point
ϕ(zk) ∈ T+,T+

1 ∩T+
2 . In the same way, for zk ∈ G− and any

k ∈ I− , set T− can be found. +en, the set formed by the
support vector is TB D � T+ ∪T− .

+e FSVM algorithm follows a certain principle of the
distance between samples to extract support vectors, which
are used as training samples for the SVM, and then the SVM
is used for training. +e implementation steps of the al-
gorithm are 5 in total, and details of each step are shown
below:

Step 1. Set the scale parameter r(0< r< 1).

Step 2. In the high-dimensional space, calculate the distance

matrix D � (dij)l×l

D11 D12
D21 D22

􏼢 􏼣, where

dij � d(ϕ(xi), ϕ(xj)) �
������������
2 − 2K(xi, xj)

􏽱
. D11(D22) repre-

sents the block matrix formed by the distance between any
two points in the positive and negative sets. D12(D21)

represents the block matrix formed by the distance between
each point of the positive and negative clusters.

Step 3. Calculate the average matrix

V �
V11 V12
V21 V22

􏼢 􏼣
(l++l−)×2

. Set Il+ � 1/l+el+×1, Il− � 1/l− el−×1;

then V11 � D11Il+ , V12 � D12Il− , V21 � D21Il+ , and
V22 � D22Il− .

Step 4. Extract the support vector set according to the given
ratio r. Sort the components in V11 and V22 in descending
order. Sort the components in V12 and V21 in ascending
order. Extract the top l+ · r and l− · r samples after sorting to
form a new training set TB D(|TB D|< l · r).

Step 5. +e SVM algorithm is trained on TBD to obtain the
final model.

Tired state recognition module

Bluetooth communication 
module

Tired state recognition module

Serial port driver

Zigbee

USB

vehicle terminal

Sender

Tired state recognition module

Bluetooth communication 
module

Tired state recognition module

Serial port driver

Zigbee

USB

vehicle terminal

Receiving end

Bluetooth protocol

Figure 1: System structure diagram.
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4. Experiment

4.1. Introduction to Simulation Data. +e SEED-VIG [27]
dataset was used for experimental simulation, which is
mainly composed of EEG and EOG signals. To collect the
dataset in the real scene, the data collector used the Neu-
roscan system to collect the relevant signals of the driver in
the simulated driving environment. +e sampling frequency
is 1 kHz, and 21 channels of data are collected in total. +e
electrode position during EOG acquisition is shown in
Figure 3(a), and there are 4 channel electrodes in total. +e
electrodes set for the EEG signal are 6 channels in the
temporal brain area and 11 channels in the back brain area.
+e specific electrode positions are shown in Figure 3(b).
+e placement of these positions meets the international
10–20 electrode distribution requirements.

+e collected initial EEG signal contains problems such
as noise, which requires preprocessing, feature extraction,
and smoothing operations on signals from different brain
regions. +e different brain areas mainly include the tem-
poral lobe brain area, T area; the occipital brain area, P area;
the prefrontal EEG, F area; and the brain area signal leads,
bandwidth, and characteristic dimensions, which are shown
in Table 3. First, the forehead EEG is separated from the
forehead electrode signals, and the EEG signals of each brain
area are divided into 5-band EEG signals. +e features of
EEG and EOG data are extracted, as shown in Table 4.

4.2. Experimental Setup. During the experiment, the main
contrastive algorithms used are BP [28], RF [29], SVM [30],
and CNN [31]. Both SVM and FSVM use a radial basis
kernel function, and the kernel function parameter is set to

0.001. +e parameters of the other comparison algorithms
are the same as those in the reference. +e evaluation index
of the model used is the recognition accuracy rate, and its
calculation formula is as follows:

Acc �
TP + TN

TP + TN + FP + FN
. (8)

+e computer configuration information used in the
experiment is 32G of memory, an i7-11700F CPU, a Win10
operating system, and the MATLAB 2020a programming
tool.

4.3. Experimental Results and Analysis

4.3.1. Fatigue Recognition Accuracy Rate Experiment. +e
dataset is randomly divided into a training set and a test set
at a ratio of 7 : 3. First, the EEG feature and EOG feature are
classified separately using the classifier and then the two
features are combined for classification. +e experimental
data are the mean value after running the algorithm 10
times. +e experimental results are shown in Tables 5–7.

+e data in Table 5 show that, for most classification
algorithms, the recognition rate based on DE features is
slightly better than that based on PSD features. +is shows
that the evaluation effect based on the DE feature is better
than that based on the PSD feature. Regarding the recog-
nition accuracy index, regardless of whether it is based on
PSD or DE features, the recognition rate of the CNN deep
learning algorithm is significantly ahead of that of the
machine learning algorithm. +is shows that, in terms of
recognition accuracy, the performance of deep learning
algorithms is significantly better than that of machine

T+ T-

1

2

3

Figure 2: Distribution of sample points based on distance analysis.
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learning algorithms. Among the machine learning algo-
rithms, the SVM algorithm has the best recognition rate.
+is is also the reason why SVM is chosen as the basic
algorithm.+e recognition accuracy of FSVM is comparable
to that of classic SVM.

+e data in Table 6 show that, for different classification
algorithms, the recognition rate based on the features_ta-
ble_icav_minh feature is the best. +is shows that the

classification information carried by the EOG features
extracted by both subtraction rules and principal component
analysis is more abundant. Among the different classifica-
tion algorithms, CNN has the highest recognition rate,
which shows that the recognition effect of deep learning
algorithms is indeed very good. +e recognition rates of
SVM and FSVM are similar, and the recognition rate of
FSVM is slightly higher.

To explore the influence of multimodal data on the
recognition accuracy, EEG and EOG signals were fused for
experimental analysis. EEG uses differential entropy feature
data, using the average of the three brain regions P, T, and F
as the final experimental data. EOG uses the features_ta-
ble_icav_minh feature with the best recognition effect as the
input feature data. +e recognition results of the fusion
features of each algorithm are shown in Table 7.

+e experimental data shown in Table 7 show that, in
addition to the BP algorithm, the recognition accuracy of
other algorithms based on fusion features is better than the
recognition accuracy of a single feature. +is shows that the
fusion feature can effectively improve the fatigue recognition

(a)

FT7 FT8

T8

CP1CP3CP5

FP1 FPZ FP2
AF4AF3

F5
F7

FC5

C5 C3 C1 CZ C2 C4 C6

FC3 FC1 FCZ FC2 FC4 FC6

F3 F1 FZ F2 F4 F6
F8

CPZ CP2
CP6CP4

P1P3P5P7
PO3PO5

CB1 CB2

PO7
POZ PO4 PO6 PO8

O1 OZ O2

PZ P2 P4 P6 P8

TP8

T7

TP7

(b)

Figure 3: Electrode position during EOG and EEG acquisition.

Table 3: Signal distribution and characteristic dimensions of brain regions.

Brain area Signal lead Characteristic frequency band Feature dimension
P 11 δ, θ, α, β, c 55
T 6 δ, θ, α, β, c 30
F 4 δ, θ, α, β, c 20

Table 4: EEG and EOG characteristics.

Signal Feature extraction method Feature

EEG Short-time Fourier transform Power spectral density linear dynamic system smoothing characteristics (PSD).
Smoothing characteristics of differential entropy linear dynamic system (DE).

EOG Wavelet transform peak
detection method

Electroocular features extracted based on independent component analysis (features_table_ica).
Eye electrical features extracted based on subtraction rules (features_table_minus).

Electrooculogram features extracted by fusion of subtraction rules and principal component
analysis (features_table_icav_minh).

Table 5: Recognition accuracy based on EEG features.

Brain area Feature BP RF SVM CNN FSVM

P PSD 0.8892 0.8791 0.9146 0.9287 0.9128
DE 0.8957 0.8880 0.9245 0.9420 0.9215

T PSD 0.8921 0.8687 0.9112 0.9117 0.9126
DE 0.8985 0.8763 0.9197 0.9421 0.9204

F PSD 0.8864 0.8725 0.9020 0.9223 0.9043
DE 0.8903 0.8804 0.9189 0.9468 0.9180

Mean PSD 0.8892 0.8734 0.9093 0.9209 0.9099
DE 0.8948 0.8816 0.9210 0.9436 0.9200
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accuracy. +e changes in the recognition accuracy of each
algorithm based on different features are shown in Figure 4.
It can be clearly seen from the figure that the recognition rate
of CNN and FSVM based on fusion features has the largest
increase, followed by SVM, and RF has the smallest increase.
+e recognition accuracy of the BP algorithm has declined to
a certain extent. In summary, the use of fusion features has
advantages in the recognition rate.

4.3.2. Fatigue Recognition Model Training Time Consump-
tion Experiment. +e recognition model is trained based on
the fusion features, and the time taken to train the model 10
times is averaged. +e training time consumption details of
each model are shown in Table 8. +e data in Table 8 show
that the time spent on machine learning algorithms is lower
than the time spent on deep learning algorithms. For

scenarios that require a quick response time, machine
learning algorithms are more suitable. Among the many
machine learning algorithms, the training time required for
the FSVMmodel mentioned in this article is greatly reduced.
Compared with the classic SVM model, the training time is
reduced by 33.95%. Compared with the CNN, the training
time of the FSVMmodel is only a quarter of it. In summary,
the model proposed in this paper can not only ensure a
better recognition rate but also reduce the training time for
the model. +erefore, it can fully meet the task of real-time
fatigue identification and has good practical value.

5. Conclusion

+e rapid identification and early warning of the fatigue
driving state are the key to reducing traffic accidents. Quick
and accurate fatigue identification is a prerequisite for ef-
fective early warning. +is study is based on two-modal data
of EEGs and EOGs to identify the fatigue driving state and
extracts multiple features of the two-modal data for ex-
perimental analysis. Experimental data show that the fatigue
state recognition accuracy of multimodal data fusion is
higher. In the selection of classification models, deep
learning algorithms have a leading advantage, and the
recognition accuracy is higher than that of machine learning
algorithms. However, considering the real-time require-
ments of fatigue state recognition tasks, this study proposes
an FSVM algorithm that can quickly provide model training.
+e FSVM algorithm greatly improves the training speed of
the model without reducing the recognition accuracy and
achieves the expected effect. On the other hand, based on fast
and accurate recognition results, this article designed a set of
early warning systems based on IoT technology to extend the
early warning information from a single vehicle to the In-
ternet of Vehicles. When the driver is in a fatigue state, the

Table 6: Recognition accuracy based on EOG features.

Algorithm features_table_ica features_table_minus features_table_icav_minh
BP 0.9032 0.9104 0.9131
RF 0.9153 0.9086 0.9178
SVM 0.9343 0.9357 0.9406
CNN 0.9481 0.9396 0.9484
FSVM 0.9391 0.9325 0.9412

Table 7: Recognition accuracy rate of fusion features.

Algorithm EEG EOG EEG+EOG
BP 0.8948 0.9131 0.9124
RF 0.8816 0.9178 0.9209
SVM 0.9210 0.9406 0.9478
CNN 0.9436 0.9484 0.9517
FSVM 0.9200 0.9412 0.9511

BP RF SVM CNN FSVM

EEG
EOG
EEG+EOG
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Figure 4: Recognition accuracy of each algorithm based on
different features.

Table 8: Training time.

Model BP RF SVM CNN FSVM
Time (s) 286 225 217 639 162
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system can not only send a warning signal to the driver but
also notify other nearby vehicles using this system and
manage the operation background through IoT technology.
Regarding the identification of fatigue status, the next step of
this research will be to improve the accuracy of identifica-
tion, and more modal data can be introduced for com-
prehensive decision-making. In an early warning system,
when the vehicle speed is too high and the distance is too
large, the signal between the vehicle and other vehicles is
likely to be weak, and it is impossible to guarantee the
successful warning of other vehicles. LoRa has the charac-
teristics of long communication distance, low power con-
sumption, and low cost, whichmay be able to solve the above
problems. +is is also the content of this study, which needs
further research in the future.
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