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With the rapid development of detection technology, CT imaging technology has been widely used in the early clinical diagnosis of
lung nodules. However, accurate assessment of the nature of the nodule remains a challenging task due to the subjective nature of
the radiologist. With the increasing amount of publicly available lung image data, it has become possible to use convolutional
neural networks for benign and malignant classification of lung nodules. However, as the network depth increases, network
training methods based on gradient descent usually lead to gradient dispersion. Therefore, we propose a novel deep convolutional
network approach to classify the benignity and malignancy of lung nodules. Firstly, we segmented, extracted, and performed zero-
phase component analysis whitening on images of lung nodules. Then, a multilayer perceptron was introduced into the structure
to construct a deep convolutional network. Finally, the minibatch stochastic gradient descent method with a momentum co-
efficient is used to fine-tune the deep convolutional network to avoid the gradient dispersion. The 750 lung nodules in the lung
image database are used for experimental verification. Classification accuracy of the proposed method can reach 96.0%. The
experimental results show that the proposed method can provide an objective and efficient aid to solve the problem of classifying

benign and malignant lung nodules in medical images.

1. Introduction

Lung cancer is one of the most common cancers in the
world. Compared with other cancers, there are no obvious
symptoms at an early stage. Early detection of lung cancer in
its nodular form, screening, classification, and medical
management have been demonstrated to be extremely
helpful and effective in decreasing lung cancer mortality [1].
Therefore, how to effectively diagnose lung nodules has
become a topic of primary concern. The detection and di-
agnosis of lung nodules can be achieved by imaging pro-
cedures, such as CT imaging [2], magnetic resonance
imaging [3], etc. The diagnosis of suspected lung nodules
remains difficult due to human subjectivity, fatigue, and
other limitations related with CT images. In some cases,
radiologists may not be able to identify some nodules with
diameters <3 mm [4]. Therefore, it is important to study the
method of classifying benign and malignant lung nodules in

a computer-aided diagnosis (CAD) system for early detec-
tion and diagnosis of lung cancer.

At present, the classification of benign and malignant
lung nodules in the CAD system is mainly performed by
extracting the underlying features of the CT image of lung
nodules, such as the shape, position, texture, and density,
through machine learning methods [5]. Moreover, this
classification method based on the underlying features has
obtained good results in improving the accuracy of lung
nodule diagnosis and reducing the labor intensity of
doctors. However, the real nodule shape, size, and texture
features are highly variable. And the extraction of the
underlying features is generally based on manual design,
thus failing to fully describe these real nodules, resulting in
a low correct rate of overall detection results [6]. Therefore,
how to perform automatic feature extraction and selection
on CT images of lung nodules has become a hot topic of
research.
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In recent years, with the rapid development of deep
learning, many studies have also demonstrated that con-
volutional neural networks (CNN) can be well applied to the
field of medical images [7-10]. This is mainly because CNN,
as an end-to-end network architecture, can automatically
extract features from the input image. In the classification of
lung nodules, the commonly used CNN models are the two-
dimensional CNN (2D-CNN) and the three-dimensional
CNN (3D-CNN). Shen et al. [11] proposed a hierarchical
learning framework multiscale CNN (MCNN) for lung
nodule classification by extracting discriminatory features
from alternating stacked layers to capture the heterogeneity
of lung nodules. This network not only improves the clas-
sification accuracy, but also has strong robustness to noisy
input. It is worth noting that the network architecture of
MCNN consists of alternating stacks of convolutional and
max-pooling layers, and takes a long time to extract features.
Therefore, Tran et al. [12] proposed a new deep learning
method to improve the classification accuracy of lung
nodules in CT. The central idea is as follows: firstly, a novel
15-layer 2D-CNN architecture is constructed to automati-
cally extract lung nodule features and classify them as
nodules or non-nodules. Then, the focal loss function is used
for network training to improve the classification accuracy
of the model. However, with the increment of network
depth, network training problems may occur, such as
overfitting [13] and gradient vanishing [14]. The information
behind the network is not well fed back due to deeper
network depth, which results in network performance
degradation. Therefore, the residual network solves the
gradient dispersion due to network deepening by generating
residual blocks to fit the original function [15]. Based on this
study, Nibali et al. [16] achieved 89.9% accuracy in lung
nodule classification on the LIDC dataset by constructing a
fully convolutional residual neural network, which not only
tully exploited the shallow and deep features of lung nodule
images, but also reduced the number of parameters.
Abraham et al. [17] used three 2D-CNN (AlexNet, VGG16,
and SilNet) to classify lung nodules and designed a new
network model based on the obtained inference results to
eliminate the deficiencies of existing networks for early
prediction of lung cancer. Through the above study, it was
found that 2D-CNN network has the advantages of low
network complexity and fast computation, but it ignores
some spatial information. This is mainly due to the fact that
CT scans are 3D images, most existing CNN-based ap-
proaches use a 2D model, which cannot capture the spatial
information between slices. Dou et al. [18] proposed a 3D-
CNN for false positive in automated pulmonary nodule
detection from CT scans. The experimental results show that
compared with 2D-CNN, the 3D-CNN can encode richer
spatial information and extract more representative features
via their hierarchical architecture trained with 3D samples.
At the same time, Fu et al. [19] developed a computer-aided
lung nodule detection system using a three-dimensional
deep CNN to make full use of three-dimensional spatial
information. The system mainly includes two stages: lung
nodule detection stage and classification stage. In particular,
in the detection phase, an 11-layer 3D fully CNN is used for
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the first time to screen all lung nodules. Experimental results
demonstrate the effectiveness of using 3D deep CNNs for
lung nodule detection. Zhao et al. [20] combined multiscale
feature fusion with multiattribute classification to construct
a new 3D-CNN model and proposed a new loss function to
balance the relationship between different attributes,
achieving a classification accuracy of 93.92% on the LIDC
dataset. Gao and Nie [21] proposed a method to discriminate
benign and malignant lung nodules by combining deep
CNN with imaging features. The central idea is as follows:
firstly, segment the lung nodule region from CT images and
extract the imaging features of the nodule region using
traditional machine learning methods. Then, train the 3D-
Inception-ResNet model using the intercepted lung nodules,
extract the CNN features learned by the network, combine
the two types of features, and use the Random Forest (RF)
model for feature selection. Finally, a Support Vector Ma-
chine (SVM) was used for the differential diagnosis of be-
nign-malignant lung nodules. Zhang et al. [22] proposed a
3D dense network architecture by taking advantage of
densely connected convolution, which encourages feature
reuse and alleviates the vanishing gradient problem. The
result shows that the proposed model has achieved good
classification performance in the malignant suspiciousness
of lung nodules and achieved 92.4% classification accuracy.
Through the above research and analysis, it can be known
that the classification effect of 3D-CNN is better owing to the
full extraction of feature information, but it requires a large
amount of data and takes a long time to calculate [23].
However, when the number of medical image datasets is
small, training a 3D-CNN model from scratch will result in
poor classification results. Moreover, the training algorithm
of deep CNN usually adopts a layer-by-layer training
mechanism based on gradient descent [24], where the
network is trained layer by layer from the bottom up, and the
output of the previous layer is used as the input of the next
layer. The disadvantage of this learning mechanism is that
the image pixels after the first layer are discarded, making the
connection between the higher layers of the model and the
input become sparser, which in turn causes the error cor-
rection signal to become smaller and smaller from the top
layer down and tends to converge to a local minimum. In
addition, when using the backpropagation algorithm to
propagate the gradient, the network parameters cannot be
learned effectively as the number of network layers deepens,
resulting in the gradient dispersion [25].

Guided by the above studies and observations, we
propose a novel deep convolutional network learning
(DCN) method to obtain better performance in classifying
benign and malignant lung nodules. The central idea is as
follows: firstly, segment the lung nodule region from the
lung CT images to obtain the lung nodule images and
perform zero-phase component analysis (ZCA) whitening
on the image data so that all features in the images have the
same variance and low feature-to-feature correlation. Then,
add a multilayer perceptron layer after each convolutional
layer of the constructed DCN to achieve cross-channel in-
formation interaction and integration. Finally, obtain the
second derivative information of the error function directly
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without calculating the Hessian matrix, and introduce a
momentum coeflicient based on this information to improve
the convergence of the network. The key contributions are
summarized as follows: (1) the use of ZCA whitening to
process the input data can reduce the correlation between
image pixels and thus eliminate redundant information; (2)
by introducing multiple perceptron layers after each con-
volutional layer can further enhance the expression capa-
bility of the network; (3) the use of small batch random
gradient descent with additional momentum coefficients to
train the deep network can effectively avoid gradient dis-
persion and enhance the generalization capability of the
network.

2. Materials and Methods

2.1. Network System Architecture. To use DCN to learn the
features of CT images of lung nodules and enhance the
representation of the model by introducing multilayer
perceptron, which in turn improves the classification ac-
curacy of lung nodule images. In addition, a momentum
coefficient is introduced to improve the convergence in the
minibatch stochastic gradient descent (MB-SGD) method to
train the deep network model. The structural diagram of the
lung nodule benign and malignant classification system
based on DCN feature extraction is shown in Figure 1, which
consists of three main parts. Stage I includes lung nodule
image segmentation and extraction: firstly, a series of cor-
responding binary images are extracted from a large number
of original lung CT images. Then, the binary image and the
original image performed an “and” symbol operation to
obtain the lung nodule images. Stage II is image pre-
processing: redundant information among the lung nodule
images extracted in Stage I is eliminated using ZCA whit-
ening to reduce the correlation among the input image
pixels. Stage III is DCN feature learning: firstly, the lung
nodule images obtained from stage II processing are used as
the input of the DCN. Then, a multilayer perceptron layer is
introduced after each convolutional layer to realize cross-
channel information interaction and integration. Finally, the
MB-SGD method with a momentum coefficient is used to
fine-tune the DCN to avoid the gradient dispersion problem.

2.2. Lung Nodule Image Segmentation and Extraction. To
study early cancer detection in high-risk populations, the
National Cancer Institute (NCI) published the Lung Image
Database Consortium (LIDC) by collecting medical image
files of the lung and corresponding lesion annotation of
diagnostic results [23]. The LIDC dataset collected 1018
clinical lung CT scans, the size is 512 x 512, and each CT
scan contained a relevant XML file containing the inde-
pendent diagnostic results of four experienced radiologists
[20]. Among them, radiologists marked 928 lung nodules,
most of which were 3-30 mm in size. The diagnostic results
include the coordinates of the lung nodules larger than
3 mm in diameter and the degree of malignancy. However,
because of the small size of lung nodules, it is unrealistic to
classify lung nodules by processing the whole image.

Therefore, we need to extract the lung nodule areas based
on the nodule center coordinate marked by the doctor in
the XML file. In the LIDC dataset, radiologists quantified
the malignancy of lung nodules on a scale of 1 to 5: neither
likely, moderately unlikely, uncertain, moderately suspi-
cious, and highly suspicious. When classifying benign and
malignant levels, those with a level greater than or equal to
3 were classified as malignant, and those with a level less
than 3 were classified as benign. There is variability in the
marking of nodule locations by different experts, which
results in the uniqueness of nodule areas. To eliminate the
differences between experts and obtain standard lung
nodule images, we use the threshold probability map
(TPM) method to segment lung CT scans [26]. The central
idea is as follows: firstly, according to expert experience, a
weight value is set for each expert’s annotation to indicate
the reliability of the expert annotation. Then, each pixel in
the lung nodule region marked by the expert is set to the
same weight value. Finally, the weight value of the pixel is
the sum of the weight values marked by all experts for the
pixel. Now, assuming that the four experts have the same
experience, the weight value of each expert is 0.25. If a pixel
is marked as a component of a nodule by an expert, the
probability that the pixel is a nodule is 0.25. If marked by 3
experts, the probability is 0.75. Thus, the lung nodule re-
gion is transformed into a mapping map with probability
values between 0 and 1. When segmenting the lung nodule
images, only a threshold T is set, and the pixels higher than
T are set to 1, and the pixels lower than T are set to 0. This
generates the corresponding binary images. Finally, this
binary image is summed with the original image to obtain
the lung nodule image. To improve the credibility of the
study, when selecting lung nodule images in the LIDC
dataset, we only considered cases in which at least three
radiologists have made such a diagnosis of malignancy.
Therefore, we segmented and extracted images of lung
nodules, and eventually obtained a total of 750 cases of lung
nodules, including 353 benign cases and 397 malignant
cases. Due to the inconsistent size of lung nodules, to
facilitate the learning and training of the DCN, they were
normalized and transformed into grayscale images with a
size of 28 x 28. The processed part of the sample image is
shown in Figure 2.

2.3. Image Preprocessing. It is given that I={I"),
c IO T@Y e RIwXTnC s 3 collection of d images of the
size I, x Iy and C denotes the channel of the image. First,
because the visual images are highly affected by the light, to
reduce the impact of image brightness on feature learning,
the images are normalized for contrast [27] using the fol-
lowing equation:

oI9 mean 19
o 14— men%) N
Var(I ) + &

where mean (-) is the matrix averaging function. The nor-
malization parameter ¢ is introduced to suppress the gen-
eration of experimental noise and prevent the denominator
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FI1GURE 1: Schematic diagram of the benign and malignant lung

FIGURE 2: The processed part of the sample images of lung nodules.

from being 0. For color image and grayscale image, ¢ is
usually taken as 10.

Because of the strong correlation between adjacent pixels
of the image, it contains a large amount of redundant in-
formation. To make all features in the image have the same
variance and low feature-to-feature correlation, we perform
ZCA whitening on the input data so that the whitened data is
as close to the original data as possible with the same di-
mensionality. A matrix variation is performed for each
image q® in the image collection Q={q",q?,

,q' P}, g € RIwIixC obtained by the contrast normali-
zation operation, with the value of each image pixel point as
an element to form d column vectors, each of length
Iy xIyxC, to form a I, X Iy xC-row and d-column

nodules’ classification system based on DCN feature extraction.

matrix of values ¥. By performing an eigenvalue decom-
position of the covariance matrix C = cov(¥),
[V, D] = eig(C) is obtained, and then scaling the input data
using the feature factors:

(¥ —mean(¥)) oV

+/diag(D) + &

where ¢ is the whitening factor. To avoid unstable values or
data overflow due to eigenvalues diag (D) close to 0, & can be
taken as a very small positive number. Based on this, ZCA
whitening is performed using equation (3), and each column
of the obtained matrix corresponds to the image data after
ZCA whitening.

\PPCAWhite -

(2)

(3)

T
\IJZCAWhitC = \PPCAwhite V.

2.4. DCN for Feature Learning. In the lung nodule image
classification, the category of each image is described by two
classifications of benign or malignant. Based on the guidance
of the above study, we used DCN to extract all lung nodule
images features and used a softmax-loss classifier for binary
classification. The feature learning model based on DCN is
shown in Figure 1. The model consists of an input layer, a
feature extraction layer, and an output layer. The learning
process is as follows: firstly, a feature map in the convolu-
tional layer is generated by convolving the same convolu-
tional kernel based on a weight sharing strategy to reduce
model complexity and training parameters. Then, in the
pooling layer, the features of the convolutional layer features
are nonlinearly downsampled to filter out similar features,
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thereby reducing computational complexity and enhancing
the invariance of local features. Finally, a softmax-loss
classifier is used to build a multitask classifier for the learned
deep features. Compared with other DCN, we achieve cross-
channel information interaction and integration by adding
multiple layers of perceptron layers in the network archi-
tecture, thus further enhancing the generalization ability of
the deep network. In the actual construction process, the
network architecture is equivalent to the introduction of two
1x1 convolutional layers, which only change the con-
volutional kernel size and have no effect on the feature map
size.

Let the data of the lung nodule image after ZCA
whitening be X = {x@,...,x@ ... x@} xO ¢ RhwxInxC,
Since the preprocessed lung nodule images are grayscale
images, the input data x and the convolution kernel are
both 2D structures. The convolution layer convolves the
input data or the previous layer feature map with multiple
sets of convolution kernels, and then sums the corre-
sponding positions of the output, adds the bias term, and
obtains the convolution layer feature map under the action
of the activation function. Its output feature map is calcu-
lated as follows:

Xr—

L2 =) (4)

jeM!

where [ is the number of convolutional layers. x', denotes the
j'" output feature map of layer . £/ is the convolution kernel
connecting the j feature map of layer [ - 1 with the j' feature
map of layer I. M' is the number of feature maps in layer
I-1. f (-) denotes the nonlinear activation function ReLU. *
is the convolution operator. Due to the data distribution of
the input, image will change after convolution operation,
which leads to the internal covariance shift problem [28].
Therefore, we correct the data distribution by introducing a
BN layer in the network architecture. The data after BN
processing is equivalent to PCA dimensionality reduction
[29]; that is, the correlation between features is reduced, and
the data mean and standard deviation are normalized so that
the mean value of each dimensional feature is 0 and the
standard deviation is 1. In the actual construction process,
we generally place the BN layer between the activation
function and the convolution operation, so the forward-
conducting convolution calculation equation (4) is trans-
formed as follows:

! -1 gl
xy=f| BN ij “fir ] ) (5)

jem!

The pooling layer is to downsample the feature map of
the previous convolutional layer to obtain a smaller-di-
mensional output feature map that corresponds to the input
feature map one to one.

- (8 down()). ©

where down (-) is the downsampling function and f§ is the
downsampling coefficient. Similar to the convolutional
layer, on the pooling layer we also normalize the feature map
by introducing a BN layer, and its position is generally
placed between the activation function and the pooling
operation so that the forward-conducting pooling calcula-
tion equation (6) is transformed into

xr = f(BN([S down( ? 1))) (7)

The DCN model is trained adopting a backpropagation
layer-by-layer training mechanism, and the parameters to be
trained are convolutional kernel f. Let 7\ denote the mth
dimension of the label corresponding to the ith sample. y
denotes the m-dimension of the output corresponding to the
ith sample. The squared error cost function is

ZZ( ) (8)

zlml

J(f)=

where M denotes the total number of categories. The update
formula of the convolution kernel using small batches of
stochastic gradient descent is as follows:

! o
Fip @)= fi (@ nZaf” @

where t denotes the current moment and # is the learning
rate. It is well known that in the process of training DCN
with MB-SGD method, when the gradient keeping direction
changes, the error surface has different curvature along
different directions, which is easy to cause the points on the
surface to oscillate from one side to the other with the
continuous descent of gradient so that the gradient cannot
converge to the minimum value [30]. Therefore, we consider
retaining both the gradient vector information at the last
time in the MB-SGD method and the second derivative
information of the error function obtained when the net-
work parameters are updated at the last time. This second
derivative information estimates not only the gradient of the
surface of the cost function at a point (first-order infor-
mation), but also the curvature of the surface (second-order
information). Once the curvature is calculated, the ap-
proximate location of the minimum value of the cost
function can be estimated. The update formula of the
convolution kernel after obtaining the second derivative
information is

_ Vfljj’ (t_l)
Vfls(t=2)=Vfi(t=-1)

Afly(t Afip (t=2),

(10)

where Vf..(t-1) is the gradient function at moment
t—1. From the QuickProp theory proposed by Fahlman
[31], it is known that if the step size in the convolutional
kernel update formula grows too fast, it tends to cause the
convergence process to diverge. Therefore, a momentum
factor u is introduced to overcome the aforementioned



drawback. Equation (11) is equivalent to equation (12)
when the conditions of equation (11) are established.

Afly (E=1)>puAfl (t-2), (11)
AfL(t=1) = uAfly (£ -2). (12)
Based on the above analysis, equation (9) is transformed
to
fip @) = fi (t—l)——nZu (13)
af]]

3. Results and Discussion

3.1. Implementation Details. In this section, the deep net-
work used in the experiments consists of three blocks, each
with the same number of layers, including a convolutional
layer, a multilayer perceptron layer, and a pooling layer.
After the original data is input to the first block, a convo-
lution operation with a step size of 1 and a convolution
kernel size of 5 x 5 is performed on the input image to extract
teatures. Then, two perceptron layers with a step size of 1 and
a convolution kernel size of 1x 1 are used to interact and
integrate feature information. Finally, a pooling layer with a
size of 2 x 2 and a step size of 2 is used to downsample. The
first pooling layer uses a maxpool and the rest uses an
averagepool. At the end of the last block, a softmax-loss
classifier is attached after the averagepool is executed. The
feature mapping dimensions in the three blocks are 28 x 28,
12x12, and 4 x 4, respectively. The exact network config-
uration we use on the dataset is shown in Table 1.

3.2. Training Setup. We use a MATLAB-based deep learning
framework (MatConvNet) for the construction of the
proposed deep network model on a workstation with a
Winl0 system, i9 processor, and 64G RAM. We choose
stratified 10-fold cross-validation as a rigorous validation
model [20]. All data is randomly divided into 10 subsets.
Nine of these subsets were used for training and one for
testing, which was repeated ten times. In the training stage,
we used the MB-SGD method to optimize the model. We
initialize the parameters according to our experience. The
initial learning rate is set 0.1, and the minibatch size is 50. We
adopt the weight initialization strategy described in [32] with
a weight decay of 0.0001. Our experiments had carried out a
total of 120 epochs.

3.3. Validation of Hyperparameter. In this paper, we need to
modify the proposed network parameters repeatedly by
using the method of MB-SGD and finally make the result of
the loss function reach the minimum value. For the MB-
SGD method with a momentum coefficient, the value of the
momentum coefficient y directly affects the location of the
minimum cost function, which in turn affects the classifi-
cation accuracy of the lung nodule images. For this reason, it
is necessary to discuss the value of y. According to the
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description in the training setup, ten experiments with 10
different values of y were conducted to select the best value.
We change the value of y from 0 to 1 at intervals of 0.1.
Table 2 shows the impact of different y values on model
classification performance. It can be seen that the classifi-
cation error rate of lung nodule images gradually decreased
as the value of y increases. When g is 0.9, the model can
obtain the lowest classification error rate.

3.4. Empirical Study

3.4.1. Classification of Benign and Malignant Lung Nodules
under Different Sample Configuration Schemes. In this
section, we conduct a series of experiments to find the most
suitable sample configuration scheme. According to the data
distribution method in the training set, a subset (75 samples)
is randomly selected as the testing set. To verify the impact of
the training set size on the generalization abilities of the
model, we gradually increase the size of the training samples.
As can be seen from the result in Figure 3, changing the size
of the training samples has an impact on the classification
performance of the network. As the number of training
samples increases, network classification accuracy tends to
increase. When the training samples are 500 or 550, our
network model achieves the best classification performance.
After that, the network classification performance shows a
decreasing trend. This problem may be limited by the size of
the number of cases in the dataset and the disappearance of a
gradient.

3.4.2. Optimizer Selection. Gradient descent algorithm is the
most commonly used optimization method in machine
learning, and current networks are trained using different
gradient descent algorithms for network training. Therefore,
a good optimizer design in practical applications is of great
importance to avoid the gradient dispersion of the deep
network. In this section, to test the speed and stability of the
proposed MB-SGD method with momentum coefficients
during the training process, we plot the RL curves and
analyze the effectiveness of the proposed algorithm by
comparing it with the traditional MB-SGD method. The
mean square error RL curve is a smoothing sequence with
minimum mean square error, and its shape shows that with
the increase of the number of iterations, the CNN model
training process predicts the error. On the other hand, it also
represents the speed and stability of the network conver-
gence. In this experiment, the minibatch size is 50 and the
training samples are 500. After training the sample data
once, the weights are iteratively updated 10 times, and after
performing 120 epochs of training, the weights are iteratively
updated 1200 times. The experimental results are shown in
Figure 4. It can be seen that the two learning algorithms have
similar minimum mean square error values in the initial
phase of training. With the increase of the number of it-
erations, the RL curves of both algorithms show a gradual
decrease, which indicates that the training network is stable
and reliable. It is worth noting that the RL curve of MB-SGD
shows a smooth trend from the 200th iteration to the 700th
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TaBLE 1: Network parameter configuration.
Input Output
Layers P Kernel number Kernel size Stride Pad i
W H D W H D
Input 28 28 1
convl 28 28 1 6 5 1 0 24 24 6
ccepl 24 24 6 6 1 1 0 24 24 6
ccep2 24 24 6 6 1 1 0 24 24 6
maxpooll 24 24 6 2 2 0 12 12 6
conv2 12 12 6 12 5 1 0 8 8 12
ccep3 8 8 12 12 1 1 0 8 8 12
ccep4 8 8 12 12 1 1 0 8 8 12
avgpool2 8 8 12 2 2 0 4 4 12
conv3 4 4 24 24 4 1 0 1 1 24
cceps 1 1 24 24 1 1 0 1 1 24
ccepb 1 1 24 2 1 1 0 1 1 2
Avgpool3 1 1 2 2 2 0 1 1 2
Softmax-loss 1 1 2 1 1 2
TaBLE 2: The impact of different y values on model classification performance.
u=01 u=0.2 u=0.3 u=04 u=0.5
Error (%) 11.5 11.0 10.9 9.6 9.1
u=0.6 u=0.7 u=038 u=09 u=1
Error (%) 9.0 8.4 8.0 75 11.4
100
98 R
96 R
=
%4t J
8
3 92t 1
Q
<
90 1
88 1
86 : : : : -
200 300 400 500 600 700 800

Different sample configurations

F1GURE 3: Classification accuracy under different sample configuration schemes.

iteration. In addition, the MB-SGD with a momentum
coefficient has smaller minimum mean square error values
than the MB-SGD. This indicates that MB-SGD with a
momentum coefficient has faster and more stable conver-
gence during network training.

3.4.3. Deep Network Architecture Comparison. One of the
most important advantages of deep learning is the ability to
automatically learn relevant features from the original image.
To further evaluate the effectiveness of the proposed method,
classical deep learning models such as CNN, DBN, and SAE
were used to extract lung nodule features and perform

classification experiments under the same dataset segmenta-
tion. Table 3 gives a comparison of the classification results
under different deep learning models. It can be seen that our
proposed DCN model obtains superior classification perfor-
mance compared to other deep learning classical models. In
addition, in the classic deep learning model, the classification
performance of CNN is better than that of DBN and SAE.
Figure 5 shows the visualization of the lung nodule features
extracted by the three deep learning classical models. The
results show that the feature visualization results extracted by
CNN are more abstract. Meanwhile, combined with the ex-
perimental results in Table 3, it can be seen that CNN has
obvious advantages in image feature extraction.
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FIGURE 4: The convergence process of the DCN structure in the process of training. (a) MB-SGD. (b) MB-SGD with momentum coefficient.

TaBLE 3: Comparison of classification results of different DL architectures.

Method Error (%)
DCN 4.0
CNN 19.15
DBN 20.58
SAE 21.43
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Ficure 5: Continued.
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FIGURE 5: Visual display of classical deep learning model feature extraction. (a) CNN. (b) DBN. (c) SAE.

TaBLE 4: Comparison of the results of different methods.

Method

Number of nodules Error (%)

Multiscale CNN [33]

AlexNet + cascaded classifier [34]

VGG16+SVM [35]

B-CNN-FT [4]

3D-CNN + QIF [36]

3D-CNN + multiscale + multi [20]
3D-Inception-ResNet + hand-crafted features [21]
DCN + MB-SGD

865 15.9
1990 15.3
1945 12.2
3186 8.8
664 6.8
962 6.08
1036 5.02
750 4.0

3.4.4. Results’ Analysis. 'To highlight the performance of our
proposed method, we compared our results with those of
the literature designed for lung nodule classification. As
shown in Table 4, all methods used the LIDC database for
experiments. In this study, because these nodules lack the
results of histopathology, and the small size of lung nod-
ules, it is unrealistic to classify lung nodules by processing
the whole image. Therefore, all methods extract the lung
nodule area based on the nodule center coordinates marked
by the doctor in the XML file, and process the data
according to the proposed method. Finally, according to
the proposed model, different numbers and types of lung
nodule samples were obtained. It can be seen from Table 4,
compared with 2D-CNN [4, 33-35], 3D-CNN |20, 21, 36]
achieves better classification performance while using
fewer lung nodule samples. This is mainly because 3D-
CNN can extract spatial information from lung nodules
more effectively. The results show that our proposed
method outperforms the other existing works, and it also
proves the effectiveness of the proposed DCN with MB-
SGD for the classification of lung nodules. Moreover,
compared with a single CNN classification model, a model
that combines different classifiers and features fusion has
better classification performance. In addition, this study
has also demonstrated the importance of the process that
we must choose to improve the performance of the model.

4. Conclusions

As one of the most popular research directions in the field of
machine learning, deep learning can learn advanced features
of data and has more powerful nonlinear representation
capabilities. In this study, we propose a novel DCN learning
method for the benign and malignant classification of lung
nodules. The main advantages are as follows: (1) perform
ZCA whitening processing on the extracted lung nodule
images, which can effectively eliminate redundant infor-
mation between pixels; (2) combine the multilayer per-
ceptron layer with CNN to construct a DCN model capable
of learning strongly robust features, thus improving the
feature representation power of the network to a greater
extent; (3) the MB-SGD method with a momentum coef-
ficient is used to train the deep network, which effectively
avoids the local optimum and gradient dispersion phe-
nomena. The experimental results on the LIDC dataset show
that the proposed DCN learning method has high classifi-
cation accuracy for benign and malignant classification of
lung nodules.
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10

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was supported by the Introduction of Talents
Program of Xuzhou Medical University (D2019047) and
Xuzhou Science and Technology Plan Program (KC21046).

References

[1] A. Naik, D. R. Edla, and V. Kuppili, “A combination of
FractalNet and CNN for lung nodule classification,” in Pro-
ceedings of the 11th International Conference on Computing,
Communication and Networking Technologies, Kharagpur,
India, July 2020.

[2] R. Mastouri, N. Khlifa, and H. Hantous-Zannad, “Deep
learning-based CAD schemes for the detection and classifi-
cation of lung nodules from CT images: a survey,” Journal of
X-Ray Science and Technology, vol. 28, no. 4, pp. 591-617,
2020.

[3] L. Zou,]. Zheng, C. Miao, M. ]. Mckeown, and Z. J. Wang, “3D
CNN based automatic diagnosis of attention deficit hyper-
activity disorder using functional and structural MRL,” IEEE
Access, vol. 5, pp. 23626-23636, 2017.

[4] R. Mastouri, N. Khlifa, N. Henda, and S. Hantous-Zannad,
“Transfer learning vs. fine-tuning in bilinear CNN for lung
nodules classification on CT scans,” in Proceedings of the ACM
International Conference Proceeding Series, pp. 99-103, New
York, NY, USA, March 2020.

[5] B. S. Kumar and K. M. Vinoth, “Detection of lung nodules
using convolution neural network: a review,” in Proceedings of
the 2nd International Conference on Inventive Research in
Computing Applications, pp. 590-594, USA, July 2020.

[6] J. Mendoza and H. Pedrini, “Detection and classification of
lung nodules in chest X-ray images using deep convolutional
neural networks,” Computational Intelligence, vol. 36, no. 2,
pp. 370-401, 2020.

[7] S. Bhat, R. Shashikala, S. Kumar, and K. Gururaj, “Convolu-
tional neural network approach for the classification and
recognition of lung nodules,” in Proceedings of the 4th Inter-
national Conference on Electronics, Communication and
Aerospace Technology, pp. 1310-1314, Cochin, India, November
2020.

[8] L.Qu, C.F. Wu, and L. Zou, “3D dense separated convolution
module for volumetric medical image analysis,” Applied
Sciences, vol. 10, no. 2, 2020.

[9] Y. Cho, S. M. Lee, Y. H. Cho et al.,, “Deep chest X-ray: de-
tection and classification of lesions based on deep convolu-
tional neural networks,” International Journal of Imaging
Systems and Technology, vol. 31, no. 1, pp. 72-81, 2021.

[10] H. H. Pham, T. T. Le, D. Q. Tran, D. T. Ngo, and
H. Q. Nguyen, “Interpreting chest X-rays via CNNs that
exploit hierarchical disease dependencies and uncertainty
labels,” Neurocomputing, vol. 437, pp. 186-194, 2021.

[11] W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, “Multi-scale
convolutional neural networks for lung nodule classification,”
in Proceedings of the 24th International Conference on In-
formation Processing in Medical Imaging, pp. 588-599, Lec-
ture Notes in Computer Science, Skye, Scotland, UK, July
2015.

Journal of Healthcare Engineering

[12] G.S.Tran, T.P. Nghiem, V. T. Nguyen, C. Luong, and J. Burie,
“Improving accuracy of lung nodule classification using deep
learning with focal loss,” Journal of Healthcare Engineering,
vol. 2019, Article ID 5156416, 2019.

[13] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[14] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” Journal of Machine Learning Research,
vol. 15, pp. 315-323, 2011.

[15] K. He, X. Y. Zhang, S. Q. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 770-778, Washington, DC, USA, June 2016.

[16] A. Nibali, Z. He, and D. Wollersheim, “Pulmonary nodule
classification with deep residual networks,” International
journal of computer assisted radiology and surgery, vol. 12,
no. 10, pp. 1799-1808, 2017.

[17] G. K. Abraham, P. Bhaskaran, and V. S. Jayanthi, “Lung
nodule classification in CT images using convolutional neural
network,” in Proceedings of the 9th International Conference
on Advances in Computing and Communication, pp. 199-203,
Rajagiri Valley, India, November 2019.

[18] Q. Dou, H. Chen, L. Yu, J. Qin, and P.-A. Heng, “Multilevel
contextual 3-D CNNs for false positive reduction in pul-
monary nodule detection,” IEEE Transactions on Biomedical
Engineering, vol. 64, no. 7, pp. 1558-1567, 2017.

[19] L. Fu, J. Ma, Y. Chen, R. Larsson, and J. Zhao, “Automatic
detection of lung nodules using 3D deep convolutional neural
networks,” Journal of Shanghai Jiaotong University, vol. 24,
no. 4, pp. 517-523, 2019.

[20] J. Zhao, C. Zhang, D. Li, and J. Niu, “Combining multi-scale
feature fusion with multi-attribute grading, a CNN model for
benign and malignant classification of pulmonary nodules,”
Journal of Digital Imaging, vol. 33, no. 4, pp. 869-878, 2020.

[21] D. Gao and S. Nie, “Method for identifying benign and
malignant pulmonary nodules combing deep convolutional
neural network and hand-crafted features,” Acta Optica
Sinica, vol. 40, no. 24, 2020.

[22] G. Zhang, L. Lin, and J. Wang, “Lung nodule classification in
CT images using 3D densenet,” Proceedings of the 6th In-
ternational Conference on Electronic Technology and Infor-
mation Science, vol. 1827, no. 1, 2021.

[23] B. Sun, F. Liu, Y. Zhou, and S. Jin, “Classification of lung
nodules based on GAN and 3D CNN,” in Proceedings of the
4th International Conference on Computer Science and Ap-
plication Engineering, Virtual, China, October 2020.

[24] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504-507, 2006.

[25] E. Lv, X. Wang, Y. Cheng, and Q. Yu, “Deep ensemble
network based on multi-path fusion,” Artificial Intelligence
Review, vol. 52, no. 1, pp. 151-168, 2019.

[26] C.R. Meyer, T. D. Johnson, G. Mclennan et al., “Evaluation of
lung MDCT nodule annotation across radiologists and
methods,” Academic Radiology, vol. 13, no. 10, pp. 1254-1265,
2006.

[27] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What
is the best multi-stage architecture for object recognition?” in
Proceedings of the 12th IEEE International Conference on
Computer Vision, pp. 2146-2153, Kyoto, Japan, 2009.

[28] E. H. Lv, X. S. Wang, and Y. H. Cheng, “Deep convolution
neural network learning based on deconvolution feature



Journal of Healthcare Engineering

extraction,” Control and Decision, vol. 33, no. 3, pp. 447-454,
2018.

[29] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning, pp. 448-456, Lille, France, July 2015.

[30] Q. Qian, R. Jin, J. Yi, L. Zhang, and S. Zhu, “Efficient distance
metric learning by adaptive sampling and mini-batch sto-
chastic gradient descent (SGD),” Machine Learning, vol. 99,
no. 3, pp. 353-372, 2014.

[31] S. E. Fahlman, Faster-Learning Variations on Back-Propaga-
tion: An Empirical Study, Connectionist Models Summer
School Morgan Kaufmann, Burlington, 1988.

[32] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the 13th International Conference on Artificial Intelligence and
Statistics, pp. 249-256, Pittsburgh, PA, 2010.

[33] J. Lyu and S. H. Ling, “Using multi-level convolutional neural
network for classification of lung nodules on CT images,” in
Proceedings of the 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pp. 686—
689, Honolulu, HI, USA, 2018.

[34] A. Kaya, “Cascaded classifiers and stacking methods for
classification of pulmonary nodule characteristics,” Computer
Methods and Programs in Biomedicine, vol. 166, pp. 77-89,
2018.

[35] C. F. Wang, J. Shi, Q. Zhang, and S. Ying, “Histopathological
image classification with bilinear convolutional neural net-
works,” in Proceedings of the 39th Annual International
Conference of the IEEE-Engineering-in-Medicine-and-Biology-
Society, pp. 4050-4053, Jeju Island, Korea, 2017.

[36] J. L. Causey, J. Zhang, S. Ma et al., “Highly accurate model for
prediction of lung nodule malignancy with CT scans,” Sci-
entific Reports, vol. 8, p. 9286, 2018.

11



