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Arrhythmia is one of the most common abnormal symptoms that can threaten human life. In order to distinguish arrhythmia
more accurately, the classification strategy of the multifeature combination and Stacking-DWKNN algorithm is proposed in this
paper. /e method consists of four modules. In the preprocessing module, the signal is denoised and segmented. /en, multiple
different features are extracted based on single heartbeat morphology, P length, QRS length, T length, PR interval, STsegment, QT
interval, RR interval, R amplitude, and T amplitude. Subsequently, the features are combined and normalized, and the effect of
different feature combinations on heartbeat classification is analyzed to select the optimal feature combination. Finally, the four
types of normal and abnormal heartbeats were identified using the Stacking-DWKNN algorithm./ismethod is performed on the
MIT-BIH arrhythmia database. /e result shows a sensitivity of 89.42% and a positive predictive value of 94.90% of S-type beats
and a sensitivity of 97.21% and a positive predictive value of 97.07% of V-type beats. /e obtained average accuracy is 99.01%.
Compared to other models with the same features, this method can improve accuracy and has a higher positive predictive value
and sensitivity, which is important for clinical decision-making.

1. Introduction

Cardiovascular disease is one of the main diseases that
endanger human health [1]. Arrhythmia is a common
cardiovascular syndrome, and accurate identification of
arrhythmia is an essential part of the prevention of car-
diovascular diseases. Most arrhythmias are harmless, but
some may immediately threaten people’s lives. Early de-
tection of arrhythmia can prolong life through proper
treatment. /e electrocardiogram (ECG) is a popular and
mature diagnostic tool. It contains basic physiological in-
formation for analyzing cardiac function [2] and is the most
basic method for the diagnosis of arrhythmia. Different
classes of arrhythmias can be detected by analyzing the
changes of ECG waveform, but it usually needs to be di-
agnosed at the onset of the disease. Some patients’ symptoms

appear infrequently. Traditional electrocardiogram may not
capture the electrocardiogram at the time of onset. It is
necessary to use dynamic ECG to record long-term cardiac
electrical activities [3].

It may be time-consuming and impractical to rely on
manual analysis of ECG signals. Moreover, due to the in-
terference of noise and the diversity of ECG waveforms,
arrhythmia is difficult to accurately diagnose and easy to be
misdiagnosed. At the same time, relying on manual rec-
ognition of electrocardiograms often lacks real-time, which
may delay the best time for patient treatment. /e appli-
cation of computer-aided intelligent diagnosis to the clas-
sification of arrhythmias can help doctors more accurately
diagnose arrhythmias and reduce the workload of doctors.
In the literature, numerous algorithms have been proposed
to achieve an accurate result for the classification, mainly
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including deep learning-based approaches and feature ex-
traction-based approaches.

Deep neural networks usually work in an end-to-end
way, do not require manual feature extraction, and are
widely used for ECG classification [4]. However, although
they are good at learning feature representations and have
produced very competitive performance in a wide range of
applications, they cannot analyze the impact of specific
features on classification performance.

/e traditional feature extraction method has achieved
good performance in ECG classification. Researchers
usually fed the extracted features to the machine learning
model to achieve heartbeat classification. /e methods
employing deep learning-based approaches have generated
a competitive classification performance to the feature
extraction-based methods. However, the classification
performance of deep learning models can still be achieved
by simple machine learning models. /is means that there
is still room for further performance improvements in this
method.

In this paper, a heartbeat classification method based on
multifeature combination and Stacking-DWKNN models is
proposed to address the shortcomings of deep learning
methods and traditional machine learning methods. /e
distance weight KNN algorithm (DWKNN) is to improve
the KNN model by setting the weight of distance. /e
method proposed further improves the performance of the
classification. /e main contributions of this paper are as
follows:

(1) Different feature combinations are constructed. /e
suitability of every single feature is evaluated, and the
results of different feature combinations on classi-
fication are analyzed to obtain the optimal feature
combination.

(2) Different model fusion methods are used for
heartbeat classification to obtain the optimal model
fusion method.

(3) /e Stacking-DWKNN model with the optimal
feature combination is employed to distinguish
normal beat (N), supraventricular ectopic beat (S),
ventricular ectopic beat (V), and fusion normal (F),
which is of great significance for clinical diagnosis.

/e other parts of this paper are structured as follows.
Section 2 introduces related work. /e methods of heartbeat
classification are introduced in Section 3. Experimental
analysis and classification results are described in Section 4.
Section 5 summarizes the full text.

2. Related Work

In the early days, the diagnosis of arrhythmias was based on
the experience of the doctor. However, due to the diversity of
arrhythmias and the corresponding complexity of the ECG
waveform, manual analysis methods are no longer appli-
cable. ECG intelligent analysis has become a research focus
in recent years. Researchers have developed a diversity of
classification methods for arrhythmias.

2.1. Arrhythmia Classification Based on Deep Learning.
Deep learning does not require the manual design of feature
extractors. It can automatically learn the features of ECG and
extract the key features. It has very good robustness and
makes the classification of heartbeat more efficient.

Some researchers [5–8] employed convolutional neural
networks (CNNs), which automatically extract the ECG
features and significantly improve the final prediction. Some
works [9, 10] proposed a deep learning architecture based on
a convolutional recurrent neural network (GRNN) to detect
arrhythmias. Li et al. [11] designed the architecture of the
deep neural network, CraftNet, for accurately recognizing
the features, and assembled multiple child classifiers to
classify heartbeats. Li et al. [12] used long short-term
memory (LSTM) model to distinguish different category
heartbeats. Ebrahimzadeh et al. [13] extracted a balanced
combination of the Hermit features and interval features.
And then, a number of multilayer perceptron (MLP) neural
networks were employed to classify heartbeats.

/e results of these researches were remarkable. Deep
learning integrates feature learning into the process of
modeling, and the classification of heartbeat is simple and
effective. However, the requirement of deep learning for
searching the optimal combination of features is
challenging.

2.2. Arrhythmia Classification Based on Feature Extraction.
Traditional machine learning (ML) involves direct feature
engineering, making algorithms easy to interpret and un-
derstand. In addition, we have a comprehensive under-
standing of the algorithm and the structure of the data,
making it easier to change the model. In recent years, re-
searchers have developed numerous approaches for auto-
matic classification. Among them, the two steps of feature
extraction and classification are the most critical in the
classification process, which are deeply studied by re-
searchers. Furthermore, researches used numerous features
to describe the ECG heartbeats, Hermite functions [13],
morphological features [14, 15], wavelet features [16, 17],
high-order statistical features [18, 19], QRS amplitude vector
[20], QRS complex wave area [21], and heartbeat intervals
[22–24]. Over the past few decades, numerous algorithms
have been developed to distinguish different types of ar-
rhythmias, including linear classifier [25–27], decision tree
[28, 29], k-nearest neighbor [30–32], support vector ma-
chine [33, 34], random forest [35, 36], and ensemble clas-
sifier [37–41], etc.

In [27], researchers have extracted ECG morphology,
heartbeat intervals, and RR-intervals and then applied a
linear classifier model to the classification tasks using the
learned features. Sharma et al. [32] used stop-band energy
(SBE) minimized dyadic orthogonal filter bank, and wavelet
decomposition of the ECG signals was performed. And then
fuzzy entropy, Renyi entropy, and fractal dimension features
were extracted for accurate classification. /e ensemble
classifiers fuse the classification results of multiple different
classifiers, to achieve better performance than a single
classifier. Mondéjar-Guerra et al. [34] trained specific
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support vector machine models for each feature, and then
the multiple SVMs are combined to classify heartbeats. Shi
H. et al. [37] constructed a hierarchical classifier improved
by threshold and extreme gradient boosting classifier. /is
method has better classification performance. Javadi et al.
[38] integrated a multiple neural network model based on a
stacking algorithm for ECG classification, which reduced the
classification error rate. Pandey et al. [39] employed an
ensemble of SVMs to classify heartbeats into four classes.
Rajesh et al. [40] used intrinsic mode functions to get the
final features, and the AdaBoost classifier was employed to
classify heartbeats. Shi et al. [41] employed a regional feature
extraction method and used an ensemble classifier to dis-
tinguish heartbeats.

Although the aforementioned studies have achieved a
good classification effect, the extracted medically meaningful
features are less, part of the information hidden in the ECG is
not easy to be revealed, the classification accuracy also needs
to be improved, the classifier does not use a cross-validation
method, and the robustness needs to be improved. /e rel-
evant literature in the related work is summarized in Table 1.

3. Methods

A typical heartbeat classification method consists of four
main modules. Figure 1 shows the frame of the classification
method. /e preprocessing module mainly performs
denoising and segmentation. Later, 235 points near R peak, P
length, QRS length, T length, PR interval, ST segment, QT
interval, RR interval, R amplitude, and T amplitude are
extracted from the ECG signal. Furthermore, the features are
combined and normalized. Finally, the optimal feature
combination is fed to the Stacking-DWKNN algorithm, and
then the final classification results are obtained. In this
section, each module is introduced in detail.

3.1. ECG Signal Preprocessing. Noise mixed in ECG signal
includes baseline drift and muscle artifacts, etc./ey weaken
the quality of the ECG signal, make the entire ECG wave-
form ambiguous, and seriously affect the analysis and di-
agnosis of ECG signals. In this paper, to classify heartbeat
more accurately, the noise of raw ECG signal is removed by
wavelet transform. Wavelet transform is a signal time-fre-
quency analysis method [42], which can retain the features
of ECG signal. Besides, it avoids important physiological
details and has a simple calculation process [43, 44]. /e
wavelet transform and wavelet basis functions are as follows:

Wf(m, τ) � m
− (1/2)

􏽚
+∞

− ∞
f(t)ψ

t − n

m
􏼒 􏼓dt, (1)

ψm,τ(t) � m
− (1/2)ψ

t − n

m
􏼒 􏼓, m> 0, τ ∈ R. (2)

In formula (1), m represents the scale factor and n

represents the transforming parameter. /ey are mainly
used to stretch the basic wavelet function ψ(t), τ reflects the
displacement, and m and τ are continuous variables, so it is
also called continue wavelet transform (CWT) [42].

A complete heartbeat is composed of three basic wave-
forms: the P, QRS, and T. /e most important step in seg-
mentation is to obtain the positions of the QRS complex. /e
existing R peak detection methods have obtained sufficient
accuracy [45, 46]. Each heartbeat contains a pre-R segment
and a post-R segment. /e pre-R segment before the R peak
contains 90 sample points, and the post-R segment after the R
peak contains 144 sample points [47]. R wave is the fiducial
point for waveform positioning. In this paper, the “Pan-
Tompkins” algorithm is used to locate the R waves, and the
detected R wave is compared with the marked R wave in the
MIT-BIH arrhythmia database./e result of Rwave detection
is shown in Figure 2. Table 2 shows some results of R wave
detection in the MIT-BIH arrhythmia database.

3.2. Heartbeat Feature Extraction. Feature extraction is a
process of extracting representative samples from a large
amount of data. /ese samples are used as features of the
final classification. According to the literature
[14, 15, 20, 22–24, 29], the wavelength, interval, and mor-
phology of ECG signals have important medical significance
and can reveal the hidden information in the heartbeat.
Hence, based on the detected fiducial points, the 10 feature
parameters are extracted for classification in this paper.
Figure 3 is the annotation of each feature in the ECG signal.
Table 3 summarizes the features extracted in this paper and
detailed as follows:

(1) Single heartbeat morphology (Morph): 235 sampling
points at R peaks from the prepared R peak anno-
tation file are extracted as morphology features.
Among them, the pre-R segment contains 90 sample
points, and the pos-R segment contains 144 sample
points [47]. Before the first or after last detected QRS
complex reaches only 235 sampling points, then the
corresponding heartbeat is used.

(2) P-QRS-T: A complete ECG waveform contains P,
QRS, and T waves. P length (P_len), QRS length
(QRS_len), and T length (T_len) are important
parameters in electrocardiogram. P-QRS-T in this
paper is used to represent P, QRS, and T length.

Table 1: Summary of related work.

Methods Classifier Literatures

Deep learning

CNN [5–8]
GRNN [9, 10]
CraftNet [11]
LSTM [12]
MLP [13]

Machine learning

SVM [14, 16, 20, 22, 33, 34]
HMM [15]
KNN [18, 30–32]

SVM&ICA-PCAnet [19]
RF [21, 35, 36]
LDC [23]

Linear classifier [25–27]
DT [28, 29]

Ensemble [37–41]
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(3) Interval: It represents the time interval between
different waveform points on the electrocardiogram.
RR interval (RR_inter), QT interval (QT_inter), ST
segment (ST_seg), and PR interval (PR_inter) are
selected in this paper. /ese intervals are important
for the diagnosis of arrhythmia.

(4) Amplitude: R amplitude (R_amp) and T amplitude
(T_amp) are selected in this paper. /e R amplitude
is the wave with the largest amplitude among all
waves. /e R amplitude is the amplitude after re-
moving noise in this paper. /e T wave amplitude
reflects the potential changes in the later period of
ventricular repolarization.

3.3. Feature Combination. Feature combination is to com-
bine individual features (multiplication, splicing, or Carte-
sian product) to get new features. In feature combination,
the first-order discrete features are often combined to form
high-order combination features, so as to resolve more
complex problems [48]. /e morphology, interval, and
amplitude of ECG signal are of great medical significance,
which is very important for diagnosing arrhythmias. Because

a single feature cannot fully describe the ECG signal, these
three types of features are combined in stitching ways, and
the effects of different feature combinations on heartbeat
classification are analyzed to select the optimal combination
in this paper.

3.4. Stacking-DWKNN Model Description. /e idea of the
stacking method is to use the basic classifier in the first layer
to predict the training samples separately. Each DWKNN
model is trained using a ten-cross-training process, which
divides the training set into ten subsets. For each subset, the
remaining dataset is used to train the model, and then the
subsets predicted the result. /is process is repeated ten
times. /e results are used as the training set of the sec-
ondary model and use the class label of the original data as
the label of the training set of the metaclassifier. /e
weighted average of the ten prediction results of the test set is
used for the final prediction [49]. Figure 4 presents the frame
of the Stacking algorithm. And the Stacking algorithm is
detailed in Table 4. /e first layer of the stacking algorithm
integrates four DWKNN algorithms with different param-
eters in this paper.

DenoisingECG
signal

Data preprocessing

Segmentation
Single heartbeat

morphology Wavelength Interval

Feature extraction

Normalization Feature combinations 

Feature processing

Stacking-DWKNN
algorithm

Classification

Result

Amplitude

Figure 1: /e frame of heartbeat classification.
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Figure 2: /e result of R wave detection.
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As a highly flexible and general classification algo-
rithm, the KNN model can classify various sample dis-
tributions and has good classification ability for small
sample data [50]. However, when the samples are un-
balanced, it may cause that when a new sample is input,
the samples of the large capacity class of the K neighbors
of the sample are the majority, so the weight method can
be used for improvement.

Distance-weighted k-nearest neighbor (DWKNN) is
based on the KNN model. /e idea of the DWKNN

algorithm is to give weights to k-nearest neighbors according
to the distances. /e neighbors closer to the test sample have
greater weight. A weight wi

′ is assigned to the i-th nearest
neighbor xMM

i of the test sample x′ in this paper; the dis-
tance-weighted is given by [50]:

wi
′ �

1
(distance + const)

. (3)

And then, the class y′ of the test sample x′ is labeled
according to the majority weighted voting mechanism, and

Table 2: Statistics results of R wave detection in MIT-BIH arrhythmia database.

Records Fdr (%) Se (%) +p (%) Acc (%)
100 0.04 99.96 100.00 99.96
101 0.27 100.00 99.73 99.73
103 0 100.00 100.00 100.00
106 0.59 99.56 99.85 99.41
109 0.28 100.00 99.72 99.72
113 0.06 99.94 100.00 99.94
114 0.27 99.95 99.79 99.73
117 0.07 100.00 99.93 99.93
119 0 100.00 100.00 100.00
124 0.06 99.94 100.00 99.94
202 0.38 99.62 100.00 99.62
205 0.11 99.89 100.00 99.89
208 0.82 99.53 99.66 99.18
212 0 100.00 100.00 100.00
213 0.03 99.97 100.00 99.97
215 0.03 100.00 99.97 99.97
220 0 100.00 100.00 100.00
223 0.12 99.96 99.92 99.88
228 8.19 99.90 92.51 91.81
231 0.06 99.94 100.00 99.94
232 0.79 100.00 99.22 99.21
234 0.07 99.93 100.00 99.93
Total avg 0.56 99.91 99.56 99.44
Note. /e first column is the record name, the second column is the evaluation indicator “false detection rate,” the third column is the evaluation indicator
“sensitivity,” the fourth column is the evaluation indicator “positive predictive value,” and the fifth column is the evaluation indicator “accuracy.” According
to the AAMIEC38 standard, the difference between the detected QRS complex and the manual mark is within 150ms, whichmeans that the location detection
is successful.

R
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R_amp
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R

Figure 3: Annotation of heartbeat features.
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the voting formula is shown in (4) [51], where I is the in-
dicating function, and the calculation formula of I is as
follows (5) [50]:

y′ � argmax
y

􏽘

xMM
i

,yMM
i( )∈T′

wi
′× I y � y

MM
i􏼐 􏼑,

(4)

I y, y
MM
i􏼐 􏼑 �

0, y � y
MM
i ,

1, y≠yMM
i .

⎧⎨

⎩ (5)

4. Results

In this section, the experimental procedure is described in
detail. Our focus is on feature extraction and classification.
According to the medical significance of electrocardiogram,
ten features are extracted, and then the effect of different
feature combinations and Stacking-DWKNN algorithm on
the classification results is analyzed. /e MIT-BIH ar-
rhythmia database (MIT-AD) is employed in this paper. /e
classification result is used as a preliminary diagnosis result
of the computer to help the doctor make a further diagnosis.

4.1. ExperimentalData. All the experiments in this paper are
completed on the MIT-AD./e database consists of 48 two-
lead records digitized at 360 HZ. Each of the ECG records
includes one and a half hours of 2-lead dynamic ECG
segments [52]. In this paper, the normal (N), supraven-
tricular (S), ventricular (V), and fusion (F) heartbeats in
MIT-AD are distinguished./e four types of heartbeats have
a total of 101413 records. /is paper randomly selected 90%
of the heartbeat data for training and the remaining 10% for
testing. /e specific distribution of data is shown in Table 5.

4.2. Evaluation Indicator. In this paper, the data is divided
into a training set and a test set, and the label output of the
model is compared with the real label to get the experimental
results. /e results of N category heartbeat classification are

Table 3: Ten values of ECG signal features in this paper.

Number ECG signal features Introduction of ECG signal feature parameters
1 Morph 235 points of a single heartbeat
2 P_len /e time between the start and end of the P wave
3 QRS_len /e time between the start and end of the QRS complex
4 T_len /e time between the start and end of the T wave
5 RR_inter /e time between two adjacent R waves
6 PR_inter /e time from the start of the P wave to the start of the QRS complex
7 ST_seg /e time from the end of the QRS wave to the start of the T wave
8 QT_inter /e time between the QRS wave and the T wave
9 R_amp /e maximal of the R wave
10 T_amp /e maximal of the T wave

Training 
data

Base classifier 
DWKNN1

Base classifier 
DWKNN2

Base classifier 
DWKNNs

Stacking-
DWKNN
classifier

Output value

Output value

...

Output value

Output value

Level 1 Level 2

Result

Figure 4: Stacking algorithm structure.

Table 4: /e description of Stacking-DWKNN algorithm.

Algorithm 1: Stacking-DWKNN algorithm
Input: dataset D � (x1,y1), (x2,y2), ..., (xt,yt)􏽮 􏽯

Output: ensemble classifier H (DWKNN model)
1: learn the base classifiers
2: for s� 1 to S do
3: learn hs(DWKNN model) based on D
4: end for
5: Generate a new dataset for prediction
6: for i� 1 to t do
7: Dh � xi

′, yi􏼈 􏼉,wherexi
′ � hi(xi), ..., hs(xi)􏼈 􏼉

8: end for
9: learn a metaclassifier
10: learn H based on Ds

11: return H
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calculated by formulas (6)–(9) [42]. S, V, and F heartbeats
are calculated in the same way. Description of a confusion
matrix is shown in Table 6, where N, S, V, and F represent
the real category of heartbeat and n, s, v, and f represent the
predicted type of heartbeat.

TPN � Nn, (6)

FNN � Ns + Nv + Nf , (7)

TNN � Ss + Sv + Sf + Vs + Vv + Vf + Fs + Fv + Ff , (8)

FPN � Sn + Vn + Fn. (9)

For the comprehensive evaluation of the performance,
sensitivity (Se), specificity (Sp), positive predictive value
(+p), and accuracy (Acc) are used as indicators in this paper.
Higher values of these indicators indicate better classifica-
tion performance./ese four indicators are calculated by the
following formula [42].

Se �
TP

(TP + FN)
,

Sp �
TN

(TN + FP)
,

+p �
TP

(TP + FP)
,

Acc �
(TP + TN)

(TP + TN + FP + FN)
.

(10)

4.3. Experiment and Result Analysis. To distinguish ar-
rhythmia more accurately, the classification strategy using
the multifeature combination and Stacking-DWKNN al-
gorithm is proposed, which is mainly reflected in the ex-
perimental part. /is section first compares and analyzes the
classification results of KNN models with different feature
combinations to select the optimal feature combination
(Section 4.3.1); later, in order to achieve better classification
results, the parameters K of the KNN model are adjusted
(Section 4.3.2). Furthermore, different models are compared
to verify that the KNN model is the best, and the classifi-
cation results of the fusion of different models are compared
to show that the framework proposed in this paper is better
(Section 4.3.3), which are finally compared with other ref-
erences (Section 4.3.4). Our focus is mainly on the selection
of feature combinations and the influence of the model
fusion method proposed in this paper on heartbeat
classification.

4.3.1. Analysis of Experimental Results of Different Feature
Combinations. In order to select the optimal feature com-
bination, the effects of the KNNmodel with different feature
combinations on heartbeat classification are analyzed, and
the above four indicators are used for evaluation.

15 group experiments are performed in experiment I
using the KNNmodel with interval features. /e goal of this
experiment is to get the optimal interval feature combina-
tion. /e classification results of the KNN model with
different interval combinations are shown in Table 7. /e
best accuracy of 95.41% is obtained by P-QRS-T, PR_inter,
QT_inter, ST_seg, and RR_inter. /e optimal interval
combination is represented by Inter, Inter� {P-QRS-T,
QT_inter, RR_inter, PR_inter, ST_seg}.

/ree groups of experiments are performed in experi-
ment II using the KNN model with amplitude features. /e
goal of this experiment is to get the optimal amplitude of
heartbeat classification. /e classification results are repre-
sented in Table 8. Compared with the KNN model with
R_amp and T_amp, using only R_amp has the same clas-
sification effect. Besides, too many heartbeat features will
reduce the efficiency of the classifier, so R_amp is selected as
the optimal amplitude feature.

/rough the above two experiments, the best combi-
nation of interval and amplitude features is obtained. /e
optimal combination of the three types of features is rep-
resented by Morph, Inter, and Amp.

Morph� {single heartbeat morphology};
Inter� {P-QRS-T, QT_inter, RR_inter, PR_inter,
ST_seg};
Amp� {R_amp}.

In experiment III, in order to analyze the suitability of
every single feature, each feature is fed into the KNN model
for training. /e resulting confusion matrices for the KNN
model with a single feature are presented in Table 9. It is
obvious that the single heartbeat morphology feature
(Morph) is the best descriptor, and the number of correctly
classified heartbeats is the largest. Table 10 shows the
classification results calculated from the confusion matrix.
/e average classification accuracy is 98.88%. From the
perspective of the heartbeat, almost all the classification
indicators of the KNN model with Morph features have
obtained the best results, which are higher than Inter and
Amp features.

In experiment IV, to compare the effect of different
feature combinations on heartbeat classification, different
feature combinations are fed into the KNNmodel. Tables 11
and 12 present confusion matrices and performance results
calculated for each class. /e larger the diagonal value in the

Table 5: Experimental data statistics.

Training set Testing set Total
N 81,560 9,035 90,595
S 2,528 253 2,781
V 6,450 785 7,235
F 723 79 802

Table 6: Confusion matrix of classification results.

n s v f Total
N Nn Ns Nv Nf 􏽐 N

S Sn Ss Sv Sf 􏽐 S

V Vn Vs Vv Vf 􏽐 V

F Fn Fs Fv Ff 􏽐 F
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Table 7: Classification results of the KNN model with interval features.

Features Evaluation metrics (%)
P-QRS-T RR_inter PR_inter ST_seg QT_inter Acc
• • 92.17
• • 90.89
• • 92.85
• • 91.78
• • • 92.72
• • • 94.71
• • • 94.68
• • • 93.92
• • • 93.10
• • • 94.53
• • • • 95.39
• • • 95.27
• • • • 94.76
• • • • 95.26
• • • • • 95.41

Table 8: Classification results for the KNN model with amplitude features.

Features Evaluation metrics (%)
T_amp R_amp Acc
• 89.42

• 90.26
• • 90.26

Table 9: Confusion matrix for the KNN model combining with single features.

Morph Inter Amp
n s v f n s v f n s v f

N 9009 12 12 2 8939 26 56 14 8960 20 53 2
S 40 271 1 0 135 169 8 0 306 6 0 0
V 23 0 690 3 162 5 544 5 527 3 186 0
F 12 1 8 57 47 0 7 24 68 0 9 1

Table 10: Confusion matrix for the KNN model combining with single features.

Morph Inter Amp
Se(%) Sp(%) +p(%) Acc(%) Se(%) Sp(%) +p(%) Acc(%) Se(%) Sp(%) +p(%) Acc(%)

N 99.71 93.22 99.17 99.00 98.94 68.90 96.29 95.66 99.17 18.54 90.86 90.38
S 86.86 99.87 95.42 99.47 54.17 99.68 84.50 98.28 19.20 99.77 20.69 96.76
V 96.37 99.78 97.05 99.54 75.98 99.25 88.46 97.60 25.98 99.34 75.00 94.16
F 73.08 99.95 91.94 99.74 30.77 99.81 55.81 99.28 12.80 99.98 33.33 99.22

Table 11: Confusion matrix for the KNN model combining with different feature combinations.

Morph + Inter Morph +Amp Inter +Amp Morph + Inter +Amp
N s v f n s v f n s v f n s v f

N 9010 12 11 2 9010 12 11 2 8942 27 54 12 9009 13 11 2
S 42 269 1 0 40 271 1 0 77 224 11 0 37 274 1 0
V 22 2 691 1 23 0 690 3 85 8 619 4 22 2 691 1
F 15 0 7 56 12 1 8 57 28 0 9 41 15 0 7 56
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confusion matrix, the better the classification effect of the
classifier. It can be seen that the best results are almost based
on the KNN model with Morph, Inter, and Amp features.
/e average classification accuracy is 98.88%. From these
results, ECG information can be expressed more compre-
hensively by using interval, amplitude, and morphology
features in heartbeat classification.

From the above experiments, it is obvious that the single
heartbeat morphology is the optimal single feature for
distinguishing the heartbeat. /e optimal feature combi-
nation is single heartbeat morphology, Inter, and Amp
features. /e average classification accuracy is 98.91%.
Figure 5 shows the KNN model with optimal features
combination of classification results.

4.3.2. Analysis of Experimental Results with Different
Parameters. To achieve better classification performance,
the model parameters are adjusted. In the k-nearest-
neighbor algorithm, the parameter K represents the k
neighbors closest to the classified samples. Generally, the K
value is too small, and the classification accuracy of the
model is low. /e K value is too large, and the model is easy
to fit. To determine the appropriate K value, ten experiments
are conducted with different parameters. Based on different
parameter values, the classification results of the KNNmodel
with the optimal feature combination are presented in
Table 13.

It is obvious from Table 13 that when k � 4, the per-
formance of the classifier is the best, with a classification
accuracy of 98.91%. And the classification results of
different parameters are different, indicating that the
parameters have a certain influence on the classification
results of the model. Afterward, the K-nearest neighbors
are given different weights according to their distance
from the classified samples. /e accuracy of the DWKNN
algorithm with the optimal feature combination is
98.96%.

4.3.3. Analysis of Experimental Result Analysis of Different
Classifiers. /e performance of different classifiers is mainly
compared in this section. From the above experiments, the
optimal combination of features is Morph, Inter, and Amp.
In this experiment, accuracy (Acc%) is employed as the
evaluation indicator to compare the performance differences
of support vector machine (SVM), random forest (RF),
logistic regression (LR), linear discriminant classifier (LDA),
decision tree (DT), gradient boosting decision tree (GBDT),

K-nearest neighbor (KNN), and improved KNN (DWKNN)
on different datasets. /e classification results of the optimal
feature combination based on different classifiers are pre-
sented in Table 14.

As shown in Table 14, it is obvious that the classification
results of the KNN model are the best. /e average classi-
fication accuracy is 98.91%. /e k-nearest neighbors of the
KNN model are given different weights (DWKNN), and the
classification results are improved. /e ensemble of multiple
KNNmodels (Stacking-DWKNN) has a higher classification
performance than a single model. /e ensemble classifier
fully utilized the correctly classified results of base learners
and the difference between them. /is demonstrates the
outstanding performance of ensemble classifiers and does
improve the results of heartbeat classification. /e accuracy
of the Stacking-DWKNN model with the optimal feature
combination is 99.01%.

/e classification result by five ensemble structures with
the optimal feature combination is shown in Table 15. Ta-
ble 15 lists the 16 metrics of classification results, including
Se, Sp, and +p for each beat and the average accuracy. /e
Stacking-DWKNN structure has the best comprehensive
classification ability: yielding the 8 highest scores on 13
metrics. It achieves the best average sensitivity and speci-
ficity of 94.26% and 98.63%. Among them, the N category
and V category achieved better results. /e Stacking-SVM,
Stacking-DT, Stacking-GBDT, and Stacking-RF recognized
the N category very well but at the cost of low detection rate
of F beat. At the same time, the Stacking-DWKNN recog-
nized the S category, and the F category is improved
compared to them. /is is because improving the KNN
model through weights improves the impact of data im-
balance. Figure 6 shows the Stacking-DWKNN model with
different features of classification results.

In order to understand the effect of different model
fusion methods, based on the DWKNN (baseline1) model,
different model fusion methods are used, and the optimal
feature vectors are fed to different models, namely, Voting-
DWKNN (baseline2), Bagging-DWKNN (baseline2), and
Stacking-DWKNN (proposed) algorithm. Table 16 shows
the classification performance of different fusion methods
with the optimal feature combination. /e statistical
measures include Se, Sp, and +p for each beat and the
average accuracy. From these results, the Stacking-
DWKNNmodel yields the 9 highest scores on 13metrics; in
particular, the three indicators of S-type heartbeat reached
the highest, so this model is preferred for heartbeat
classification.

Table 12: Classification performance for KNN model trained with different feature combinations.

Morph + Inter Morph + Amp Inter + Amp Morph + Inter + Amp
Se% Sp% +p% Acc% Se% Sp% +p% Acc% Se% Sp% +p% Acc% Se% Sp% +p% Acc%

N 99.72 92.86 99.13 98.97 99.72 93.22 99.17 99.01 98.97 82.82 97.92 97.21 99.71 93.31 99.19 99.01
S 86.22 99.86 95.05 99.44 86.86 99.87 95.42 99.47 71.79 99.64 86.49 98.79 87.82 99.85 94.81 99.48
V 96.51 99.79 97.32 99.57 96.37 99.79 97.18 99.55 86.45 99.21 89.32 98.31 96.51 99.80 97.32 99.57
F 71.79 99.97 94.92 99.76 73.08 99.95 91.94 99.74 52.56 99.84 71.93 99.48 71.79 99.97 94.92 99.75
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Figure 5: Classification results of KNN model with Morph, Inter, and Amp features.

Table 13: Classification results of different K values.

Parameter K 1 2 3 4 5 6 7 8 9 10
Acc (%) 98.84 98.80 98.85 98.91 98.79 98.80 98.72 98.74 98.65 98.65

Table 14: Classification results of different classifiers trained with all possible feature combinations.

Feature combination Classifier
Morph Inter Amp LDA LR SVM DT GBDT RF KNN DW KNN Stacking-DWKNN
• 91.71 92.39 98.61 97.35 97.61 98.55 98.88 98.95 98.94

• 89.06 89.01 93.69 93.47 94.45 95.73 95.41 95.36 95.59
• 90.42 89.14 90.59 87.98 90.58 87.81 90.26 88.47 90.43

• • 93.03 93.25 98.69 97.43 97.73 98.57 98.87 98.97 98.97
• • 91.74 92.40 98.69 97.47 97.55 98.58 98.89 98.94 98.95

• • 90.14 90.94 95.71 95.74 96.01 97.08 96.89 96.93 97.09
• • • 93.82 94.24 98.74 97.80 98.15 98.83 98.91 98.96 99.01

Stacking-DWKNN model with different feature combinations of classification accuracy
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Figure 6: Classification result based on Stacking-DWKNN model with different feature combinations.
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Table 15: Classification performance for stacking model combined with different classifier combinations.

N S V F Acc
Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Num

Stacking-SVM 99.83 91.32 98.95 81.09 99.96 98.44 96.51 99.78 97.05 69.32 99.98 96.43 98.79
Stacking-DT 98.93 90.96 98.89 81.73 99.50 83.88 93.99 99.51 93.60 70.51 99.75 68.75 97.83
Stacking-GBDT 99.68 88.16 98.57 74.68 99.90 95.88 94.41 99.71 96.16 66.67 99.94 89.66 98.28
Stacking-RF 99.86 91.68 98.99 82.05 99.98 99.22 96.51 99.78 97.05 70.51 99.98 96.49 98.85
Stacking-DWKNN 99.65 94.94 99.38 89.42 99.85 94.90 97.21 99.78 97.07 80.77 99.94 88.73 99.01

Table 16: Classification performance of fusion of different models.

N S V F Avg
Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Se(%) Sp(%) +p(%) Acc (%)

Baseline1 99.60 94.85 99.37 88.78 99.79 92.95 97.20 99.80 97.35 80.77 99.92 88.73 98.96
Baseline2 99.58 92.86 99.13 87.18 99.77 92.20 95.95 99.76 96.76 70.51 99.94 91.67 97.83
Baseline3 99.67 94.39 99.32 89.10 99.81 93.60 96.51 99.81 97.46 78.21 99.93 89.71 98.95
Proposed 99.65 94.94 99.38 89.42 99.85 94.90 97.21 99.78 97.07 80.77 99.94 88.73 99.01

Table 17: Comparison with other studies.

Reference Features Classifier Performance

Mar et al. [26] Statistical features + SFFS; temporal
features; morphological features Weighted LD, MLP

Acc� 89.9%;
Sen � 89.6%; +Pn � 99.1%:
Ses � 83.2%; +Ps � 33.5%;
Sev � 86.8%; +Pv � 75.9%;
Sef � 61.1%; +Pf � 16.6%;

Zhang et al. [33] ECG-intervals and segments; RR interval;
morphological features Combined SVM

Acc� 86.66%;
Sen � 88.94%; +Pn � 98.98%:
Ses � 79.06%; +Ps � 35.98%;
Sev � 85.48%; +Pv � 92.75%;
Sef � 93.81%; +Pf � 13.73%;

Zhu et al. [14] ECG morphology SVM

Acc� 97.80%;
Sen � 99.27%; +Pn � 98.48%;
Ses � 87.47%; +Ps � 95.25%;
Sev � 94.71%; +Pv � 95.22%
Sef � 73.88%; +Pf � 86.09%

Mondéjar-Guerra [34] RR interval; HOS; ECG morphology;
wavelet coefficients Ensemble SVM

Acc� 94.5%;
Sen � 95.9%; +Pn � 98.2%;
Ses � 78.1%; +Ps � 49.7%;
Sev � 94.7%; +Pv � 93.9%
Sef � 12.4%; +Pf � 23.6%

Shi et al. [37] ECG morphology Hierarchical classifier

Sen � 92.1%; +Pn � 99.5%;
Ses � 91.7%; +Ps � 46.2%;
Sev � 95.1%; +Pv � 88.1%;
Sef � 61.6%; +Pf � 15.2%;

Sharma et al. [32] Fuzzy entropy; Renyi entropy;
fractal dimension KNN

Acc� 94.5%;
Sen � 99.59%; Spn � 91.92%; +Pn � 98.34;
Ses � 73.64%; Sps � 99.84%; +Ps � 92.09;
Sev � 92.11%; Spv � 99.75%; +Pv � 96.37;
Sef � 64.46%; Spf � 99.94%; +Pf � 88.38;

Singh et al. [8] Gabor; wave; interval DCNN
Acc� 93.19%;
Se� 93.98%;
Sp� 95%;

Li et al. [11] R-R intervals; wavelet transform; Morph;
higher-order statistics CraftNet

Acc� 89.24%;
Sen � 88.16%; Spn � 94.34%
Ses � 85.37%; Sps � 94.85%
Sev � 94.53%; Spv � 99.70%
Sef � 88.92%; Spf � 94.28%

Proposed Intervals; P-QRS-T wave; amplitude;
ECG morphology Stacking-DWKNN

Acc� 99.01%;
Sen � 99.65%; Spn � 94.94%; +Pn � 99.38;
Ses � 89.42%; Sps � 99.85%; +Ps � 94.90;
Sev � 97.21%; Spv � 99.78%; +Pv � 97.07;
Sef � 80.77%; Spf � 99.94%; +Pf � 88.73;

Journal of Healthcare Engineering 11



4.3.4. Comparison with Previous Studies. Table 17 shows a
comparison of the classification result between the proposed
method and other studies, which also perform on MIT-AD.
/e results show that the Stacking-DWKNN model with
multiple combinations of features has better classification
accuracy than the other methods discussed in this paper.
And the average classification accuracy is 99.01%. /e
method can accurately distinguish between four categories
of heartbeats. As can be seen, a comparison of the classi-
fication results from the heartbeat perspective shows that the
method outperforms [8, 11, 26, 32, 34] on all metrics.
Compared with [14], the positive predictive value of S beats
is slightly lower, but the proposed method has obvious
advantages in other indicators. Regarding the sensitivity, the
method proposed in this paper achieved higher values
compared to previous methods for the majority classes, N
and V. But compared with the literature [33, 37], the sen-
sitivity of class S and class F is slightly lower. /is is due to
the lower number of these two types of heartbeats. It can be
concluded from the above that the proposed method has
better classification performance. /e most important ar-
rhythmias (S and V) have all achieved better results.

5. Conclusions

Accurate classification of arrhythmias is essential for treating
patients. /erefore, an intelligent classification method
based on multifeature combination and Stacking-DWKNN
algorithm is presented in this paper, which can realize the
selection of ECG features and heartbeat classification. /e
results show that the proposed method has a good recog-
nition rate for four heartbeats. /e key points of this study
are as follows:

(1) Different feature combinations are constructed, and
the effect of different combinations of features on
heartbeat classification is evaluated to select the
optimal feature combination, which provides a good
application for ECG feature selection

(2) /e classification effects of several different classifiers
are compared to select the optimal classifier, and
then different model fusion methods are used for
heartbeat classification based on this classifier to
obtain the optimal model fusion method

(3) /e experimental results show that the Stacking-
DWKNN model with optimal feature combination
can distinguish four different types of the heartbeat

/e Stacking-DWKNN model first uses DWKNN
models to predict samples separately./e training process of
each DWKNN model adopts a cross-training method, the
prediction results are used as the input of the secondary
model to make the final prediction, and then the final
classification is determined by combining the classification
results of multiple classifiers to achieve better performance
than a single classifier. /e cross-validation method effec-
tively alleviates the overfitting problem encountered by a
single classification algorithm and has strong robustness.
/e average classification accuracy is 99.01%.

However, the results of F-type are worse than other types
because a few F-types have difficulty in analyzing the features
of this type of heartbeat in detail. In the future, we need to
include the use of multiple leads and add more complex
feature fusion methodologies, and also more attention
should be paid to improve the performance of F-type.
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