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This paper mainly introduces the relevant contents of automatic assessment of upper limb mobility after stroke, including the
relevant knowledge of clinical assessment of upper limb mobility, Kinect sensor to realize spatial location tracking of upper limb
bone points, and GCRNN model construction process. Through the detailed analysis of all FMA evaluation items, a unique
experimental data acquisition environment and evaluation tasks were set up, and the results of FMA prediction using bone point
data of each evaluation task were obtained. Through different number and combination of tasks, the best coeflicient of de-
termination was achieved when task 1, task 2, and task 5 were simultaneously used as input for FMA prediction. At the same time,
in order to verify the superior performance of the proposed method, a comparative experiment was set with LSTM, CNN, and
other deep learning algorithms widely used. Conclusion. GCRNN was able to extract the motion features of the upper limb during
the process of movement from the two dimensions of space and time and finally reached the best prediction performance with a

coefficient of determination of 0.89.

1. Introduction

Cerebral apoplexy (CA), also known as cerebral stroke or
cerebral vascular accident (CVA), is a kind of acute cere-
brovascular disease and is due to the sudden rupture of
blood vessels in the brain or due to blood circulation ob-
struction caused by blood vessel damage caused by a group
of diseases. Stroke is one of the three major diseases leading
to human death. It has the characteristics of high morbidity,
high mortality, high disability, and high recurrence rate.
China is a region with a high incidence of stroke. According
to the data of “2018 China Health Statistics Summary,” in
2017, the proportion of cerebrovascular diseases in the
deaths of Chinese residents was 23.18% in the rural pop-
ulation and 20.52% in the urban population, which means
that at least one person in every five deaths died from stroke.
According to the 2018 Report on Stroke Prevention and
Treatment in China, the number of stroke patients in res-
idents over 40 years old has reached 12.42 million, and since
2002, the incidence of the first stroke in residents between 40

and 74 years old has increased by 8.3% on average every year,
and the number of deaths caused by stroke has reached 1.96
million every year. Stroke has overtaken diseases such as
ischemic heart disease, traffic accidents, chronic pulmonary
obstruction, and lung cancer to become the leading cause of
death. With the development of modern medicine, the level
of treatment in the acute stage of the disease has been
improved, and the number of death cases caused by stroke
has gradually decreased, but the residual dysfunction has
also led to a gradual increase in the rate of disability, which
greatly affects the healthy life of patients and their families.

Stroke can be divided into hemorrhagic and ischemic
diseases pathologically. Different clinical manifestations may
occur due to different sites and properties of the lesions.
55%~75% of surviving stroke patients will remain with limb
dysfunction, and 85% of patients will have lateral limb motor
dysfunction after onset. In patients with hemiplegia, the
incidence of motor function injury of the half limb, espe-
cially the hand function and upper limb motor dysfunction,
is higher than that of the lower limb, and its rehabilitation
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difficulty is higher than that of the lower limb. These
functional disorders seriously affect the ability of patients to
live independently and reduce the quality of life of patients.
Clinical observation shows that rehabilitation treatment is
the most effective way to reduce the disability rate of stroke
patients. Effective rehabilitation training plays an important
role in improving the motor ability, sensory ability, and
behavioral ability of stroke patients. Rehabilitation training
can improve the daily living ability of patients, improve the
ability to recover from brain lesions, reduce the degree of
disability, restore the ability of independent living, better
return to family and society, reduce potential nursing costs,
and save social resources.

Stroke rehabilitation is a circular process, mainly in-
cluding the following links: (1) rehabilitation assessment,
identification, and determination of patients’ needs; (2)
rehabilitation goal setting, to develop practical and
achievable rehabilitation goals and health training plans for
patients; (3) rehabilitation treatment to achieve rehabilita-
tion goals; and (4) evaluation of rehabilitation again to
evaluate the therapeutic effect of the rehabilitation process.

In this paper, sensor technology and artificial intelligence
were integrated to carry out the research on automatic as-
sessment of stroke upper limb motor function based on deep
learning. A motion measurement system was designed from
the upper limb motor ability, and three different deep
learning methods were proposed to extract features based on
sensor data to achieve clinical scale stages and score
prediction.

Upper limb hemiplegia is one of the most serious dis-
abling consequences of stroke [1]. There are many studies on
the influence of upper limb motor function of patients.
Mullick et al. discussed the influence of motion observation
training based on the mirror neuron system on upper limb
motor function of stroke patients [2]. Gunduz et al. aimed to
investigate the influence of hand robot assisted training based
on motion imagery on upper limb function of stroke patients
[3]. Brewer et al. investigated the effect of high frequency
repetitive transcranial magnetic stimulation (HF-rTMS) on
upper limb motor function in the early stage of stroke [4].
Strippoli et al. discussed the effect of restrictive exercise
therapy (CIMT) on the rehabilitation of upper limb motor
function in stroke patients [5]. Simpkins et al. investigated the
effect of upper limb isokinetic muscle strength training on
motor function of stroke patients [6]. Liou et al. discussed the
influence of mirror therapy on upper limb function and daily
living ability of stroke patients with hemiplegia [7].

In order to objectively quantify the upper limb motor
injuries of stroke patients with hemiplegia, Fu et al. proposed
an assessment method based on motion coordination quan-
tization and multimodal fusion. Principal component analysis
(PCA) and K-weighted angular similarity (K-WAS) algorithm
were used to quantify the synergistic effect and muscle syn-
ergistic effect so as to further analyze the synergistic activation
characteristics leading to visible sports injuries [8].

Quantitative assessment of motor function is important
for post-stroke patients because it can be used to personalize
treatment strategies. Pan et al. studied the assessment
method of upper limb motor function in stroke patients.
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During voluntary upward extension, inertial sensor data and
surface electromyography (sEMG) signals were collected
from the upper limb. Five features include the maximum
shoulder joint angle, peak and average velocity, trunk bal-
ance calculated from inertial sensor data, and muscle co-
operative similarity extracted from surface EMG data by the
nonnegative matrix factorization algorithm [9]. Sang-Mi
et al. used BCT to quantitatively detect the motor imaging
ability of stroke patients and clarified the relationship be-
tween the motor imaging ability of the upper limb of
hemiplegia, motor function, and the use level of paralyzed
limbs [10].

Fusion in sensor technology and artificial intelligence in
this paper, based on in-depth study of the upper limb
movement function stroke automatic evaluation of research,
probes into the upper limb after stroke activity ability to
automatically assess the related content, including the
clinical ability of upper limb activity in clinical evaluation of
relevant knowledge, called sensors for upper limb bones
point spatial location tracking, and GCRNN model building
process.

2. Materials and Methods

In order to evaluate the performance of the proposed
deep learning method for predicting the FMA score of
upper limb motor function, Kinect V2 was selected in this
paper to measure the upper limb motor function of stroke
patients. Group-constrained convolutional recurrent
neural network (GCRNN) is used to achieve this task. We
first designed a unique experimental environment and
called volunteers to complete the required data collection
of upper limb skeletal map. By analyzing the correlation
between the predicted value of the model and the actual
evaluation score of clinicians, we verified the perfor-
mance of the model in each evaluation task and the
overall performance.

In order to avoid the interference of background and
other external factors, improve the quality of data, and
ensure the consistency, we first set up a unique experimental
environment for the collection experiment of bone point
position sequence required by model training. The Kinect
V2 is mounted 1.5 meters away from a chair with a small
armrest. The subject will sit in this chair and complete the
rating task. The Kinect V2 connects to a PC via a USB cable
to transfer data and instructions. When subjects performed
the upper limb assessment task, Kinect collected the three-
dimensional spatial location information of the upper limb
bone points in the process at a frequency of 30 Hz and
transmitted and stored it to the PC in real time. Before the
FMA test, we adjusted the Kinect V2’s installation angle so
that it could track the entire upper limb of the subject.

A total of 15 healthy volunteers were recruited in this
experiment, including 9 males and 6 females, with an av-
erage age of 22.6 (+1.4) years old. Each volunteer was a
stroke patient whose FMA score of upper limb motor
function was randomly simulated between 30 and 100 points
and who could keep sitting position. The basic information
of the subjects is shown in Table 1.
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TaBLE 1: Subject information table.

Attribute Value
Male 9
Female 6
Age range 21-24
FMA score range 30-100

Subjects sit on chairs in the experimental environment
by themselves and coordinate with the experimenter to
adjust the posture angle for better data collection. Then,
subjects need to repeat the following upper limb assessment
movements successively under the guidance:

2.1. Shoulder Buckling. Subject will sit in a chair and raise the
upper limb of the hemiplegia side as far forward as possible,
hold for 5 seconds, and finally return to the starting position.

2.2. Shoulder Abduction. Subjects sit in a chair and extend
their upper limb on the hemiplegic side as far as possible,
then hold it for 5 seconds, and finally return to the starting
position.

2.3. The Forearm before and after the Rotation. Subject is
sitting in a chair with shoulder 0° and elbow 90° flexed and
forearm pronated forward and backward.

2.4. Finger Pinch. When the shoulder of the affected side is 0°
and the elbow is 90° flexed, try to touch the little finger with
the thumb and then move back to the initial position.

2.5. Move the Cylinder Object. Use the affected hand to pick
up a cylinder on one side of the table and then move it to the
other side of the table and lower it.

Each rating action was provided with an instructive
video, and the subjects were asked to try their best to
complete the rating action (simulation) while watching the
video. At the same time, two raters were responsible for
rating according to the FMA requirements and experience
according to the completion of the action. Then, the average
of the FMA scores obtained by the two raters was calculated.
The actual FMA score of the subject was used for model
training. Before the experiment, each subject will watch the
instruction video of learning movements and practice the
familiar movements for 3-5 times before starting the ex-
periment. During the experiment, the subjects need to
complete all the 5 movements continuously with a short rest
interval of 2-3 seconds to facilitate the later data separation.
The subjects can repeat 3-5 times according to their own
physical conditions. Cameras were also used to record the
whole experiment process, measure the time required for
each experiment process, and analyze the movements of the
subjects.

3. Results and Discussion

We verify the performance of the method proposed in this
paper, namely, the comparison algorithm, by using five-fold
cross validation of the data set. Each method iterates 100
times in the near row of the training set, and the iteration
parameter with the best performance on the validation set is
taken as the final result. The model outputs were predictive
FMA scores of upper limb motor function. Performance was
evaluated by correlation analysis with clinician scores, and
coefficient of determination (R?), root mean square error
(RMSE), and adjustment-R* were used as model perfor-
mance indicators.

First, we analyzed the correlation analysis results of the
proposed algorithm for the 5 scoring tasks separately, as well
as the correlation analysis results of FMA prediction using
the data of the 5 tasks, as shown in Figure 1, and it can be
found that task 1, task 2, and task 5 have a high correlation
with FMA, and the determination coefficients of 0.88, 0.85,
and 0.87 can be reached when using these rating tasks alone.
Because task 3 and task 4 only have local hand movements,
the correlation with the overall FMA rating item is weaker.
Therefore, the consistency with the clinician’s FMA as-
sessment was only 0.78 and 0.72. When we input all the bone
point data of the five assessment tasks into the model for
FMA prediction, as shown in Figure 1(f), although the
determination coeflicient obtained is improved compared
with that when using single task data as input, the im-
provement effect is not obvious. The coefficient of deter-
mination is 0.86, which is lower than that of Task 1
(Figure 1(b)) and Task 5 (Figure 1(e)).

In order to achieve automatic upper body activity as-
sessment using as few assessment tasks as possible, we con-
ducted prediction performance under different number and
combination of tasks in order to find the most appropriate
number and combination of assessment tasks. According to
the experimental results shown in Figure 1, we conducted a
comparative verification experiment in accordance with some
combinations that might be better. The results are shown in
Table 2.

As can be seen from the table, when the task combination is
Task 1-2-3-5, the maximum coefficient of determination can be
reached to 0.89; when the number of tasks is 2, the overall
coefficient of determination is relatively low because there are
too few FMA assessment items covered and the upper limb
movement features can be provided. When the number of
assessed tasks was 3, compared with the number of assessed
tasks was 2, there was a significant improvement, but different
combination of tasks also had an impact on the experimental
results. Because task 4 and task 5 were both hand functional
assessments, the combination of task 4 and task 5 provided
overlapping motor function characteristics. In addition, it can
be seen from Table 2 that the task combination of Task 1, 2, and
5 can provide more motor characteristics from multiple di-
mensions such as shoulder abduction, forward bending, and
grasping ability, covering more FMA assessment items.

In order to verify the performance of the proposed deep
learning framework, we used the optimal combined task data
of Task 1, 2, 3, and 5 mentioned above to conduct comparative
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Figure 1: Individual assessment task data predicts FMA results.

TaBLE 2: Comparison of evaluation task combinations.

Number of tasks Task combination RMSE R? Adjust-R?
2 Task 1-2 7.29 0.86 1.19
Task 2-5 7.30 0.86 1.21
Task 1-2-5 7.25 0.88 1.23
3 Task 2-4-5 7.90 0.84 1.25
Task 2-3-5 7.26 0.87 1.19
Task 2-3-4-5 7.81 0.85 1.24
4 Task 1-2-3-5 6.57 0.89 117
Task 1-2-4-5 7.40 0.86 1.22
5 Task 1-2-3-4-5 7.37 0.86 1.21

experiments with the GCRNN algorithm in this paper, LSTM
and CNN algorithm. Regression analysis was performed on
clinician evaluation scores and model-predicted FMA scores
of 15 subjects, and determination coefficients were calculated,
and correlation analysis graphs were drawn, as shown in
Figures 2-4. The GRCNN model fully extracts the spatial
location sequence data features of bone points from the two
dimensions of data sequences between data sequences and the
context of a single data sequence through convolution and
cyclic neural network modules and finally predicts the op-
timal performance when the coeflicient of determination of
FMA fraction reaches 0.89 (Figure 2). In the manifestation of
upper limb motor dysfunction, the relationship between bone
nodes in the human body can reflect the cooperative
movement mode often manifested in clinical practice and so
on. Compared with LSTM, CNN pays more attention to the
feature extraction of the relationship between data, and in the
upper limb motor ability assessment task in this paper, it also

obtains a coeflicient of determination of 0.87 (Figure 3). The
LSTM model pays more attention to the before and after
dependence of the sequence. Stroke-related patients have a
small range of upper limb motion, weak features of the before
and after changes in the sequence data, and relatively weak
performance in automatic assessment tasks. The coeflicient of
determination in the data set in this paper is 0.85 (Figure 4).

IMU, glove sensor, and motion capture system often
used in existing studies need quite a long time to com-
plete the wearing and marking, and it is already difficult
to fix the sensor or marker on the body of stroke patients,
and it is easy to cause discomfort to patients and affect
normal activities. The automatic evaluation system
proposed in this paper uses the Kinect V2 depth sensor
based on vision to collect motion data. It does not require
the time-consuming process of sensor wearing. It only
takes about 5 minutes to set up the initial (perspective
setting) and has a generally acceptable low cost. The rich
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FIGURE 4: LSTM performed FMA to predict performance.

SDK provided by Kinect can obtain various motion
tracking data, such as RGB image, depth image, and
spatial position of bone points. In this paper, the spatial
position data of human upper limb bone points were only
used to complete the task of upper limb mobility as-
sessment. In the future work, we can also consider the use
of depth image, RGB, and combined data for automatic
evaluation research. In addition, we also found that there
are some insurmountable errors in acquiring it through
noncontact motor consciousness in our experiment.
When subjects wear loose clothes, there is a deviation in
the recognition and tracking of shoulders and elbows.
When human beings are active, it will bring great

interference to the data. Such data patterns can be
confused with data disturbances caused by limb spasms.
Second, the Kinect V2 only has two bone points on the
hand, the thumb, and the fingertip, which poses a huge
challenge to complete the measurement of hand exten-
sion/flexion motion in FMA. In addition, when a single
Kinect performs task 5: upper limb activity tracking of
moving pencil and limb occlusion is easy to occur, which
will cause the data loss of occluded bone points, thus
affecting the accuracy. Of course, this problem of being
easily obscured can be solved in the future by setting up
multiple Kinect devices to track human activities from
different angles.



4. Conclusions

The focus of this paper is to propose a deep learning
framework for data analysis, to achieve the use of as few
assessment tasks as possible to complete the complex clinical
FMA assessment tasks, and to achieve a high degree of
consistency with the clinician assessment. Through a de-
tailed analysis of all FMA evaluation items, we set up a
unique experimental data collection environment and
evaluation tasks. The results of FMA prediction using bone
point data of each evaluation task are shown in Figure 1.
Through different number and combination of tasks, it can
be seen in Table 2. The best coefficient of determination was
achieved when task 1, task 2, and task 5 were simultaneously
used as inputs for the FMA prediction. At the same time, in
order to verify the superior performance of the proposed
method, a comparative experiment was set with LSTM,
CNN, and other deep learning algorithms widely used.
GCRNN was able to extract the motion features of the upper
limb during the process of movement from the two di-
mensions of space and time and finally reached the best
prediction performance with a coefficient of determination
of 0.89.
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