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*is article presents a machine learning approach for Parkinson’s disease detection. Potential multiple acoustic signal features of
Parkinson’s and control subjects are ascertained. A collaborated feature bank is created through correlated feature selection,
Fisher score feature selection, and mutual information-based feature selection schemes. A detection model on top of the feature
bank has been developed using the traditional Näıve Bayes, which proved state of the art. *e Näıve Bayes detector on col-
laborative acoustic features can detect the presence of Parkinson’s magnificently with a detection accuracy of 78.97% and precision
of 0.926, under the hold-out cross validation. *e collaborative feature bank on Naı̈ve Bayes revealed distinguishable results as
compared to many other recently proposed approaches. *e simplicity of Naı̈ve Bayes makes the system robust and effective
throughout the detection process.

1. Introduction

Parkinson’s disease (PD) is an inherent disease among el-
derly individuals. *e disease appears when the dopamine
neurons significantly fall in the human brain [1, 2]. *e PD
symptoms start with voice impairments at its early stage,
tremor, and loss of memory, and the subject shows an in-
ability to walk, run, and even perform regular day-to-day
duties. *e situation worsens at a late age, where the subject
suffers huge memory loss and cannot move and lean to
perform minor activities. *e worst part is that the disease is
not curable and not reversible [3], so all efforts have been
made to its early detection and preventive measures to

suppress its adverse effects. Medical science reveals that
Parkinson’s disease mainly causes gradual reduction of
dopamine hormone in the human brain as this hormone acts
as the transmitter of signals among various neurons [4].
Insufficient amount of dopamine hormone leads to non-
transmission of signals and various neurorelated disorders
and symptoms being started in human beings, and Par-
kinson’s disease is one of them. Symptoms of PD can be
nonmotor and motor-related. Nonmotor symptoms include
sleep disorder, speech variation, problem in swallowing, and
loss of smell, whereas motor symptoms were connected to
slow movement, e.g., bradykinesia, tremor, rigidity, and
postural instability [5]. *ese symptoms also vary from
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patient to patient over different time periods, and the ap-
pearance of symptoms is often lately observed by the patient
due to the casual ignorance of early symptoms.

*e effect of Parkinson’s disease varies from person to
person, and all the symptoms may not be evident by every
PD patient and even may not appear in the same order and
same combination. However, subjects suffering from idio-
pathic rapid eye movement sleep behavior disorder (iRBD)
are more prone to PD. Speech changes are the first motor
symptom that appears even ten years before the actual di-
agnosis starts [6]. *erefore, assessing speech signals pro-
vides a better scope for detecting chances of Parkinson’s in
the early stage. For instance, the time domain amplitude of
both controls and Parkinson’s has been visualized in Fig-
ure 1. Each block of Figure 1 represents a subject, where the
green color plots represent controls and the red color plots
represent the subjects suffering Parkinson’s. *e subjects’
specific plots are generated on the pronunciation of sus-
taining vowel/a/in Italian language [7].

From Figure 1, the amplitude of Parkinson’s subjects
appears to be abnormal, where the disorder can be identified.
On the other hand, the amplitude of the Non-Parkinson’s
Disease subject is uniformly in a decreasing trend. *e
disorder signal of Parkinson’s subjects is the dysphonia and
hypokinetic dysarthria that a subject suffers at various stages
of PD [8]. Dysphonia refers to the inability to produce
normal phonation due to impaired functioning of the
phonatory system. Reduction of pitch variation often de-
notes monotonicity and reduces loudness, breathless voice,
and tiny speech formation [9]. Approximately 90% of the PD
patients are affected by this combined sign of hypokinetic
dysarthria [9]. In the context of acoustic voice analysis, it is
difficult to identify the slight variation of a sound wave
through the naked ears. In such a situation, the power of
machine learning techniques can be employed to discrim-
inate Parkinson’s from the other signal [10, 11].

As PD is a nonreversible disease, the only option left with
the clinical practitioners is to reduce the speed of the effect.
In this way, the subject feels confident and cured if the
diagnosis process starts early. PD shows only a few symp-
toms at the early stage on the flip side of the coin, like voice
disorder and mild tremors. However, these symptoms also
resemble other symptoms of an average person. *is is why
diagnostic technicians and clinical practitioners are nowa-
days exploring machine learning and artificial intelligence
approaches [12–14] to predict the presence and severity of
disease among their subjects.

*e main contribution of this article is as follows:

(a) A collaborative feature bank consisting of seven
vocal features has been created from Baseline Fea-
tures (BF), Vocal Fold Features (VFF), and Time
Frequency (TFF) with the help of Correlated Feature
Selection (CFS) [15], Fisher Score Feature Selection
(FSFS) [16], and Mutual Information-Based Feature
Selection (MIFS) [17].

(b) *e traditional Näıve Bayes has been trained and
tested on the seven features of the collaborative
feature bank, which shows the robustness and

effectiveness of our system as compared to other
recent approaches of Parkinson’s disease detection.

*e rest of the article is as follows. Section 2 deals with
literature reviews, Section 3 outlines the materials and
methods, and Section 4 briefly discusses the results, followed
by a conclusion at Section 5.

2. Literature Review

Many recent machine learning techniques, including Näıve
Bayes, proved useful in segregating subjects suffering PD
from the controls. For instance, Avuçlu and Elen [18]
proposed Parkinson’s detection through multiple classifiers.
*eir experiment was conducted on various training and
testing instances spanned over 22 vocal features of 195
sound samples. *e k-Nearest Neighbor, Random Forest,
Support Vector Machine, along with Näıve Bayes, have been
used to detect Parkinson’s. It has been observed that the
Näıve Bayes detects the Parkinson’s subjects with 70.26%
accuracy with a precision of 0.64. Bourouhou et al. [19]
compared many classifiers to predict the presence of Par-
kinson’s among subjects. *eir experiment was conducted
on 40 subjects comprising 20 Parkinson’s and control
subjects. *e experimental results Näıve Bayes detector
revealed a detection accuracy of 65%, the sensitivity of
63.6%, and specificity of 66.6%, respectively. On a similar
note, Zhang et al. [20] used Näıve Bayes along with other
machine learning techniques to detect Parkinson’s disease.
*eir approach employed signal processing techniques to
extract relevant features from the acoustic signal of Par-
kinson’s and control subjects. At the next stage Näıve Bayes,
Support Vector Machine (SVM), Logistic Regression (LR),
and single and double-layered neural networks have been
used to segregate Parkinson’s and control subjects. With the
22 vocal features, the Naı̈ve Bayes reveals 69.24% of de-
tection accuracy with a 96.02% of the precision rate.
Meghraoui et al. [21] proposed Bernoulli and Multinomial
Näıve Bayes (BMNB) on harmonicity, pitch, and pulse
features. *e BMNB approaches are proved to be a better
solution to detect the presence of Parkinson’s. A test on 28
samples comes across with a 62.5% detection accuracy on
Bernoulli Näıve Bayes (BNB) with 0.375 Mean Squared
Error (MSE). Kadiri et al. [22] proposed a method of Par-
kinson’s disease detection using SVM on Single Frequency
Filtering Cepstral Coefficients (SFFCC) and Shifted Delta
Cepstral (SDC) features exacted from voice signals of Par-
kinson’s and control subjects. *e SFFCC+ SDC features
witnessed 9% of performance improvements as compared to
traditional MFCC+ SDC features. *e traditional SVM on
SFFCC+ SDC features shows 73.33% detection accuracy
with 73.32% F1-score.

Apart from Näıve Bayes, many other supervised tech-
niques, including but not limited to famous deep learning
techniques, have been proposed to detect Parkinson’s among
subjects. Recently Jain et al. [23] proposed a Parkinson’s
detection method using multiple classifier ensembles. *e
authors used Synthetic Minority Oversampling Technique
(SMOTE) to generate artificial samples for prediction. *eir
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proposed approach on Deep Neural Network (DNN) detects
Parkinson’s with a detection accuracy of 91.47%.*ough the
result seems impressive, their approach does not appear
practical for many reasons. *e authors used the dataset
proposed by Sakar et al. [24], and the dataset contains
replicated speech information of 252 subjects resulting in
756 instances. Machine learning methods cannot be directly
applied to these instances as each subject has three readings
of the speech signal. *ese instances need to be consolidated
before the actual classification starts. Moreover, creating a
Parkinson’s detection system on 754 features is not con-
vincing. *e Performance of DNN, as claimed by the au-
thors, may vary on consolidated instances. Further, their
system may not be practically effective on synthetic samples
generated by SMOTE. Similarly, Polat and Nour [25] use
multiple classifiers ensemble to detect Parkinson. *e One
Against All (OAA) sampling technique plays a pivotal role in
the detection process. *e Logistic Regression (LR) on OAA

samples proved to be a brilliant Parkinson’s detector.
Multiple supervised classifiers are also used on vocal features
selected through Adaptive Grey Wolf Optimization Algo-
rithm (AGWOA) and Sparse Auto Encoder (SAE) [26]. *e
Näıve Bayes classifier on AGWOA and SAE features reveals
a detection accuracy of 72%. In the recent past, decision trees
are gaining popularity in biomedical data classification [27].
Classification and Regression Tree (CART) have been used
to detect the presence of Parkinson’s [28], where the CART
detector detects Parkinson’s with 75.19% through 8 opti-
mum features of vowel /a/.

3. Materials and Methods

3.1. Dataset. *e idea behind the proposed approach is the
feature collaboration to detect Parkinson’s disease. For
feature collaboration, the Baseline Features (BF), Vocal Fold
Features (VFF), and the Time Frequency Features (TFF)
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Figure 1: Amplitudes of controls and Parkinson’s subjects.
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about the acoustic signal of both Parkinson’s and control
patients have been considered. All the BF, VFF, and TFF are
extracted from a recent Parkinson’s detection database
publicly available at the UCI machine learning repository
[24], prepared at the Department of Neurology in
Cerrahpaşa, Faculty of Medicine, Istanbul. *e database
contains 752 acoustic features of 252 subjects, including
control and Parkinson’s. Data is prepared with a 44.1 kHz
microphone setting followed by a physician’s examination.
*e sustained phonation of the vowel /a/ was collected from
each subject with three repetitions.

*e vast 752 features also include 22 VFF, 11 TFF, and 21
BF.*ese features are extracted using Praat acoustic analysis
software [24]. *e number of features available under VFF,
TFF, and BF of the dataset has been presented in Table 1.
Gender-specific control and sick subjects are outlined in
Table 2. *e detailed characteristics of these features seg-
ments and corresponding features can be found at [24, 27].

*e Istanbul acoustic database [24] used here comprises
252 subjects, where 64 are controls, and 188 subjects are
suffering from Parkinson’s. Similarly, the dataset contains
vocal information of 122 female (41 controls and 81 Par-
kinson’s) and 130 male subjects (41 controls and 81
Parkinson’s).

3.2.Features Selection. For effective collaboration, a Features
Bank (FB) is created using the best features of BF, VFF, and
TFF. *e identification of best features has been established
through three prominent feature selection techniques
[29, 30]— Correlated Feature Selection (CFS) [15], Fisher
Score Feature Selection (FSFS) [16], and Mutual Informa-
tion-based Feature Selection (MIFS) [17]. *ese feature
selection schemes initially ranked the features (based on
their contribution towards the classification). *ey selected
the most suitable features from the ranked features (features
having the highest contribution towards the classification
process). All three CFS, FSFS, and MIFS techniques use
distinct proven mechanisms for feature ranking. *e CFS
calculates correlation among attributes to understand the
variable similarity. For two attributes A � a1, a2, a3, . . . , an􏼈 􏼉

and B � b1, b2, b3, . . . , bn􏼈 􏼉, CFS calculates correlation r as
follows:

r �
􏽐

n
i�1 ai − a( 􏼁 bi − b􏼐 􏼑

�����������������������

􏽐
n
i�1 ai − a( 􏼁

2
􏽐

n
i�1 bi − b􏼐 􏼑

2
􏽱 , (1)

where a �mean of attribute A and b �mean of attribute B.
*e higher the value of r, the more the underlying attributes
correlated and the lower the value of r the underlying at-
tributes have far deviated from each other. After calculating
the correlation score for each attribute, the attributes are
arranged in the ascending order of the correlation score.
Arranging attributes based on correlation score provides a
scope to move the highly uncorrelated attributes to the front
and perfectly correlated attributes at the rear, thus sup-
porting the classifiers for enhanced detection. Similarly,
FSFS calculates the fisher score of individual features of the
underlying Parkinson’s dataset. *e feature weights are

calculated based on the sample size and number of class
labels. FSFS are tested for binary and multiclass datasets, but
it is widely used for binary datasets [31]; hence, a suitable
feature ranker is proposed for the current work. For a given
set of features f � f1, f2, f3, . . . , fp􏽮 􏽯 having a set of classes
K � k1, k2, k3, . . . , kc􏼈 􏼉, the fisher score S of the feature fi

can be estimated as follows:

S �
􏽐

C
j�1 nj μij − μi􏼐 􏼑

2

􏽐
c
j�1 njρ

2
ij

, (2)

where nj is the number of instances in the jth class, μi is the
mean of the ith feature, and μij and ρij are the mean and
variance of the ith feature and jth class, respectively. In this
way, the fisher score of each feature of the Parkinson’s
dataset has been calculated, allowing us to rank the features
based on the score accumulated. It should be noted that the
fisher score evaluates the score individually; i.e., no two
features are taken simultaneously to calculate the feature’s
score [32]. *e individual fisher score proved to be a lim-
itation to identify the feature redundancy. However, since
prominent features have been selected iteratively through
Näıve Bayes classification, the limitation of identifying
feature redundancy will not affect the evaluation process.
With a similar guideline of CFS, the MIFS ranking algorithm
estimated the relationship among features through mutual
information and ranked the features based on the mutual
information score of attributes. For any two given attributes
a and b having values 1, . . . , p􏼈 􏼉 and 1, . . . , q􏼈 􏼉, respectively,
a joint probability πab ensures the samples of attribute

Table 1: Features of Istanbul acoustic dataset.

Features group Number of features
Vocal fold features
Glottis quotient 3
Glottal to noise excitation 6
Empirical mode decomposition 6
Vocal fold excitation ratio 7
Time frequency features
Voice intensity 3
Bandwidth 4
Formant frequencies 4
Baseline features
Entropy of recurrence period density 1
Detrended fluctuation 1
Entropy of pitch period 1
Harmonicity 2
Variants of jitter 5
Fundamental frequency 5
Variants of shimmer 6

Table 2: Gender-specific controls and subjects suffering from
Parkinson’s in the dataset.

Genders (↓)/Classes (⟶) Controls Parkinson’s Total
Female (—) 41 81 122
Male (—) 23 107 130
Total 64 188 252
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(a, b) ∈ 1, . . . , p􏼈 􏼉 × 1, . . . , q􏼈 􏼉, then the dependency be-
tween a and b can be estimated [17] through mutual in-
formation as follows:

MI � 􏽘

p

a�1
􏽐
q

b�1
πablog

πab

􏽐bπab􏽐aπab

. (3)

Like correlation score, mutual information places a
crucial role in features ranking. All the three feature ranking
algorithms CFS, FSFS, and MIFS can also be extended to
select a subset of features. After ranking all ranked feature
segments, the ranked features are passed to Näıve Bayes
incrementally one feature at a time in an iterative fashion.
*e incremental feature classification allows selecting the
suitable number of features from each segment where the
Näıve Bayes shows the highest detection accuracy.

In a nutshell, all the three feature selection techniques
CFS, FSFS, and MIFS work jointly to identify goodness
scores for each attribute of the underlying Parkinson’s
dataset. *e idea behind this incremental feature selection is
to select only those attributes which are mainly close to class
attributes and not close to each other. However, instead of
depending on the practical way of identifying attributes,
selecting attributes through incremental classification is
emphasized. In a landscape, the incremental feature selec-
tion helps to identify potential attributes in the most realistic
way.*e selected features of BF, VFF, and TFF through CFS,
FSFS, and MIFS provide the most relevant collaborative
Parkinson’s disease detection features. *e entire process of
Parkinson’s detection process has been depicted in Figure 2.

*e process of detecting subjects affected with Parkin-
son’s follows three steps; viz., Feature Selection, Feature
Collaboration, and Parkinson’s Detection. As pointed ear-
lier, in the feature selection stage, the BF, TFF, and VFF are
ranked separately using CFS, FSFS, andMIFS techniques. As
a result, nine feature blocks are realized. *e feature col-
laboration stage’s ranked feature blocks are passed, where
Näıve Bayes play a crucial role in suitable feature identifi-
cation. Features from each ranked feature block are fetched
incrementally and sent to Näıve Bayes for classification. *is
process continues till all features are fetched from each
ranked feature block. *e incremental features for classifi-
cation help identify the minimum number of features re-
quired to achieve maximum detection accuracy.*e number
of ranked features for which the maximum amount of de-
tection accuracy has been received are identified. For each
feature block, i.e., VFF, TFF, and BF, the best features are
identified by comparing all three feature ranking schemes
(i.e., CFS, FSFS, and MIFS).

3.3. Classification. *e ranked features are collaborated and
sent to Näıve Bayes for detection of Parkinson’s. In this way,
the entire detection process relies on a small number of
collaborative features; thus, it appears to be a practical
method of Parkinson’s detection. *e detection approach
has been developed using the Weka machine learning re-
pository [33, 34]. *e implementation settings of the pro-
posed model are outlined in Table 3.

*e predictive model of Näıve Bayes uses estimator
classes for prediction [35]. *e numeric estimator precision
values are chosen based on the analysis of the training data.
*e batch size indicates the desired number of instances to
process for batch prediction of testing samples. *e su-
pervised discretization option ensures the conversion of
numerical attributes to nominal ones. All the attributes
remain numerical, so this option has been disabled during
the training and testing process.

4. Results and Discussion

*e results of the proposed work have been analyzed in three
broad ways. At the first stage, the efficiency of feature
ranking schemes, i.e., CFS, FSFS, and MIFS, has been an-
alyzed.*e individual ranking of features per feature selector
helps identify the most potential VFF, TFF, and BF segments
for effective collaboration. At the second stage, the per-
formance of Näıve Bayes has been evaluated along with
many other traditional supervised classifiers in the context of
Parkinson’s detection. Finally, the proposed collaborative
feature-based Parkinson’s detection system has been com-
pared against other recent vibrant Parkinson’s detection
mechanisms.

4.1. Collaborative Features Identification. As the first stage of
the collaborative Parkinson’s detection scheme, a bank of
collaborative features is prepared. *e detection accuracy of
Näıve Bayes on change in the vocal fold, time frequency, and
baseline feature through CFS, FSFS, and MIFS ranking has
been presented in Figures 3–5, respectively. *e classifica-
tion accuracy of Näıve Bayes was also recorded on original
features to understand the power of feature ranking
techniques.

It is to note that both the original and the ranked acoustic
features are incrementally processed through Näıve Bayes to
observe the performance enhancement with a change in the
number of features. *e performance of Näıve Bayes due to
CFS, FSFS, andMIFS shows a satisfactory result as compared
to original features. It can be seen from Figure 3 that the CFS
shows the highest detection accuracy with just ten features in
hand. In contrast, the same Näıve Bayes took 12 original
features to produce similar detection accuracy. On the other
hand, the three features of the FSFS ranked scheme help the
Näıve Bayes attain the same CFS detection accuracy. On a
similar note, the Näıve Bayes shows the same detection
accuracy with 6 MIFS features. *erefore, all the three CFS,
FSFS, andMIFS boost the performance of Näıve Bayes to the
peak with the help of 10, 3, and 6 features, respectively.
*erefore, the 3 FSFS features have been sent to the feature
bank for collaboration.

With a similar guideline, when both the original TFF
features and ranked CFS, FSFS, and MIFS features are
processed incrementally, only the 3 features of CFS boost the
performance of Näıve Bayes exceptionally well up to 75.79%.
However, FSFS also boosts the Näıve Bayes’ performance but
not as that of CFS and MIFS. Both FSFS and MIFS reveal a
satisfactory performance improvement with a detection
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accuracy of 73.4% and 73.81%, respectively. *ough the
Näıve Bayes took only 1 MIFS feature, the first 3 features of
CFS have been sent to the feature bank for collaboration due
to the highest detection accuracy.

When the performance of Näıve Bayes is studied, the
performance of the classifier due to rankers CFS, FSFS, and
MIFS was found to be degraded. Nevertheless, the rankers
show a similar result as that of original arrangements with
minimal features. In this regard, the Naı̈ve Bayes yields the
highest accuracy of 76.59% with 3FSFS features. But instead
of FSFS, we prefer to choose 1 CFS ranked baseline feature.
*e CFS enhances the performance of Näıve Bayes with the
same detection accuracy parallel to the original order of
features with a lesser number of features. *erefore, the first
feature of baseline ranked through CFS ranker has been
shortlisted and sent to feature bank for collaboration.

*e performance of Näıve Bayes on CFS, FSFS, and
MIFS and the original order of VFF, TFF, and BF features
have been presented in Table 4. *e feature threshold col-
umn indicates theminimumnumber of features identified to
produce maximum detection accuracy under the concern
settings. So, a total of 3 FRFS ranked vocal fold features. 3
CFS ranked time frequency features and 1 CFS ranked
baseline features are identified for feature collaboration.

4.2. Performance Analysis of Collaborative Parkinson’s
Detection. As the first stage of collaborative Parkinson’s
detection scheme, a bank of 7 collaborative features com-
prising VFF, TFF, BF has been prepared. *ose 7 features
have been undergone 10-fold cross validation on Naı̈ve
Bayes classifier.*e result obtained both for Parkinson’s and
control subjects has been presented in Table 5.
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Figure 2: *e process of collaborative Parkinson’s detection.

Table 3: Settings used for Naı̈ve Bayes.

Settings Value
Batch size 100
Use kernel estimator True
Use supervised discretization False
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According to Table 5, the sensitivity of Parkinson’s
subjects and specificity of control subjects are satisfactory.
*e specificity of 0.926 for control subjects indicates that the
collaborative Parkinson’s detection model correctly detects
negative results for 92.6% of control subjects who have
undergone the test. Similarly, the sensitivity of 0.926 for
Parkinson’s subjects pointed out that the model will cor-
rectly return a positive result for 92.6% of the disease
subjects. Similarly, a precision of 0.817 indicates a total of
174 subjects are suffering from Parkinson’s out of all the
subjects that are predicted as Parkinson’s, which is im-
pressive in the context of medical diagnosis. On the other

hand, the Receiver Operating Curve (ROC) represents an
excellent AUC (>71%). *e Precision-Recall Curve (PRC)
represents 0.905, which is again in an acceptable range. *e
ROC and the PRC of subjects predicted as control or
Parkinson’s have been presented in Figure 6.

According to Figure 6(a), the ROC of both the Control
and Parkinson’s subjects is entirely satisfactory. *e curves
are tending nicely towards the true positive rate. *e curves
claim 76.2% area of the plot both for Controls and Par-
kinson’s subjects. On the other hand, the PRC is convincing
for Parkinson’s subjects, whereas for the control subjects, the
PRC is not convincing (Figure 6(b)).

Table 4: Highest detection accuracy of Naı̈ve Bayes due to ranked acoustic features and original features.

Feature selection techniques
Vocal fold Time frequency Baseline

Feature threshold Accuracy Feature threshold Accuracy Feature threshold Accuracy
CFS 10 76.59 3 75.79 1 75.40
FSFS 3 76.59 2 73.41 3 76.59
MIFS 6 76.59 1 73.81 1 74.60
Original 12 76.59 1 66.67 3 75.40

Table 5: Performance of collaborative Parkinson’s detection on Naı̈ve Bayes.

Subjects Sensitivity Specificity Precision F-measure MCC ROC area PRC area
Control 0.391 0.926 0.641 0.485 0.380 0.762 0.514
Parkinson’s 0.926 0.391 0.817 0.868 0.380 0.762 0.905
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Figure 4: Classification accuracy of Näıve Bayes with change in original features and ranked features on TFF.
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4.3. Performance Comparison with Other State-of-the-Art
Models. *is section highlights the comparison of the
proposed work with other similar classifiers for Parkinson’s
disease detection. *e seven collaborative features used are
also passed to the C4.5 decision tree, k-Nearest Neighbor,
Logistic Regression, Neural Network, and Random Forest
classifiers. *e hold-out validation method has been
employed to validate the proposed model with other state-
of-the-art approaches. In the view of hold-out validation, the
training instances are prepared with 30% of the subjects, and
the testing instances are 70% of subjects randomly. It is
observed that Naı̈ve Bayes on collaborative features excels
with 78.97% of detection accuracy with the lowest ever
training time. *e k-Nearest Neighbor suffers on the col-
laborative features with the lowest detection accuracy of
67.46%. However, the training time of k-Nearest Neighbor is
at par with that of Näıve Bayes. On the other hand, Logistic
Regression shows a close performance outcome of Näıve
Bayes with a bit of training time of 0.03 s. *e detailed
performance outcomes of the proposed approach, along
with others, are presented in Table 6.

In a subsequent attempt, errors generated by the proposed
collaborative Parkinson’s detection system have been ob-
served along with peer supervised classifiers. *e errors
generated by the various classifiers along with collaborative
features based on Näıve Bayes represent an inconclusive
result. It is because the collaborative PDS shows better results
for Mean Absolute Error (MAE). In contrast, it shows at par
results with other classifiers in Root Mean Squared Error
(RMSE), Relative Absolute Error (RAE), and Root Relative
Squared Error (RRSE).*e outcome of error matrices such as
Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Relative Absolute Error (RAE), and Root Relative
Squared Error (RRSE) have been presented in Table 7.

Similarly, the Näıve Bayes based on collaborative fea-
tures is also compared with other classifiers through ROC
and PRC. *e results about the various classifiers have been
outlined in Table 8.

In Table 8, Näıve Bayes represents exceptional ROC and
PRC Values of 76% and 81%. *e results appear to be far
better than that of the k-Nearest Neighbor and C4.5 decision
tree. *e Logistic Regression is the only classifier that closely
competes with Naı̈ve Bayes. *e ROC and PRC are visually
represented for all classifiers, including Näıve Bayes in
Figure 7 for control and Parkinson’s subjects.

ROC of all the classifiers, including Näıve Bayes, can be
seen more towards True Positive Rates. However, C4.5 and
k-Nearest Neighbor suffers for controls but shows marginal
results for Parkinson’s subjects. In addition, with the pro-
gression of false positives, k-Nearest Neighbor reveals low
true positive rates, and thus, results in low AUC. On the
other hand, while evaluating PRC, it is found that Naı̈ve
Bayes outperforms with superior precision. *erefore, the
proposed collaborative features on Näıve Bayes is a practical
approach to Parkinson’s detection. At the final stage of
analysis, the proposed collaborative features-based Parkin-
son’s detection system has been compared with the current
state-of-the-art function-based methods, viz., Avuçlu and
Elen [18], Bourouhou et al. [19], Zhang et al. [20], Meghraoui
et al. [21], Kadiri et al. [22], Polat and Nour [25], Xiong and
Lu [26] and Mekyska et al. [28]. Since our approach is based
on a function-based approach, most of the methods taken
for comparison belong to function-based approaches such as
Näıve Bayes and Support Vector Machine (SVM). *e
comparison has been conducted in two different sets of
performance matrices. At first, the standard detection ac-
curacy has been used for the comparison (Table 9). Finally,
the Näıve Bayes based Parkinson’s detection mechanisms
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Figure 6: (a) Receiver Operating Curve of collaborative Parkinson’s detection for Parkinson’s and Control subjects. (b) Precision-Recall
Curve of collaborative Parkinson’s detection for Parkinson’s and Control subjects.
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Table 6: Detection accuracy and misclassification rate of collaborative Parkinson’s Detection using Naı̈ve Bayes and other supervised
classifiers.

Classifiers Number of features Training time (Sec) Accuracy (%) Misclassification rate (%)
C4.5 decision tree 7 0.03 73.81 26.19
k-Nearest Neighbor 7 0.01 67.46 32.54
Logistic Regression 7 0.03 77.38 22.62
Neural Network 7 0.14 75.40 24.60
Random Forest 7 0.21 76.98 23.02
Naı̈ve Bayes 7 0.01 78.97 21.03

Table 7: Error matrices of collaborative Parkinson’s detection using Naive Bayes.

Classifier Attributes MAE RMSE RAE RRSE
C4.5 decision tree 7 0.33 0.46 86.12 104.99
k-Nearest Neighbor 7 0.33 0.57 86.02 130.45
Logistic Regression 7 0.31 0.40 80.33 91.63
Neural Network 7 0.31 0.42 80.42 96.26
Random Forest 7 0.31 0.40 81.26 92.33
Naı̈ve Bayes 7 0.26 0.41 68.47 95.24

Table 8: ROC area and PRC area of collaborative Parkinson’s detection using Naive Bayes.

Classifier Attributes ROC area PRC area
C4.5 decision tree 7 0.60 0.69
k-Nearest Neighbor 7 0.56 0.65
Logistic Regression 7 0.75 0.80
Neural Network 7 0.73 0.79
Random Forest 7 0.74 0.78
Naı̈ve Bayes 7 0.76 0.81
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Figure 7: Continued.
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are compared and analyzed using many other additional
performance matrices and are presented in Table 10.

*e detection result of five recent Parkinson’s disease
detection (PDD) schemes has been tabulated in Table 9
along with the proposed collaborative PDD scheme. All
these methods used function-based approaches. It has been
observed that the proposed collaborative approach claims
the highest detection accuracy with the relatively lowest
number of vocal features. *ough the SVM approach of
Kadiri et al. [22] shows 73.32% detection accuracy, which is
close to our approach, but at the same time, the number of
vocal features used is not clearly highlighted.

A detailed comparison through additional performance
measures helps to visualize the capability of the proposed
approach over other Näıve Bayes approaches. For this
comparison, the Avuçlu and Elen [18] and Bourouhou et al.
[19] methods are taken into consideration. According to
Table 10, the Avuçlu and Elen [18] method has the highest
sensitivity score of 0.949. *erefore, the concerned method
indicates that 94.9% of Parkinson’s subjects are detected
among all the Parkinson’s subjects. On the other hand, our
proposed PD detection model is more precise with a 0.926
precision rate. In addition, it shows the lowest false positive
rate in detecting control subjects as Parkinson’s.

5. Discussion, Limitations, and Future Works

Like any other detection model, the proposed method also
suffers few limitations.*e proposedmodel is based on a voice
signal dataset provided by the Department of Neurology in

Cerrahpaşa, Faculty of Medicine, Istanbul. *e pronunciation
ascent of the sustained vowel /a/ is different for different
geographical regions. As a result, the model may generate
significant false positives or false negatives on the voice signals
of subjects of other continents. *erefore, it is essential for
further evaluation of other voice signal datasets. As future
work, the proposed model can be extended to a graphical user
interface mode which must have scope to be trained on
varying Parkinson’s signal datasets. Gender and age of subjects
are other aspects that need a detailed investigation, which the
proposed approach lacks. It should be noted that gender and
age play a significant role in vocal performance both for
control and Parkinson’s subjects [36, 37]. An unbalanced
dataset age and gender concerning disease pose considerable
issues towards the detection process [36–39]. *erefore, the
number of participants in the dataset should be balanced based
on genders and age for both Parkinson’s and control classes.
*e assessment of gender and age parameters is missing in this
research work and will remain a limitation. *e disease se-
verity is another factor that allows a detector to determine the
stage of the PD. In the future, the proposed work can be
modeled to predict the severity of the disease.

A good Parkinson’s detection dataset containing acoustic
features of the subjects needs to address various factors such as
the balance of gender concerning age, microphone quality,
noise, the robustness of analysis procedure, number of subjects,
disease severity, and influence of medication. Recently, Rusz
et al. [40] presented a guideline for speech recording, which can
prepare acoustic datasets for Parkinson’s detection. *e dataset
considered here addresses and meets almost all the parameters
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Figure 7: *e receiver operating and precision-recall curves of the collaborative Parkinson’s detection for Naive Bayes and its comparison
with other supervised learning techniques. (a) Performance comparison, receiver operating curves, on control subjects. (b) Performance
comparison, receiver operating curves, on Parkinson’s subjects. (c) Performance comparison, precision-recall curves, on control subjects.
(d) Performance comparison, precision-recall curves, on Parkinson’s subjects.
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stated above. However, it still fails to reveal the disease severity,
which is a critical issue for any Parkinson’s detection system that
relies on the dataset used here. *erefore, the proposed work
needs to be validated for disease severity prediction, which will
make the application practical for clinical use.

Similarly, incorporating event-driven methods may
improve the performance of suggested solutions in terms of
computational effectiveness, compression, and power con-
sumption [41–44]. Future work considering these aspects
may be investigated.

6. Conclusion

In this article, a collaborative PDD model has been
proposed. *e model relies on the vocal fold, time fre-
quency, and baseline features of both control and Par-
kinson’s subjects. *ese vocal features are first ranked
through correlation, fisher score, and mutual informa-
tion-based feature selection schemes. *e ranked features
have been passed sequentially to many classifiers where
Naı̈ve Bayes evolved as the best classifier for the proposed
model. *e feature points are also identified based on the
highest detection accuracy reported by Naı̈ve Bayes.
Relevant features are selected based on these feature
points. A total of 7 ranked features has been selected from
the vocal fold, time frequency, and baseline feature seg-
ments. *e detection model based on the 7 ranked features
shows promising detection accuracy of 78.97% and pre-
cision of 0.926, under the hold-out cross validation. *e
proposed model has also been compared with other
function-based detection models, where our PD detection
model proved to be accurate and precise. Finally, an
extensive discussion has been carried out regarding the
shortcoming and future direction of the proposed Par-
kinson’s detection model.
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