
Research Article
Identification ofHubGenes ofKeloid Fibroblasts byCoexpression
Network Analysis and Degree Algorithm

Xianglan Li,1 Rihua Jiang ,1 Haiguo Jin,2 and Zhehao Huang 3

1Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
2Department of Radiotherapy, Jilin Guowen Hospital, Changchun 130000, Jilin, China
3Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China

Correspondence should be addressed to Zhehao Huang; ms005@jlu.edu.cn

Received 25 November 2021; Revised 13 December 2021; Accepted 15 December 2021; Published 8 January 2022

Academic Editor: Enas Abdulhay

Copyright © 2022 Xianglan Li et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Keloid is a benign dermal tumor characterized by abnormal proliferation and invasion of fibroblasts. )e estab-
lishment of biomarkers is essential for the diagnosis and treatment of keloids.Methods. We systematically identified coexpression
modules using the weighted gene coexpression network analysis method (WGCNA). Differential expressed genes (DEGs) in
GSE145725 and genes in significant modules were integrated to identify overlapping key genes. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed, as well as protein-protein interaction
(PPI) network construction for hub gene screening. Results. Using the R package ofWGCNA, 22 coexpression modules consisting
of different genes were identified from the top 5,000 genes with maximum mean absolute deviation in 19 human fibroblast
samples. Blue-green and yellow modules were identified as the most important modules, where genes overlapping with DEGs
were identified as key genes. We identified the most critical functions and pathways as extracellular structure organization,
vascular smooth muscle contraction, and the cGMP-PKG signaling pathway. Hub genes from key genes as BMP4, MSX1,
HAND2, TBX2, SIX1, IRX1, EDN1, DLX5, MEF2C, and DLX2 were identified. Conclusion. )e blue-green and yellow modules
may play an important role in the pathogenesis of keloid. 10 hub genes were identified as potential biomarkers and therapeutic
targets for keloid.

1. Introduction

Keloids are mainly associated with excessive proliferation of
fibroblasts andmassive deposition of the extracellular matrix
following skin injury [1]. )e clinical presentation of keloids
is primarily a growth of scar tissue above the skin, usually
accompanied by pruritus and pain [2]. Some studies have
shown that keloid formation is closely related to genetic
regulation, inflammatory factors, cytokines, and immune
factors [3, 4]. )e treatment of keloid is not ideal because of
unclear pathogenesis and regulatory mechanisms underly-
ing keloids [5]. For these reasons, the identification of hub
genes involved in keloid is urgent and highly demanded for
improving the clinical outcome.

Keloids have some similarities to tumors; in particular,
the fibroblasts in keloids have unlimited proliferation and

invasive growth [6]. Fibroblasts are the most abundant cells
in the dermis and maintain dermal structure by producing
an extracellular matrix (ECM) [7]. )e ECM is in a constant
state of synthesis, degradation, and remodeling, both under
normal conditions and in the presence of disease or injury
[8]. After a 2-3 d period of haemostasis and inflammation,
the dermis undergoes a proliferative phase in which fibro-
blasts move from a homeostatic state to an activated state,
where their ability to proliferate and migrate is significantly
enhanced and they differentiate into a unique phenotype,
myofibroblasts, which have stronger contractile properties
and synthesized the ECMmore rapidly, thereby accelerating
wound closure [9]. Once the tissue is fully repaired, these
myofibroblasts undergo apoptosis and senescence or revert
to deactivated fibroblasts [10]. However, the persistence of
active fibroblasts (including myofibroblasts) at the site of
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injury may lead to excessive deposition of the ECM and the
formation of abnormal scarring. So, the thickness of the scar
is usually positively correlated with the number of fibroblasts
in the dermis and the density of collagen (the main com-
ponent of the ECM). )erefore, inhibition of fibroblast
proliferation has long been a hot topic in scar research.

Weighted gene coexpression network (WGCNA) anal-
ysis [11] first clusters genes with similar expression patterns
into a module by calculating expression correlations be-
tween genes and then analyses the correlation between the
module and the sample characteristics, such as clinico-
pathological parameters and treatments. WGCNA rapidly
extracts modules and genes that correlate with sample
characteristics from transcriptomic data and obtains bio-
markers with better biological significance than differential
expression analysis based on comparative intramodule
connectivity and gene significance [12]. In this study, we
constructed a WGCNA-based gene coexpression network,
identifying 22 modules. We also performed GO and KEGG
enrichment analysis of genes overlapping in 2 modules
closely related to keloid fibroblast and DEGs. A PPI network
was also constructed, and 10 hub genes were screened out,
including BMP4,MSX1, HAND2, TBX2, SIX1, IRX1, EDN1,
DLX5, MEF2C, and DLX2. )ese hub genes may be bio-
markers for diagnosis and therapy of keloid.

2. Methods

2.1. Data Collection. )e gene expression dataset
GSE145725 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc�GSE145725) provided by Yuanyuan Kang et al.
[13] was downloaded from the Gene Expression Omnibus
(GEO) database [14]. 10 cell lines (5 normal fibroblast and 5
keloid fibroblast) were grown in replicate cultures and
subjected to RNA extraction. One of the keloid samples was
removed after QC. RNA samples with RNA integrity
number (RIN) above 9.8 were hybridized to GeneChip
PrimeView Human Gene Expression Arrays (Affymetrix).

2.2.Weighted Gene Correlation Network Analysis (WGCNA).
WGCNA aims to identify coexpressed gene modules to
explore the relationship between gene networks and phe-
notypes and to examine the core genes in the network [11].
Only top 5000 genes with maximum mean absolute devi-
ation were selected, and abnormal samples were detected
using the Z-score method, with Z-score value −2.5 as a cutoff
for identifying outliers. According to the scale-free topology
criterion, 22 was determined as the optimal soft threshold,
with minimum module size 30 and the module detection
sensitivity deep split 2. Based on the soft threshold, scale-free
network and topology matrices were constructed. )e gene
modules were dynamically cut and eigengenes were calcu-
lated, with 30 as the minimum number of genes in the
module. According to the module eigengenes, intermodule
correlations were constructed and hierarchical clustering
was performed. Finally, 22 modules were obtained and
Pearson correlations between modules and clinical features
were analyzed.

2.3. Differential ExpressionAnalysis. )eGSE145725 dataset
was downloaded from the GEO database via the R (version
3.6.3) package of GEO query 2.54.1 [15]. )e probes cor-
responding to more than one molecule were removed, and
only the probe with the largest signal value was retained
when probes correspond to the same molecule. )en, the
samples were normalized by box plots, and the clustering
between sample groups was demonstrated by PCA plots and
UMAP plots. )e limma 3.42.2 package was then used for
the differential expression analysis between the keloid fi-
broblast group and normal fibroblast. )e top 20 differen-
tially expressed genes (DEGs) were visualized as heatmap
using the ComplexHeatmap 2.2.0 package [16] with the
clustering method of Euclidean distances.

2.4. Key Gene Identification and Enrichment Analysis. )e
green-yellow and blue modules are the modules most as-
sociated with the keloid fibroblast phenotype. )e over-
lapped genes in the two modules and DEGs were identified
as the key genes. Using the org.Hs.eg.db 3.10.0 package, the
key gene symbols were converted into Entrez IDs and then
subjected to Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis
through the cluster Profiler 3.14.3 package [17].

2.5. Protein-Protein Interaction (PPI) Network Construction.
Key genes were uploaded to the STRING database (version
11.0) to construct the PPI network [18]. Interactions with a
score above 0.4 were considered significant.)e PPI network
was visualized using Cytoscape software (version 3.8.3) [19].
Top 10 key genes with highest degree were detected as hub
genes by CytoHubba plugin.

2.6. Correlation Analysis and Expression of Hub Genes.
Correlations between hub genes were analyzed, and
Spearman’s correlation coefficients were calculated for
variables that did not satisfy the normal distribution
(P< 0.05). )e correlation matrix and scatter plot were also
plotted using the ggplot2 3.3.3 package.

)e expression profiles of the hub genes were first
subjected to the Shapiro–Wilk normality test. )eWilcoxon
rank sum test was chosen when the gene expression values
did not satisfy the normality test (P< 0.05).

3. Results

3.1. WGCNA. To identify significant modules, firstly, ex-
pression profile distribution of all samples was checked and
abnormal samples were detected.)e results showed that the
median across the samples was essentially at one level, in-
dicating good normalization between samples (Figure 1(a)).
Besides, no outlier sample was found (Figure 1(b)). )en, all
given soft powers were traversed to get the smallest one
which can make the correlation network conform to non-
scale network attributes, and a soft threshold of 22 was
chosen (Figure 1(c)). Based on the soft threshold power and
dynamic tree cut, 22 modules were identified (Figure 2(a)).
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Figure 1: Expression data preprocess and soft power detection. (a) Boxplot plus violin plot showing the expression profile distribution of all
keloid fibroblasts samples. (b) Hierarchical clustering showing sample correlations and outlier samples. Samples labeled with red bars in the
outlier C row are detected potential outlier samples. (c) Network topology for different soft powers. )e soft threshold power in the
WGCNA was determined based on a scale-free R2 (R2 � 0.85).
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To clarify the interrelationship between the 22 coexpression
modules, we performed a cluster analysis (Figure 2(b)). 22
modules differed significantly from each other (Figure 2(c)).
Several modules were associated with keloid fibroblasts. In
particular, the blue module was most positively correlated
with keloid fibroblasts, and the green-yellow module was the
most negatively correlated with keloid fibroblasts.

3.2. Differential Expression Analysis. Meanwhile, we per-
formed differential expression analysis on the GSE145725
dataset to identify aberrantly expressed genes in keloid
fibroblasts. Principal component analysis (PCA) plots
showed significant differences between the keloid fibro-
blast and normal fibroblast groups (Figure 3(a)). Subse-
quently, 19043 genes were filtered. Of these, 458 IDs met
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Figure 2: Construction of coexpression modules. (a), WGCNA module plot. Dynamic Tree Cut represents initial modules. Module colors
represent final modules. Each branch in the hierarchical tree or each vertical line in color bars represents one gene. Genes not attributed to
anymodule would be colored by grey. (b) Correlation of all identifiedmodules. Each color represents onemodule. (c)WGCNAmodule trait
correlation plot. Each row represents onemodule. Each column represents one trait attribute. Blue color represents negative correlation, and
red color represents positive correlation.
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the threshold of |log2(FC)| > 1 and p.adj<0.05, under
which the number of upregulated gene in keloid fibro-
blasts was 215 and in normal fibroblasts was 243
(Figure 3(b)). In addition, we show the expression profile
of top 20 genes with high and low expression in a heat map
(Figure 3(c)).

3.3. Key Gene Screening and Enrichment Analysis. From
WGCNA modules, we selected the blue module and green-
yellow module as the important modules (Figure 4(a)). )e
genes in these modules were then intersected with DEGs, and
the 186 overlapped genes were regarded as key genes
(Figure 4(b)). To understanding the functions and pathways in
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Figure 3: Differential genes’ screening on the GSE145725 dataset. (a) PCA plot. (b) Volcano plot, with threshold as |logFC|> 1 & p.adj
<0.05. (c) Heatmap visualizing the expression profile of top 20 genes with the highest or lowest expression.
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which these genes are involved, GO and KEGG enrichment
analysis were performed. )rough ID conversion, 176 Entrez
ID was filtered. Under the criterion of p.adj<0.05 and q
value<0.2, there were 537 entries for biological process (BP), 3
entries for molecular function (MF), and 4 entries for KEGG.
In GO-BP analysis, a bubble plot showed that key genes were
significantly enriched in the regulation of supramolecular
fiber organization, extracellular structure organization,

extracellular matrix organization, regulation of cell growth,
positive regulation of cell cycle, connective tissue develop-
ment, and extracellular structure organization (Figure 4(c)).
Oxidoreductase activity, acting on the CH-NH2 group of
donors, oxygen as the acceptor, DNA-binding transcription
activator activity, RNA polymerase II-specific, DNA-binding
transcription repressor activity, and RNA polymerase II-
specific were the significant MF entries (Figure 4(d)). Besides,
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Figure 4: Key genes’ screening and function prediction. (a))e scatterplot reveals a strong correlation between module membership (MM)
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key genes were involved in the vascular smooth muscle
contraction, cGMP-PKG signaling pathway, renin secretion,
and AGE-RAGE signaling pathway in diabetic complications
(Figure 4(e)). )ere were no GO-CC enrichment terms.

3.4. HubGene Identification. To find the hub genes in keloid
fibroblasts, we uploaded the 186 key genes to the String
database. Under the threshold of 0.4 interaction score, a PPI
network was constructed (Figure 5(a)). )en, the interaction
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(b)

Figure 5: PPI network construction. (a) PPI network was constructed based on 186 key genes in the String website, with interaction score
0.4. (b) Top 10 hub genes were identified by degree algorithm in Cytoscape software.
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data were downloaded and imported into Cytoscape soft-
ware. Filtered by CytoHubba calculation, the top 10 hub
genes with highest degree were BMP4, MSX1, HAND2,
TBX2, SIX1, IRX1, EDN1, DLX5, MEF2C, and DLX2
(Figure 5(b)). )en, we calculated the correlation of hub
gene expression with Spearman’s rank (rs) test. )ere was a
positive correlation between BMP4 and MSX1, between
MSX1 and SIX1, between HAND2 and EDN1, between

HAND2 and DLX5, between HAND2 and DLX2, and be-
tween DLX5 and DLX2. Additionally, IRX1 was negatively
correlated with HAND2. MEF2C was negatively correlated
with SIX1, EDN1, and DLX5 (Figures 6(a) and 6(b)). In
terms of expression level, BMP4, MSX1, TBX2, SIX1, DLX5,
and DLX2 were lowly expressed, while HAND2, IRX1,
EDN1, and MEF2C were highly expressed in keloid fibro-
blasts (Figure 7).
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Figure 6: Hub gene correlation. Correlation among hub genes was calculated by Spearman’s method and visualized as a matrix heat map (a)
and scatter plot (b).
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4. Discussion

Despite different treatments such as compression therapy,
corticosteroid injection, and surgical methods, the recur-
rence rate of keloids remains high [20]. To identify better
treatment targets of keloid, this study used WGCNA
analysis, differential expression analysis, and degree algo-
rithm and screened out 10 hub genes associated with keloid
fibroblast from the GSE145725 dataset, including BMP4,
MSX1, HAND2, TBX2, SIX1, IRX1, EDN1, DLX5, MEF2C,
and DLX2.

Among these hub genes, only BMP4 was reported in
keloid. As we know, this gene encodes a secreted ligand of the
transforming growth factor (TGF)-β superfamily of proteins.
Ligands of this family bind various TGF-β receptors leading
to recruitment and activation of SMAD family transcription
factors that regulate gene expression [21]. According to the
work of Xing Dai et al., activation of the BMP4/Smad sig-
naling pathway may promote transdifferentiation of primary
keloid myofibroblasts to adipocyte-like cells [22].

)e emergence of myofibroblasts is an inevitable process
of tissue repair, and this transdifferentiation process is de-
pendent on signaling through the TGF-β1/Smads pathway,
whose activation leads to the binding of Smad3 to Smad4
and the initiation of fibrotic genes expression such as
ACTA2 [23, 24].)e TGF-β1/Smads signaling pathway runs
through the entire process of wound healing from the in-
flammatory phase to the remodeling phase and is one of the
major pathways regulating scar formation [25]. BMP4 could
facilitate this pathway, thus suggesting the reliability of the
results of this study.

In GO-BP-enriched terms shown in the bubble plot, BMP4
was enriched in terms including smooth muscle cell differ-
entiation, regulation of smooth muscle cell proliferation,
smooth muscle cell proliferation, and connective tissue de-
velopment. )ese BPs were all related to keloid fibroblasts or
keloid [26]. In addition to BMP4, other hub genes were also
involved in many GO-BP. EDN1, in particular has a regulatory
effect on many keloid-related BPs, including regulation of
supramolecular fiber organization, myofibril assembly, regu-
lation of smooth muscle contraction, smooth muscle cell
differentiation, smooth muscle contraction, regulation of

smooth muscle cell proliferation, smooth muscle cell prolif-
eration, regulation of smooth muscle cell migration, smooth
muscle cell migration, smooth muscle cell apoptotic process,
regulation of smooth muscle cell apoptotic process, regulation
of cell growth, positive regulation of cell cycle process, positive
regulation of cell cycle, connective tissue development.

Besides, KEGG enrichment analysis showed that the
cGMP-PKG signaling pathway was significantly enriched.
As we know, this pathway mediates platelet activation,
cardioprotection, smooth muscle relaxation, decrease in
intracellular free calcium, and reduced cardiac hypertrophy
[27]. Importantly, PKG is a protein kinase that when acti-
vated by the second messenger cGMP, phosphorylates
VASP, thereby promoting cell growth and differentiation
[28], and phosphorylates Bad [29] and CREB [30], thereby
decreasing the activity of caspase-3 and inhibiting apoptosis.

Although the sample size of this study is not rich enough
and there is no external dataset to validate the screening
results, this study is still the first to identify key aberrant
genes in keloid fibroblast based on the WGCNA algorithm,
which provides therapeutic targets for keloid and reference
for future research. )e limit is that there are not enough
solid foundation to support the opinion. Further experi-
ments are still needed to confirm the study.

5. Conclusions

)e blue-green and yellow modules may play an important
role in the pathogenesis of keloid. 10 hub genes were
identified as potential biomarkers and therapeutic targets for
keloid.
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