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Electrocardiogram signal (ECG) is considered a significant biological signal employed to diagnose heart diseases. An ECG signal
allows the demonstration of the cyclical contraction and relaxation of human heart muscles. This signal is a primary and
noninvasive tool employed to recognize the actual life threat related to the heart. Abnormal ECG heartbeat and arrhythmia are the
possible symptoms of severe heart diseases that can lead to death. Premature ventricular contraction (PVC) is one of the most
common arrhythmias which begins from the lower chamber of the heart and can cause cardiac arrest, palpitation, and other
symptoms affecting all activities of a patient. Nowadays, computer-assisted techniques reduce doctors’ burden to assess heart
arrhythmia and heart disease automatically. In this study, we propose a PVC recognition based on a deep learning approach using
the MIT-BIH arrhythmia database. Firstly, 10 heartbeat and statistical features including three morphological features (RS
amplitude, QR amplitude, and QRS width) and seven statistical features are computed for each signal. The extraction process of
these features is conducted for 20 s of ECG data that create a feature vector. Next, these features are fed into a convolutional neural
network (CNN) to find unique patterns and classify them more effectively. The obtained results prove that our pipeline improves

the diagnosis performance more effectively.

1. Introduction

According to the World Health Organization, the main
cause of death worldwide is cardiovascular diseases (CVD).
An evaluation proved that 17.9 million people died from
CVD in 2019, indicating 32 of all global deaths [1].
According to the report of the sudden cardiac death in 2006
and latest standard in the American Heart Association
(AHA) on ventricular arrhythmias, the epidemiology of
ventricular arrhythmias entails a series of clinical applica-
tions and risk factors. These arrhythmias vary from sus-
tained ventricular tachycardia, ventricular tachycardia, and
premature complexes in people without cardiac problems
background or ventricular tachyarrhythmia which leads to a
sudden death [2]. Electrocardiogram (ECG) is a graph that
records the fluctuations in electrical activity and is the main
tool for predicting heart diseases. This ECG signal is

generated by each heart cycle of the heart and can be
recorded from the surface of each individual’s body. Each
ECG entails abundant pathological information and basic
functions of the heart [3, 4]. Hence, it is a vital means for the
diagnosis and examination of numerous arrhythmias. It is
also of great importance to the assessment of cardiac safety
and the assessment of numerous treatment techniques [4, 5].

A heart regular activity condition is reflected by a normal
heartbeat (NB). Premature ventricular contraction (PVC) is
a kind of ECG arrhythmias that is recognized to demonstrate
an anomaly in the regular cardiac rhythm. PVC is the most
common and widespread arrhythmia in the clinic, and it
characterizes the abnormal behaviour of signals generated
by ECG. PVC generates some variations in the heart rate
leading to disruption in the electric and mechanic heart
activity because of these delayed contractions (premature)
[6, 7]. It means that PVC can be considered a kind of
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arrhythmia caused by an ectopic cardiac pacemaker rep-
resented in the ventricle. On the ECG, these PVCs are
represented by bizarrely shaped and premature QRS com-
plexes that have a T wave larger than normal and are typ-
ically wider than 120 ms. At present, doctors and experts can
only employ the existing medical technology for recognizing
PVCs using their personal experience. So, these decisions
may lead to the wrong diagnosis because of long hours of
high-intensity work. The issue of PVC diagnosis due to its
pattern is quite changeable and is a challenging task, even for
the same patient. Recently, employing ECG-based com-
puter-aided diagnosis (CAD) systems, assisting doctors in
the interpretation of PVC can successfully progress the
efficiency of diagnosis [8-10].

In the last few years, machine learning (ML) approaches
have gained much interest for the analysis of medical signals
and images [11-16]. Deep learning (DL) pipelines are kinds of
ML and have reached better feature extraction and classifi-
cation outcomes compared to the state-of-the-art performance
in the different fields of computer vision tasks [17-19].

Casas et al. [7] tried to simplify the process of extracting
key features and employed some simple Bayesian generative
models for classifying the extracted features. They used three
classifiers including quadratic discriminant analysis (QDA),
Gaussian linear discriminant analysis (LDA), and Gaussian
Naive Bayes (GNB). Twenty seconds of succeeding ECG
beats that were recognized by an expert were used in [20] to
characterize a PVC episode. They explored 7 statistical
features and 3 morphological features. Then, all extracted
features were normalized and used as the input of a classifier.
They used an artificial neural network (ANN) for classifying
these features to classify them into PVC or non-PVC classes.
Oliveira et al. [21] suggested some simplified features and
explored from geometric figures constructed over QRS
complexes. In the first step, they rescaled the input signal
using a wavelet denoising approach. Next, the signal was
divided into separate parts to extract a new set of geometrical
features. Finally, these extracted features were classified
using eight different classifiers. Zhao et al. [22] suggested an
approach by combining the convolutional neural network
(CNN) and modified frequency slice wavelet transform
(MFSWT). Firstly, in each recording, the first 10s ECG
waveforms were transformed into time-frequency images
employing MESWT (frequency range of 0-50 Hz). Next,
using a CNN model with 25 layers, these images are clas-
sified. The proposed CNN model comprises five convolution
layers (kernel size of 3x3), five maximum pooling layers, five
ReLU layers, a flatten layer, five dropout layers, and two fully
connected layers.

In this paper, to overcome the problem of the similarity
between PVC and non-PVC heartbeats, a deep learning
approach is suggested which is based on an attention
mechanism. Our pipeline not only obtains a high rate of
accuracy but also diminishes the computation time.

2. Material and Method

We divide this section into two subsections. Firstly, we
describe the method of extracting features from an ECG
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signal. Then, the process of finding more informative fea-
tures employing a CNN model is described.

2.1. Feature Extraction. Feature extraction is a core building
block of every artificial intelligence system. The main goal of the
extracting features can be considered as finding distinct pat-
terns (the most informative and compacted set of features) to
increase the performance of the whole system [18, 23]. Besides,
feature extraction is utilized for extracting features from the
original 1D or 2D signals to perform a reliable classification
task. This exploring step is the most fundamental part of each
biomedical signal processing system because the performance
of a classifier might be degraded if the features are not chosen
well [24-26]. So, in this study, we aim to extract some key
features from a ECG signal.

An example of a normal ECG signal is demonstrated in
Figure 1. A normal ECG signal entails of 6 waveform parts:
T, U, R, S, P, and Q. The fragment from Q to S is dem-
onstrated as the QRS complex [9, 21, 22]. It represents
ventricular depolarization and contraction and is a key
clinical feature. Also, the distance among two maximum
points indicates the length of a heartbeat and is demon-
strated as the RR interval [6, 27, 28].

Group features play a significant role in the recognition
of the PVR. The heartbeat and statistical features can be
applied directly to the sequential RR cycle parts, so they are
good features for applying to a real-time recognition system
[28, 29].

Normally, the shape and size of the QRS complex are
changed using the PVC, so it can be observed that the
amplitude of the normal QRS complex is highly varied by the
PVC [9]. In this study, for each ECG segment, we generate
10 distinct features that include 3 morphological features
(RS amplitude, QR amplitude, and QRS width) and 7 sta-
tistical features implied in Table 1. The extracted statistical
features comprise of the mean and standard deviation of the
RR fragment. Also, it should be noticed that the percentage
of differences among the neighboring RR intervals is greater
than 10ms or 50 ms (pRR10 and pRR50) [30-32]. An ex-
planation of the time-domain features is demonstrated in
Table 1.

By employing the MIT-BIH arrhythmia database, 10
heartbeats and statistical features are computed for each
signal. The extraction process of these features is conducted
for 20's of ECG data that create a feature vector. Moreover,
each group of features is labeled as non-PVC or PVC. For
instance, a feature vector for a 20-second period is con-
sidered the PVC if it includes 95% PV C data; otherwise, it is
labeled a non-PVC. Also, using the min-max normalization
approach, we can normalize these features to values between
zero and one by (1) before applying them into the CNN
model for classification [6, 30].

NV = FV—Fmil? )
Fmax — Fmin

(1)

where FV is the feature value, NV implies the normalized
value of the feature, Fmax and Fmin are the maximum and
minimum values of features, respectively.



Journal of Healthcare Engineering

PR | |- ST

o

IEEEVEE

J
L
g © segment © segment
E P e—p < .
PR ,[Q
interval :
< S ;<+ ST interval ——
QRS
interval -

. l&———— QT interval ———p|

_PRinterval ———— " '>I

mm/mv 1 square=0.04 sec/0.1mv

FIGURE 1: An example of a normal ECG signal [27].

TaBLE 1: Explanation of statistical features.

Features Explanation

SDSD Standard deviation of dissimilarities among sequential RR intervals.

Ratio Ratio=(maxRR —minRR)/purr

rMSSD Square root of the mean of the squares of dissimilarities among neighboring RR intervals.
SDRR Standard deviation of all RR intervals

pRR10 Percentage of dissimilarities among neighboring RR intervals that are greater than 10 ms.
PRR50 Percentage of dissimilarities among neighboring RR intervals that are greater than 50 ms.
MeanRR Mean value of all RR intervals (u)

2.2. Our Deep Learning Model. In this section, we clarify how
the suggested convolutional neural network (CNN) is able to
learn more informative and unique details from the
extracted features. Convolutional neural networks (CNNs)
are kinds of neural networks (NNs) in the machine learning
(ML) fields that mimic the behaviour of a human brain.
CNNs are implemented to learn the distinct pattern and
relationship between the input and the output signals or
images employing their biases and weights [28, 33]. The key
parts of every CNN structure include (1) convolutional
(Conv) layer, (2) pooling layer, and (3) fully connected (FC)
layer [4, 34].

Each Conv layer is specified by its kernel biases and
weights which are specified in the training procedure by an
iterative update process. These Conv layers accept random
values at the beginning of the process and then regulated by
backpropagation strategy to minimize a cost function. All
obtained biases and weights are fixed in the testing Step
[35, 36].

CNNs work by passing data through some stack of
neurons, which are created as a series of layers. Usually, a

nonlinear activation function (or squashing function) is
applied to the extracted feature maps produced by a con-
volution layer. This activation function is responsible for
computing the weighted sum of inputs and biases and then
activate a neuron. Some widely used activation functions are
sigmoid, Tanh, and rectified linear activation function
(ReLU) [37, 38]. In this study, the ReLU activation function
is employed.

Pooling layers are employed for reducing the size of the
extracted feature maps. Consequently, it diminishes the
number of neurons that need to be learned and the amount
of computation performed in the network. The pooling layer
summarizes the features present in an area of the feature
maps created by the former Conv layer. Some widely used
pooling methods are max-pooling and mean-pooling. In this
study, the max-pooling is employed. Fully connected layer
(FC layer) is simply, a feed forward neural network. The FC
layer forms one or more last few layers in the network. These
layers accept the output of the final pooling or Conv layer,
which is flattened before applying [13-39]. Our network is
displayed in Figure 2.
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FIGURE 2: The proposed CNN structure with two separate feature extracting routes.

As clearly demonstrated in Figure 2, our CNN model
accepts 10 features extracted from the last step and com-
prises of two feature extracting routes which are concate-
nated before applying to the FC layer. In the upper rout,
there are four convolutional layers in which the first three of
them do not use the pooling layer. In other words, the size of
the input feature maps that are fed and are extracted from
the first convolutional layers are the same. The first three
Conv layers are responsible for extracting low-level features
and the last Conv layer is used for extracting high-level
features. The kernel size in all convolution layers is 3 x 3. We
applied the pooling layer after the fourth convolution layer
to decrease the dimension of the extracted feature maps. The
next feature extracting route only has two convolution layers
in which only the last one applies to the pooling layer. Also,
the first and second Conv layers are responsible for
extracting low-level and high-level features, respectively.
These two separate routes permit the network to learn more
informative details about the signal. The parameters utilized
for training our network are described in Table 2.

3. Experiments

3.1. Dataset and Implementation Details. In this study, the
available public MIT-BIH arrhythmia database is employed
for assessment of our strategy experimental data [41, 42].
This standard database is one of the popular and broadly
utilized ECG databases in the world. The database includes
an overall of 48 records, each covering two 360 Hz signals,
each with a length of 650,000 samples and a duration of
approximately 30 minutes. The 48 records enclosed 23
records which are randomly chosen from more than 4,000
Holter recordings and numbered from 100 to 124 (some
numbers missing). The rest of 25 records which numbered
from 200 to 234 (some missing numbers) are clinically
noteworthy arrhythmias but are the records of uncommon.
The MIT-BIH data entail of three sections: (1) the comment
file [atr] that employs binary storage, (2) the data file [dat]
that is stored in the 212 format, and (3) the header file [hea]
that is stored in the ASCLL code.

By exploring the MIT-BIH arrhythmia database, it is
clear that the numbers of 102, 104, 107, and 217 cover paced

TaBLE 2: Parameters utilized to train our network.

Parameters Value
Input features 10 x 1
Output classes 2
Learning rate 0.0001
Max epochs 40
Activation function Softmax
Batch size 200
Optimizer Adam
Learning rate drop factor 0.2

beats. According to the Association for the Advancement of
Medical Instrumentation (AAMI), we discard 4 records and
use the rest of 44 records as investigational data. Moreover,
to compare with some other structures, all remaining 44
records are divided into two datasets Datal and Data2.
Datal is employed for training; Data2 is employed for
testing. More details about them are shown in Table 3. Each
dataset entails 22 records from the ECG database. Using the
AAMI standard, there are five kinds of heartbeats: Q, V, S, F,
and N. Before applying data into the classifier, we mark V
type as PVC type and remaining as non-PVC so that the
dataset entails only non-PVC and PVC groups.

3.2. Assessment Metrics. In this part, the assessment of the
method is clarified. The performance of the model is eval-
uated by considering four basic criteria: true negative (TN),
false positive (FP), false negative (FN), and true positive
(TP). By using these four criteria, all the other statistical
criteria can be computed. In this study, the true negative
implies that the PVC was not identified, and the arrhythmia
was not presented, while the true positive implies that a PVC
was recognized and the arrhythmia actually happened.
Moreover, the false negative demonstrates that a PVC was
not recognized, whereas the arrhythmia was observed.
Lastly, the false positive illustrates that a PVC was recog-
nized, but it actually did not happen. Precision or positive
predictive value (PPV) demonstrates the probability of being
true positive when the test is positive. Sensitivity (true
positive rate or recall) implies the ability of recognizing
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TaBLE 3: Description of the dataset and partitioning of all signals.
. Used for train PVC type Non-PVC type
Data Signals or test ) (non-V) Total
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214,
Data2 219, 221, 222, 228, 231, 232, 233, 234 Test 317 46539 49696
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, .

Datal 205, 207, 208, 209, 215, 220, 223, 230 Train 3648 47573 51221
DS1+DS2 44 signals - 6805 94112 100917
TaBLE 4: The performance of our strategy for some records.

Record no. PPV Recall F-score Record no. PPV Recall F-score
100 99.5 100 99.7 201 97.5 94.1 95.8
105 95.4 94.3 94.8 210 98.7 96.3 97.5
113 98.2 93.1 95.3 217 95.2 91.9 93.1
119 97.3 100 98.3 231 97.8 93.7 95.7

positive cases; the result with higher sensitivity has fewer
false negatives samples. The F-score (F-measure) is a
measure of a model’s accuracy on a dataset. These three
criteria are computed as follows [16, 23, 26]:

100. (2)

. TP
sensitivity orrecall = ——— x
TP +FN

PPV or precision = % 100%. (3)

T
TP + FP

2 X precision x recall

F= x 100%. (4)

precision + recall

3.3. Experimental Results and Discussion. The suggested
technique is implemented in MATLAB with the Mat-
ConvNet toolbox [43] on a PC with a GTX-1080 GPU, core
i7 3.2GHz CPU, and 8G memory. Table 4 exhibits the
performance of our strategy for some records. In this study,
we use QRS fragment analysis as an appropriate tool,
contributing to the revealing of ventricular hypertrophy,
heart arrhythmias, and other diseases [5]. We observed that
PVC beats (abnormal beats) entail QRS patterns broader
than normal beats. Also, their statistical features are
meaningfully diverse that permits PVC beats to be recog-
nized comparatively easily [3]. Many varieties of arrhythmia,
chiefly tachycardia and bradycardia, lead to changing in
statistical features [27]. Accordingly, heartbeat and statistical
features can be extracted directly from the sequential QRS
cycle items. So, we extracted 10 features for each ECG
fragment that play a key role for a classification task. For
instance, from record No. 119 that entails many PVC beats
in Table 4, it is clear that no PVCs were missed, but two
wrong (false) alarms are observed over the 30-minute
classification.

The PPV, F-score, and sensitivity values employing all
mentioned frameworks are described in Table 5. For each
index in Table 5, the highest PPV, F-score, and sensitivity
values are highlighted in bold. Notice that when using the Yu

TaBLE 5: Comparison between the suggested network and other
baseline models on MIT-BIH arrhythmia database.

Method PPV Recall F-score
(mean) (mean) (mean)
Allami et al. [20] 97.8 98.7 98.2
Pierleoni et al. [44] 86 87 86.5
Xie et al. [31] 95.4 97.8 96.6
Yu et al. [6] 98.1 97.2 97.6
Our approach 98.6 99.2 98.9

et al.’s approach [6], PPV was enhanced in comparison to
other strategies, but the values of recall utilizing the ap-
proaches by Allami et al. [20] and Xie et al. [31] are still
higher. Additionally, there is a minimum difference between
the values of recall employing those by Yu et al. [6] and Xie
et al. [31]. Pierleoni et al. [44] gained the worst outcomes for
all three measures. There was a diminish chiefly in the
positive class scores.

Moreover, it is clear that our approach and Allami et al.’s
approach [20] are more stable than the Grad-CAM by
Pierleoni et al. [44] and Xie et al. [31]. Meanwhile, Xie et al.
[31] showed the same performance, getting only one more
false negative and two more false positives. For Pierleoni et al.
[44], all measures are less than the other approaches and it
suffers from overfitting. The gap between the values of PPV by
employing Yu et al. [6] and Allami et al.’s approaches [20] is
not significant which is relatively smaller than this gap when
using Xie et al. [31] and Pierleoni et al.’s approaches [44]. In
ML techniques, how to design a suitable feature exploring
technique is a challenge task and the classification perfor-
mances are lower than the suggested pipeline. Moreover, our
technique not only enhances the accuracy of traditional ML
strategies but also is capable of automatically exploring and
biasing key features of raw ECG signals.

4. Discussion and Conclusions

In this study, a novel premature ventricular contraction
recognition based on a deep learning approach has



implemented benefits from the characterization of an ECG
signal. It means that each ECG signal has many informative
and unique characteristics to aid our method efficiently even
if dissimilar shapes are presented. We employed 10 distinct
features that include 3 morphological features (RS ampli-
tude, QR amplitude, and QRS width) and 7 statistical fea-
tures which are able to highlight distinction between
different parts of ECG signals. Moreover, we have employed
a CNN structure for identifying more unique features that
allows our pipeline to reach a higher classification perfor-
mance. This approach leads to diminishing the false positive
rate and increasing the true positive rate. Moreover, our
technique not only enhances the accuracy of traditional ML
strategies but also is capable of automatically exploring and
biasing key features of raw ECG signals. We conducted
comprehensive investigations, which demonstrate the ef-
fectiveness of our technique by the comparison with the
state-of-the-art strategies [40].

Data Availability

In this study, the available public MIT-BIH arrhythmia
database is employed for assessment of our strategy ex-
perimental data.
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