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In this paper, we mainly adopted 337 patients who had undergone the surgery on lymph node metastasis of papillary thyroid
carcinoma (PTC) as the sample population. In order to provide clinical reference for the intelligent decision-making in treatment
plan and improvement of prognosis, we utilized ultrasound features and imaging features to construct five early diagnosis models
for patients based on the ultrasound features, imaging features, and combined features. The model integrated with broad learning
system (BLS) showed the best performance, with the area under the curve (AUC) of 0.857 (95% confidence interval (CI):
0.811-0.902)) and the accuracy of 0.805 (95% CI: 0.759-0.850). For demographic and clinical features, the prediction effect was

also good, with the AUC more than 0.700.

1. Introduction

Papillary thyroid carcinoma (PTC) is one of the most
common pathologic types of thyroid cancer [1]. The current
clinical problem is to find regions where lymph node
metastasis is prone to occur [2]. This problem is usually
solved by utilizing the ultrasound technology, which is
also the first choice for thyroid cancer examination.
Ultrasound technology can determine whether the
patient has cervical lymph node metastasis before
surgery, which is of great significance for the selection
of surgical methods, radiotherapy and chemotherapy,
and the judgment of prognosis [3]. The major advantage
of machine learning is that the learning model can
improve treatment decisions for cancers and provide
clinical references to improve the prognosis [4]. Deep
learning models have been used in previous studies, but
it takes a lot of time in training stage [5-7].

As an effective and efficient incremental learning system,
broad learning system (BLS) can provide value for predic-
tion model, which largely reduced the time cost of model
training [5]. If combined with imaging omics, broad
learning features can then be utilized in establishing the
lymph node metastasis model [6-8]. Imaging omics is
mainly based on the extraction and analysis of images
features from CT, MRI, PET, and other medical images to
quantitatively evaluate diseases such as thyroid papillary
carcinoma and lymph nodes [9]. It can be used to diagnose
diseases, predict prognosis, and analyze biological behavior
of diseases [10]. Imaging omics was proved to be objective in
image extraction of lymph node features in PTC and had
important implications for prediction of clinical outcome
[11-15]. Since imaging omics has been successfully applied
to the diagnosis of thyroid cancer, lung cancer, liver cancer,
breast cancer, and other diseases [16-22], it will also be
employed in the present study.
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TABLE 1: Sensitivity analysis before and after gap-filling.

Variables Missing number ~ Before filling (n=428)  After filling (n=428) Statistics p

Carcinoembryonic antigen, M(Q;,Q5) 17 (3.97%) 1.42 (0.88, 2.10) 1.42 (0.89, 2.07) Z=-0.066 0.948
Free triiodothyroxine, mean + SD 8 (1.87%) 5.15+1.31 516+ 1.32 t=-0.06 0.949
Free thyroxine, mean + SD 8 (1.87%) 18.29+4.76 17.96 +3.70 t=1.12 0.261
Thyroid stimulating hormone, M(Q;,Q3) 8 (1.87%) 1.93 (1.12, 3.17) 1.96 (1.15, 3.19) Z=0.368 0.713
Thyroid globulin antibody, M(Q,,Qs) 8 (1.87%) 19.04 (12.98, 66.89) 18.66 (12.97, 57.48)  Z=-0.397  0.691
Maximum diameter of nodule, M(Q;,Q3) 1 (0.23%) 0.80 (0.50, 1.20) 0.80 (0.50, 1.20) Z=-0.055 0.956

To combine imaging omics with broad learning features,
random forest is employed to develop the basic analytic
models, which is a combination of decision trees [23]. Each
decision tree is trained by randomly generating a new data
set from the original data set. The result of random forest is
the decision of most decision trees [24-28]. But a single
model classification method is often prone to overfitting
problem. Many scholars often improve the prediction ac-
curacy through the combination of multiple single models,
which is called classifier combination method. Random
forest is an algorithm that proposed to solve the overfitting
problem of a single decision tree model [29]. Random forest
uses the bootstrap resampling method to extract multiple
samples from the original samples and then conducts de-
cision tree modeling for each bootstrap sample, and then
synthesizes multiple decision trees for prediction, and ob-
tains the final prediction result through voting [30, 31].

The organization of this article is as follows. We will use
preoperative ultrasound features and image analyses to
construct an early diagnosis model for lymph node me-
tastasis in PTC in Section 2. These models will be performed,
evaluated, and then integrated with BLS in Section 3.

2. Materials and Methods

2.1. Study Design and Population. This study was a cross-
sectional study which was approved by the Institutional
Review Board of The Affiliated Changzhou No. 2 People’s
Hospital with Nanjing Medical University (approval num-
ber: [2021]KY021-01). The sample population was 337 pa-
tients who had undergone PTC surgery in Changzhou
Second People’s Hospital after inclusion and exclusion.

The inclusion criteria were as follows: (1) patients aged
>18 years old; (2) PTC patients who received fine needle
biopsy before operation and were confirmed; (3) patients
without benign lesions or single malignant lesions; (4) pa-
tients who underwent extensive neck lymph node dissection;
(5) patients with complete clinical data.

The exclusion criteria were as follows: (1) patients who
received anticancer treatment such as radiotherapy and
chemotherapy before operation; (2) patients without un-
dergoing ultrasound examination before operation.

2.2. Missing Data Assessment. There were 428 nodules in 337
patients. Noting that each nodule had two or more ultra-
sound images from different angles, there were a total of 973
ultrasound images for 428 nodules in 337 patients. Alter-
natively, a total of 428 data and 973 representative ultra-
sound images were collected. Missing values in the data were

filled by random interpolation. Sensitivity analysis before
and after gap-filling is shown in Table 1.

2.3. Image Preprocessing and Classification. In the present
study, Lasso regression filtering is used for image processing
[32, 33]. The processes were to sample n original sample data
with the sample size of N and each observation object had an
equal probability of being selected, which was 1/N. The sample
was regarded as the whole, and the subsamples sampled were
regarded as samples from the sample. Such subsample was called
the bootstrap sample. The sampling process can be formulated as
follows. Let H(x) represent the random forest classification
result, h; (x) represent the classification result of a single decision
tree, Y represent the classification target, I(-) represent indic-
ative function, and the random forest classification model adopt
a simple voting strategy to complete the final classification.

(1) Each decision tree was generated by training sample
X with sample size K and random vector 6

(2) Random vector sequence {6, 1,...,K} was in-
dependently and identically distributed

(3) Random forest was the set of all decision trees
{h(X,6), k=1,2,...,K}

Among these processes, each decision tree model
h(X, 6,) had one vote to select the classification result of
input variable X: H (x) = max Zf-‘zl I(h;(x)=Y).

The remaining variable of image feature was gray-level
size zone matrix (GLSZM) entropy. The remaining three
variables were gender, age, and carcinoembryonic antigen in
the demographic information and clinical data, and the
remaining four features were the maximum diameter of
nodule in ultrasound features, aspect ratio, calcification, and
relative capsule position. BLS was established for image
classification through learning the variables in the model to
obtain the output variables. In the process of image classi-
fication, broad learning mapped the input data, constructed
the mapping features, and then activated the mapping fea-
tures to enhance the features, and output the two parts to-
gether. We screened out the new features by using the loss
function of the 1-norm in Lasso regression, and the new
features were merged into the random forest as follows:

Jwb)= argmin ). (3, )" + a )l

2.4. Establishment of the Diagnostic Models. For each nodule,
the ROI was delineated according to the gray image
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TaBLE 2: Characteristics comparison for the training and testing sets.

Variables Total (n=973) Training set (n=681)  Testing set (n=292) Statistics p

Gender, n (%)

Male 207 (21.27) 143 (21.00) 64 (21.92) -

Female 766 (78.73) 538 (79.00) 228 (78.08) X =0103 0748

Age, mean + SD 44.74+11.25 44.66 +11.05 4491+11.70 t=-0.32 0.752

BMI, mean + SD 23.87+£3.39 23.90+3.43 23.82+3.29 t=0.30 0.763

Carcinoembryonic antigen, M(Q;, Q3) 1.34 (0.86, 2.02) 1.34 (0.84, 2.02) 1.33 (0.89, 2.05) Z=0.067 0.947

The free triiodide, M(Q,, Q3) 5.10 (4.60, 5.50) 5.10 (4.60, 5.50) 5.00 (4.60, 5.50) Z=-0.201 0.841

Free thyroxine, mean + SD 18.61 +5.03 18.58 +4.80 18.67 £ 5.55 t=-0.24 0.812

T stimulating hormone, M(Q;, Qs) 1.91 (1.11, 3.19) 1.94 (1.15, 3.25) 1.78 (1.06, 2.99) Z=-1.374 0.169

T globulin antibody, M(Q;, Qs) 20.92 (12.98, 78.98) 20.92 (13.04, 83.68) 19.11(12.27, 73.34) Z=-0.982 0.326

Part, n (%)

Ru 105 (10.79) 73 (10.72) 32 (10.96)

Right middle school 266 (27.34) 199 (29.22) 67 (22.95)

Lower right 148 (15.21) 101 (14.83) 47 (16.10)

Left 73 (7.50) 47 (6.90) 26 (8.90) X2=6.065 0.416

Left middle school 237 (24.36) 167 (24.52) 70 (23.97)

The lower left 100 (10.28) 64 (9.40) 36 (12.33)

Isthmus 44 (4.52) 30 (4.41) 14 (4.79)

Max diameter of nodule, M(Q,, Q) 0.80 (0.54, 1.20) 0.80(0.53, 1.20) 0.80(0.57, 1.31) 7=0.867  0.386

Form, n (%)

Rules 95 (9.76) 64 (9.40) 31 (10.62)

Under-rule 318 (32.68) 217 (31.86) 101 (34.59) X2:l.327 0.515

Irregular 560 (57.55) 400 (58.74) 160 (54.79)

Boundary, n (%)

Clear 170 (17.47) 113 (16.59) 57 (19.52)

Lack of clarity 368 (37.82) 261 (38.33) 107 (36.64) XZ =1.226 0.542

Unclear or vague 435 (44.71) 307 (45.08) 128 (43.84)

Aspect ratio, n (%)

<1 415 (42.65) 282 (41.41) 133 (45.55) -

>1 558 (57.35) 399 (58.59) 159 (54.45) X =1431 0.232

Composition, n (%)

Cystic or almost totally cystic 1 (0.10) 1 (0.15) 0 (0.00)

Capsule solidity 19 (1.95) 13 (1.91) 6 (2.05) Fisher 1.000

Real or almost all real 953 (97.94) 667 (97.94) 286 (97.95)

Echo, n (%)

Isoechoic or hyperechoic 5 (0.51) 3 (0.44) 2 (0.68)

Low echo 926 (95.17) 649 (95.30) 277 (94.86) .

Extremely low echo 21 (2.16) 14 (2.06) 7 (2.40) Fisher 0.898

Mixed echo 21 (2.16) 15 (2.20) 6 (2.05)

Calcification, n (%)

No calcification 362 (37.20) 262 (38.47) 100 (34.25)

Coarse calcification 62 (6.37) 47 (6.90) 15 (5.14) .

Eggshell calcification 6 (0.62) 5 (0.73) 1 (0.34) Fisher —0.293

Microcalcification 543 (55.81) 367 (53.89) 176 (60.27)

Relative coating position, n (%)

Stay away from 398 (40.90) 286 (42.00) 112 (38.36)

Cling 485 (49.85) 333 (48.90) 152 (52.05) X2=1.123 0.570

Breakthrough 90 (9.25) 62 (9.10) 28 (9.59)

TI_DS classification, n (%) XZ =0.812 0.937

LNM transfer, n (%)

No 576 (59.20) 410 (60.21) 166 (56.85) -

Yes 397 (40.80) 271 (39.79) 126 (43.15) X =095 0.329

T: thyroid; TI_DS: ultrasonic thyroid imaging and data system; LNM: lymph node metastases.

selected in the largest long axis cross section. The early
diagnosis model of lymph node metastases (LNM) was
constructed by combining the preoperative ultrasound
features and ultrasound image features, as shown in

Figures 1(a) and 1(b). The focus area of PTC was
framed by the clinician, and then the imaging features
of the focus area were extracted by the pyradiomics
algorithm.
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TaBLE 3: The predictive performance of these models in the training and testing sets.

- 1H1vi 0, 1 1 0 0,
Models Cut Sensitivity (95%  Specificity (95% PPV (95% CI) NPV (95% CI) AUC (95% CI) Accuracy (95%
off CI) CI) CI)

Model 0.348 0.849 0.851 0.790 0.895 0.913 0.850

1? ’ (0.806-0.891) (0.817-0.886) (0.744-0.837) (0.864-0.925) (0.893-0.934) (0.823-0.877)
Model 0.348 0.738 0.771 0.710 0.795 0.813 0.757

1° : (0.661-0.815) (0.707-0.835) (0.632-0.788) (0.733-0.857) (0.762-0.863) (0.708-0.806)
Model 0.437 0.808 0.868 0.802 0.873 0.913 0.844

22 : (0.761-0.855) (0.836-0.901) (0.755-0.849) (0.840-0.905) (0.892-0.934) (0.817-0.872)
Model 0.437 0.730 0.789 0.724 0.794 0.818 0.764

2b : (0.653-0.808) (0.727-0.851) (0.647-0.802) (0.732-0.856) (0.769-0.868) (0.715-0.812)
Model 0.360 0.886 0.827 0.772 0.916 0.941 0.850

3? ’ (0.848-0.924) (0.790-0.863) (0.725-0.818) (0.888-0.944) (0.925-0.957) (0.823-0.877)
Model 0.360 0.762 0.723 0.676 0.800 0.821 0.740

3b ’ (0.688-0.836) (0.655-0.791) (0.599-0.753) (0.736-0.864) (0.772-0.871) (0.689-0.790)
Model 0.500 0.823 0.966 0.941 0.892 0.984 0.909

42 : (0.777-0.868) (0.948-0.983) (0.911-0.971) (0.863-0.921) (0.977-0.990) (0.887-0.931)
Model 0.500 0.667 0.910 0.848 0.782 0.857 0.805

4b : (0.584-0.749) (0.866-0.953) (0.778-0.919) (0.724-0.841) (0.811-0.902) (0.759-0.850)

*Using the training set; "using the testing set. PPV: positive predictive value; NPV: predictive value; AUC: area under the curve; CI: confidence internal.

T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Training data Testing data
— AUC (95%CI) = 0.913 (0.893-0.934) —— Model 1 —— AUC (95%CI) = 0.813 (0.762-0.863) —— Model 1
AUC (95%CI) = 0.913 (0.892-0.934) Model 2 AUC (95%CI) = 0.818 (0.769-0.868) Model 2
— AUC (95%CI) = 0.941 (0.925-0.957) —— Model 3 — AUC (95%CI) = 0.821 (0.772-0.871 —— Model 3
— AUC (95%CI) = 0.984 (0.977-0.990) —— Model 4 — AUC %95%0; =0.857 (0.811-0.902 —— Model 4
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(®)

FIGURE 2: ROC curves of the four models in training and testing sets.

TaBLE 4: The predictive performance of lymph node metastasis by BLS feature learning.

Models (i)“f; Sensméllt)y (95% Spec‘ﬁglt)y 5% ppy (95% CI) NPV (95% CI)  AUC (95% CI) ACC“Z‘% (95%
Model .o 0.823 0.966 0.941 0.892 0.984 0.909
o : (0.777-0.868)  (0.948-0.983)  (0.911-0.971) (0.863-0.921)  (0.977-0.990) (0.887-0.931)
Model .o 0.667 0.910 0.848 0.782 0.857 0.805
4b : (0.584-0.749)  (0.866-0.953)  (0.778-0919) (0.724-0.841)  (0.811-0.902)  (0.759-0.850)
Model . 0.959 0.973 0.959 0.973 0.995 0.968
5 : (0.936-0.983)  (0.958-0.989)  (0.936-0.983)  (0.958-0.989)  (0.992-0.998)  (0.954-0.981)
Model . 0.778 0.843 0.790 0.833 0.853 0.815
5b : (0.705-0.850)  (0.788-0.899)  (0.719-0.862)  (0.777-0.890)  (0.806-0.901)  (0.771-0.860)

*Using the training set; "using the testing set. PPV: positive predictive value; NPV: predictive value; AUC: area under the curve; CI: confidence internal.



Journal of Healthcare Engineering

1.0 4

0.8 1

0.6 -

0.4

0.2 -

00

1.0

0.8

0.6

0.4

0.2+ -

0.0

0.0 0.2 0.4 0.6 0.8 1.0

—— Combined training
AUC (95%CI) = 0.984 (0.977-0.990)

—— Combined testing
AUC (95%CI) = 0.857 (0.811-0.902)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
—— BLS features training
AUC (95%CI) = 0.995 (0.992-0.998)

—— BLS features testing
AUC (95%CI) = 0.853 (0.806-0.901)

(b)

F1GUre 3: The ROC curve of Model 4 and Model 5 in training and testing sets.

Relative diagraph position
Gender

Calcification

Aspect ratio

Age

Carcinoembryonic antigen
GLSZM Zone Entropy

Maximum diameter of nodules

B o030
B oot
- 0033 - -
B o041

0.216
0219 -
0.267

0.00

005 0.10 015 020 025 030

data

F1GURE 4: Features importance map.

The strategy in construction of the five diagnostic models
was different. In Model 1, only demographic information
and clinical data were used. In Model 2, we combined de-
mographic information, clinical data, and ultrasound fea-
tures. Model 3 combined demographic information, clinical
data, and imaging features. Model 4 combined the demo-
graphic information, clinical data, ultrasound features, and
imaging features. Broad learning was used to learn the
variables in Model 4, and new variables were obtained,
which were incorporated into the random forest model to
obtain Model 5.

The data set was randomly divided into 7:3 training set
and testing set, which were then normalized, respectively.

Lasso regression was used to filter features in the training set,
and then the prediction model was constructed.

The area under the curve (AUC), accuracy, sensitivity,
and specificity were used to evaluate the model. Then, the
importance of features was expressed by using the feature
importance map.

3. Results and Discussion

3.1. Diagnostic Performance of the Five Models. As shown in
Table 2, because the data were randomly divided into
training sets and testing sets, the ultrasonic features were
compared in balance. Because their P values were all >0.05,
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F1GURE 5: Ultrasonic features AUC: testing set on the left and training set on the right (carcinoembryonic antigen, maximum diameter of
nodule, age, GLSZM zone entropy, sex, calcification, aspect ratio, and relative capsule position in turn, which are modified according to

translation.

the difference between training sets and testing sets was not
statistically significant. This confirmed that the performances
between training sets and testing sets were comparable.

As shown in Table 3, it can be found from the prediction
results that Model 4 performed best in the testing set, which
combined ultrasound features and imaging features in our
data set, with the AUC of 0.857 (95% confidence internal
(CI): 0.811-0.902) and the accuracy of 0.805 (95%CI:
0.759-0.850). The receiver operator characteristic (ROC)
curves of the four models are shown in Figure 2.

3.2. Prediction Results after Integrated with Broad Learning.
Eight features in Model 4 were included in BLS model to get
106 features, and then 5 features were screened out by Lasso
using o =0.004. Five features put into the stochastic forest
prediction model to predict whether lymph node metastasis
occurred are shown in Table 4. Figure 3 shows the ROC
curve of Model 4 and Model 5 in training and testing sets.

3.3. Discussion on the Importance of Model Features.
Since the prediction results of Model 4 and Model 5 were
relatively close, and the difference was not statistically

significant, we finally chose Model 4 because of its high
interpretability. From the map of feature importance (Fig-
ure 4), it can be found that the most important variable was
the maximum diameter of nodules, followed by GLSZM
zone entropy in imaging features, and the third was carci-
noembryonic antigen.

Overall, carcinoembryonic antigen and age were the best
predictors of demographic and clinical features. Among
ultrasonic features, the maximum diameter of the nodule
was the best predictor. Imaging features also predict well, as
seen in Figure 5.

As the most common thyroid malignancy, the papillary
thyroid cancer is associated with cervical lymph node me-
tastases in 30% to 90% of patients [34]. The lymph node
dissection (LND) is the mainstay treatment for clinically
evident cervical lymph node metastases [35]. So far, surgical
treatment options in the literature include the traditional
radical LND, the modified radical LND, the selective LND,
and a “berry picking” resection in which only the grossly
abnormal lymph nodes are excised [36-42]. The selective
LND represents a compartment-based resection based on
documented lymph node metastases [43, 44]. This study
constructed diagnostic models through an integration of the



random forest and BLS, which was demonstrated to be a
successful attempt to break the related bottlenecks in the
future.

Before constructing the diagnostic models for lymph
node metastasis, we considered using the ultrasound fea-
tures of lymph nodes as input. But cervical lymph nodes are
widely distributed (mainly in 6 regions) and there are some
limitations in the feature recognition of cervical lymph
nodes by ultrasound, especially the lymph nodes in the
central area, as well as the special anatomical structures such
as posterior trachea, posterior esophagus, retropharyngeal
area, and mediastinum, which cannot be displayed well by
ultrasound [45]. Meanwhile, researches in modeling, diag-
nosis, and treatment have confirmed that some ultrasonic
features of primary lesions are related to lymph node me-
tastasis [46, 47]. Our experiment also demonstrated that we
can better identify lymph node metastasis in different re-
gions through imaging features of primary lesions. This was
the reason why no lymph node features were used as input in
the present study.

Unlike the analysis of normal cancer [48, 49], lymph
node metastasis is detected through postoperative pathology
(gold standard) [50]. The inclusion criteria of this study were
those who underwent extensive neck lymph node dissection
to ensure the accurate diagnosis of LNM. The potential risk
of lymph node metastasis has led to many PTC patients
receiving total thyroidectomy, lymph node dissection, and
other treatments, resulting in widespread overtreatment.
Therefore, we hope to build a diagnostic model of preop-
erative LNM to help realize accurate identification of high-
risk patients with LNM in this population to reduce
overtreatment.

We constructed five early diagnosis models of LNM by
combining the preoperative ultrasound features and ultra-
sound image features. These models were chosen for the
convenience to extract the imaging features of the focus area
of PTC. The strategy in construction of the five diagnostic
models was different, and finally, we founded that the top
three parameters are more important than the others. These
results present further evidence for a systematic review and
meta-analysis in previous studies, which indicated that
patient gender is a factor associated with lymph node me-
tastasis in T1 colorectal cancer [51]. The clinical significance
lies in helping the clinicians in early diagnosis, which not
only reduces the workload of clinicians but also cut off the
suffering of patients [52-54]. The previous studies utilized
deep learning algorithms for detection of lymph node
metastases, while broad learning algorithms were rarely
utilized [54]. Deep learning models spend too much time in
the training stage and BLS can greatly reduce the time cost in
training the model [53, 54]. This was also the major inno-
vation of our study.

4. Conclusion

In this paper, five early diagnostic models were developed
from random forest and integrated with the BLS to obtain
experimental results with population informatics, clinical
data, and ultrasonic characteristics. There was no significant

Journal of Healthcare Engineering

difference between the combining of BLS and random forest
and random forest was chosen to make predictions for the
model. The most important feature map statistics show the
maximum diameter of the nodule. It was the most important
variable, followed by the GLSZM zone entropy and hence
should be employed in subsequent studies [55-60].
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