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As a physiological phenomenon, sleep takes up approximately 30% of human life and signi�cantly a�ects people’s quality of life.
To assess the quality of night sleep, polysomnography (PSG) has been recognized as the gold standard for sleep staging. �e
drawbacks of such a clinical device, however, are obvious, since PSG limits the patient’s mobility during the night, which is
inconvenient for in-home monitoring. In this paper, a noncontact vital signs monitoring system using the piezoelectric sensors is
deployed. Using the so-designed noncontact sensing system, heartbeat interval (HI), respiratory interval (RI), and body
movements (BM) are separated and recorded, from which a new dimension of vital signs, referred to as the coordination of
heartbeat interval and respiratory interval (CHR), is obtained. By extracting both the independent features of HI, RI, and BM and
the coordinated features of CHR in di�erent timescales, Wake-REM-NREM sleep staging is performed, and a postprocessing of
staging fusion algorithm is proposed to re�ne the accuracy of classi�cation. A total of 17 all-night recordings of noncontact
measurement simultaneous with PSG from 10 healthy subjects were examined, and the leave-one-out cross-validation was
adopted to assess the performance of Wake-REM-NREM sleep staging. Taking the gold standard of PSG as reference, numerical
results show that the proposed sleep staging achieves an averaged accuracy and Cohen’s Kappa index of 82.42% and 0.63,
respectively, and performs robust to subjects su�ering from sleep-disordered breathing.

1. Introduction

Sleep plays an important role in body recovery, memory,
and immunity enhancement, which takes almost one-
third of human life [1]. Poor sleep quality usually results
in physical and mental health problems, such as fatigue,
anxiety, and even death [2]. It has been reported that sleep
duration is closely related to mortality [3]. �erefore,
long-term sleep quality monitoring is of great signi�cance
to protect human health.

Sleep staging is an important characteristic to qualify
sleep quality. According to the American Academy of
Sleep Medicine (AASM), a complete sleep cycle consists of
wake, rapid eye movement (REM), and non-REM
(NREM) stages, where the last one can be further divided

into N1, N2, and N3 stages [4]. REM and NREM alternate
in cycles of about 90min [5]. NREM, especially deep sleep
(N3), is more prominent during the �rst hours of sleep
and is essential toward physical recovery [6, 7]. REM link
to dreaming, more prominently during the last hours of
sleep, acts toward the recovery of people’s mental state [8].
�erefore, a �ne-grained classi�cation of Wake-REM-
NREM stages is crucial for assessing sleep quality.

Polysomnography (PSG) is the gold standard in the
clinic for evaluating sleep quality and diagnosing sleep-
related diseases. Physiological signal acquisition during
sleep is usually conducted in the hospital since the ac-
quisition process of vital signs is cumbersome. To obtain
the physiology signals including electroencephalography
(EEG), electrooculography (EOG), electromyography
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(EMG), electrocardiography (ECG), and respiratory rate
[9], a large number of sensors are attached to the skin of
patients directly [10], which is impractical for long-term
monitoring at home.

Many studies have attempted to classify sleep stages
automatically under more natural sleep monitoring
conditions by using a limited number of sensing channels.
In [11], wrist-actigraphy was used to record body
movements during sleep and achieved a sleep/wake
classification performance of 77.8%. In [12], the authors
took infants as experimental subjects and used wrist-
actigraphy to achieve a sleep/wake classification. How-
ever, this method has limitations when the subject likes to
be quiet in wake period. Motivated by the fact that the
autonomic nerves (assessed by heartbeat and respiratory
rate) changes in different sleep stages, respiratory in-
ductive plethysmography signals have been used in three-
stage classification (i.e., REM/NREM/Wake) and achieved
the classification performance of 80.38% [13]. In [14], the
authors also considered single-lead ECG heartbeat in-
terval detection and yielded the sleep/wake classification
performance of 76%. In order to improve the classification
performance, cardiorespiratory features including both
the features extracted from heartbeat interval and respi-
ratory are extensively studied [15–19]. Specifically, using
ECG sensors, features of heart rate variability in time and
frequency domain are fused with the time and effort
(fluctuation) features of respiratory signal to aid sleep
staging, and the performance of REM/NREM/Wake stages
classification was improved to almost 80% [16]. In
[20, 21], ECG sensors were used to extract features with
respect to heart rate, respiratory rate, and body move-
ment. Although the existing single-lead ECG sensor based
methods can achieve satisfactory performance of sleep
staging, the acquisition of signals requires physical con-
tact with subjects’ skin, which is inappropriate to long-
term home monitoring.

In order to solve the discomfort between sensors and
skin in the process of signal acquisition, many studies
have focused on noncontact monitoring technologies
[22]. Using piezoelectric sensors, heart rate was obtained
based on noncontact-measured ballistocardiogram (BCG)
signals, by which three-stage classification of night sleep is
performed [23]. In [24], the authors considered PVDF
sensors to record night-sleep physiological signals, in-
cluding BCG, respiratory signal, and body movements,
and then employed long short-term memory (LSTM)
neural network [25] to perform end-to-end sleep stage
classifications. By analogy, in [26, 27], continuous-wave
Doppler radar sensing technology was adopted to dis-
tinguish Wake/REM/LightSleep/DeepSleep states and
achieved an accuracy of 81% and 66.7% in comparison
with PSG standard. Taking radar sensing as the vital sign
monitoring system, the authors in [28] evaluated the
performance of Wake/REM/NREM sleep staging, where
the overall accuracy reached up to 88.4%. Although sleep-
related vital signs (i.e., heart rate and respiratory rate) and
body movements can be measured by using the existing
noncontact sensing devices, the effect of coordinated

features between heartbeat interval and respiratory in-
terval in different timescales has not been reported yet.

In order to address the above issues, this paper focuses
on a noncontact sensing-based sleep staging for Wake/
REM/NREM classification using vital signs recorded by
piezoelectric sensors. Specially, the contributions of this
paper, in comparison with the existing studied, can be
summarized as follows.

(1) A noncontact vital signs monitoring system using
piezoelectric sensors is deployed, by which both the
independent features of heartbeat interval (HI), re-
spiratory interval (RI), body movements (BM), and
the coordinated features between HI and RI (a.k.a.
CHR) are extracted from the noncontact-measured
vital signs and employed for Wake/REM/NREM
stage classification. In addition, the effects of features
in different timescales on sleep staging are also
analyzed.

(2) A postprocessing with respect to the fusion of the
classified stages is developed to further improve the
performance of sleep staging. For validations, 17 all-
night experiments were examined simultaneously
with PSG. Numerical comparisons demonstrate that
the proposed sleep staging achieves average accuracy
and Kappa index of 82.42% and 0.63, respectively,
and performs robust to subjects suffering from sleep-
disordered breathing.

2. Materials and Methods

2.1. System Setup and Vital Signs Acquisition. For non-
contact vital signs acquisition, the noninvasive heart rate
and respiratory rate sensing device developed by
Guangzhou SENVNV Co. was deployed [29], where the
sleep-related physiological signals, including BCG, re-
spiratory signal, and artifact motion can be recorded
during night sleep in a noncontact manner. After pre-
processing, heartbeat interval, respiratory interval, and
body movements are separated, and sleep stage-related
features are extracted from the above physiological signals
and then fed into machine learning classifiers for sleep
stage classification. Finally, an empirical rule-based
postprocessing is applied to improve the classification
performance. Figure 1 depicts the framework of the
noncontact sleep staging system.

*e noncontact vital signs monitoring system
deployed in this study consists of a piezoelectric sensor,
circuit, and processing modules. As shown in Figure 2, the
piezoelectric sensor module is placed under the pillow to
perceive the vibration induced by heartbeat, respiratory
rate, and body movements. *e converted voltage signals
are then amplified, sampled at 1 kHz in the circuit module.
A 12-bit analog-to-digital conversion (ADC) is conducted
before transmission of vital signs from circuit to pro-
cessing module for offline signal processing and sleep
stage classification. For reference, we simultaneously
collect EEG, ECG, EOG, and EMG from PSG (Medcare) as
the gold standard to evaluate the staging performance.
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2.2. Noncontact Vital Signs Acquisition. �is study involved
a total of 10 healthy subjects (7 males and 3 females), who
are college students, aged from 21 to 25 years old. All
subjects are healthy and have a regular night sleep with an
average duration of 6 to 9 hours. In addition, subjects with
sleep disorder, smoking habits, intake of medicine, or
drinks infecting sleep will not be included. As shown in
Table 1, a total of 24 night-sleep experiments are carried
out, in which the recorded data in 7 night sleep are invalid
due to the collapse of the electrodes of PSG.

2.3. Preprocessing of Vital Signs. Since the vital signs
measured by the noncontact device are mixed with BCG,
respiratory signal, body movements, and noise, pre-
processing of vital signs is �rstly performed to separate
di�erent types of signals for heartbeat interval and re-
spiratory interval detection. �e procedures are shown as
follows.

First, we remove the power frequency noise by using a
band-stop �lter with lower and upper cuto� frequencies of
49Hz and 51Hz, respectively. �en, we identify body move-
ments (BM) from the processed signal. �e reason is that, on
the one hand, body movements can signi�cantly a�ect the
detection and analysis of vital signs (i.e., BCG and respiratory
signals). On the other hand, as will be illustrated later, body
movements signal is an important feature for sleep staging.
Unlike [30], bodymovements (BM) are detected inmulti-time-
scale procedure. �e detailed procedures are as follows. If the
peak-to-valley di�erence (PVD) within a 2 s window is 2.2
times greater than any one of the medians of PVD within a
multi-time-scale epochs of 30 s, 60 s, 120 s, and 300 s, the state
of 2 s window will be considered as body movement; that is,
BM � 1; otherwise, BM � 0.

Next, we extract BCG from the resulting signals of BM � 0.
Considering that the spectrum of a typical BCG ranges from
3Hz to 10Hz [31], we employ a 2nd-order Butterworth
bandpass �lter ranges 2.5–10 (Hz) to remove the undesired
signal interference and then detect heartbeat interval by using a
forward and backward approach [29].

For respiratory interval detection, we remove the detected
BCG signal from the recorded vital signs and then separate the
respiratory waves directly by using discrete wavelet transform
and Sym8 wavelet package at 8 scales [32]. Finally, respiratory
interval can be obtained by using peak detection [33].

For validation, a typical example of 20-minute comparison
between the noncontact-measuredHI andRI and that obtained
using BIOPAC MP160, which are recognized as the gold
standard in related works. As can be observed from Figure 3,
although some errors occur in very limited areas due to the
interference of body motion, the noncontact-measured HI and
RI are almost indistinguishable from those obtained using ECG
and belt sensors.�e results demonstrate that the measured HI
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Figure 1: �e overall architecture of the noncontact sleep monitoring system.
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Figure 2:�e overview of the vital signsmonitoring system. (a)�e subject simultaneously monitored by both PSG and the noncontact vital
signs system. (b) �e device of the vital signs monitoring system.

Table 1: Information of the datasets.

Subject
ID Gender Age Weight

(kg)
Height
(m)

Total
(night) Valid (night)

N1 M 23 65.23 1.70 5 4
N2 M 22 66.52 1.72 4 3
N3 F 21 48.36 1.60 1 0
N4 M 23 70.44 1.74 4 4
N5 F 24 52.62 1.64 1 0
N6 M 23 69.87 1.73 2 2
N7 M 22 62.15 1.67 3 2
N8 F 25 68.53 1.76 1 0
N9 M 22 60.76 1.66 1 1
N10 M 23 67.39 1.75 2 1
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and RI in a noncontact manner can be further used as features
for sleep stage classi�cation.

3. Feature Extraction

Using the non-contact-measured vital signs (i.e., HI, RI,
and BM signals), we propose feature extraction based on
the above independent and coupled vital signs for sleep
stage classi�cation. Considering that the relevant features
depend on the information of HI and RI, we de�ne the
heartbeat interval and respiratory interval in di�erent
timescales as

HI(t) �
∑Nn�1 αnβnI hn
∑Nn�1 αnβn

, t � 1, 3, 5, 7, 9, 11, 13, 15, (1)

RI(t) �
∑Nn�1 αnβnI rn
∑Nn�1 αnβn

, t � 1, 3, 5, 7, 9, 11, 13, 15, (2)

where N is the number of heartbeat intervals within t-second
scale, I hn and I rn are the duration of nth every interval. αn is
the proportion of I hn or I rn in time t-second (∑Nn�1 αn � 1).
βn � 0 denotes nth interval occurs in body movement episode;
otherwise, βn � 1. Specially, if the t-second signal is �lled with
body movement, HI(t) and RI(t) are de�ned as the invalid
value. Intuitively, the longer the timescale employed for HI and
RI detection in (1) and (2), the higher the accuracy of HI and
RI, since the relative errors are reduced in the statistical process.
By taking advantage of HI and RI in di�erent timescales, in-
dependent features with respect to HI and RI can be char-
acterized accordingly.

3.1. Independent Features of HI and RI. Table 2 shows all
independent features of HI and RI in di�erent timescales.
�e motivation of independent features extraction with
respect to HI and RI is similar to the existing studies [26]

since the rhythm of heartbeat and respiratory interval vary in
di�erent sleep stages.

Speci�cally, features {1, 2} and {10, 11} are the mean
and coe¯cient variation of independent HI and RI in
di�erent timescales in a 60 s epoch. Features {3–7} and
{12–16} further describe the trend of °uctuation with
respect to heartbeat interval and respiratory interval
over a 60 s epoch by evaluating the ratio of di�erence in
terms of heartbeat interval and respiratory interval
percentiles. Motivated by [18, 26], features {8, 9} and
{17, 18} are the mean absolute deviation (MAD) and the
averaged cumulative di�erence (ACD) of HI and RI,
respectively, which can also re°ect the variations of
heartbeat interval and respiratory interval in each 60 s
epoch.

3.2. Coordinated Features between HI and RI. Motivated by
the cardiopulmonary coupling technology [34], we propose to
characterize the coordinated features between HI and RI, re-
ferred to as CHR features, aiming to compensate for the
limitations of independent features of HI and RI. Speci�cally,
we de�ne the ratio of HI features over RI features to evaluate
the similarities and di�erences of the coordinated features in
di�erent sleep stages. Similar to the independent features class,
CHR features also include the ratio of the mean (feature 19),
coe¯cient variation (feature 20), di�erent percentiles (feature
21–31), MAD (feature 32), and ACD of HI and RI (feature 33),
as shown in Table 3.

3.3. BM Features. As reported by [35], body movement
usually occurs in wake and light sleep (a.k.a., N1N2) stages due
to sleep posture changes every 5–10 minutes, while rarely
appearing in deep sleep (i.e., N3) andREMstages.Motivated by
the above facts, we extracted the BM features for sleep stage
classi�cation, as shown in Table 4.
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Figure 3: An example of comparison between detected HI and RI in a noncontact manner and that obtained by using the gold standard
device.
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Using the above extracted features from the non-contact-
measured vital signs, different classifiers including Random
Forest (RF) [36], Support Vector Machine (SVM) [37], De-
cision Tree (DT) [38], K-Nearest Neighbor (KNN) [39], and
AdaBoost [40] are employed for sleep stage classification.

4. Stage Fusion

Since the epoch-by-epoch classification is in a timescale of 60 s,
the classified sleep stages are sparse in time domain. According
to the AASM, a rule-based postprocessing is proposed to
improve the prediction performance by reasonably fusing the
sparsely classified epoch-by-epoch sleep stage in time.

(1) Following the rules of AASM, the sequence of sleep
stage is from Wake to NREM and then to REM.
Based on this fact, the discrete REM labels directly
followed byWake labels are modified toWake labels.

(2) If the label of a single epoch is different from that of
both the previous and the following epochs, it will be
relabeled as that of the previous epoch.

(3) For sparsely predicted Wake labels interleaved with
either REM or NREM labels, when the proportion of

all Wake labeled periods exceeds 80% of a 5-minute
timescale, such a 5-minute timescale is fused as
Wake stage.

(4) Define PREM as the proportion of REM stages over
total sleep time; for two adjacent REM labels in-
tervals with other stage labels, we adopt the following
fusion criteria:

(a) When PREM < 5%, two adjacent REM stages less
than 20 minutes are fused as one REM stage.

(b) When PREM > 10%, two adjacent REM stages less
than 7 minutes are fused as one REM stage.

(c) When PREM ∈ [5%, 10%], two adjacent REM
stages less than 15 minutes are fused as one REM
stage.

5. Experimental Results

For the evaluation of sleep staging performance, we
adopt leave-one-out cross-validation. To elaborate a
little further, classifiers are trained and tested by 16 and 1
samples, respectively, which is repeated until every single
sample is tested. *e 17 samples based on PSG sleep

Table 3: Coordinated features of HI(t) and RI(t).
Feature index Feature name Feature description
19 Ratio of mean Ratio of mean of HI(t) to mean of RI(t)

20 Ratio of CV Ratio of CV of HI(t) to CV of RI(t)

21–31 Intra ratio percentiles Ratio of percentile A of HI(t) to percentile B of RI(t):
(A, B) ∈ [(100, 0), (90, 10), (80, 20), (70, 30), (60, 40), (50, 50), (40, 60),

(30, 70), (20, 80), (10, 90), (0, 100)]

32 Ratio of MAD Ratio of MAD of HI(t) to MAD of RI(t)

33 Ratio of ACD Ratio of ACD of HI(t) to ACD of RI(t)

Table 4: Features of BM.

Feature
index Feature name Feature description

34 Motion ratio *e proportion of body movement in the current epoch
35 Motion nums *e number of periods of successive one-value signal in the current epoch
36 Largestmotion ratio Longest one period in epoch divided by 60
37 Averagemotion ratio Motion ratiodivided byMotion nums

38–39 Motion ratio of the previous n epochs *e proportion of body movement of epoch located, respectively, n ([1, 2]) epochs
before the current one

40–41 Motion ratio of the next n epochs *e proportion of body movement of epoch located, respectively, n ([1, 2]) epochs
after the current one

Table 2: Independent features of HI(t)(RI(t)).

Feature
index Feature name Feature description

1 (10) Mean Mean value of HI(t)(RI(t))

2 (11) CV Coefficient variation of HI(t)(RI(t)): Standard deviation divided by mean
3–7
(12–16) Inter ratio percentiles Ratio of percentile A and percentile B of HI(t)(RI(t)):

(A, B) ∈ [(100, 0), (90, 10), (80, 20), (70, 30), (60, 40)]

8 (17) MAD Median absolute deviation of HI(t)(RI(t))

9 (18) ACD Averaged cumulative difference: the moving average of the absolute difference between the former 30
seconds and the latter 30 seconds of HI(t)(RI(t)) for the range from k − q to k + q minutes (q � 2)
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staging slices form a total of 14666 epochs, where Wake,
REM, and NREM stages are 2668, 2562, and 9434 epochs,
accounting for 18.19%, 17.47%, and 64.34%, respectively.
In this study, we adopt di�erent weights assigned in [24]
to avoid over�tting. Similar to [41], we quantify the
performance in terms of accuracy and Cohen’s Kappa
coe¯cient, respectively, which are given by

p0(accuracy) � ∑
class Wake,NREM,REM{ }

TPclass

T
,Kappa �

p0 − pe
1 − pe

,

(3)

where T and TPclass denote the total number of epochs
and those correctly classi�ed into the corresponding
class and pe is the hypothetical probability of chance
agreement.

pe � ∑
class Wake,NREM,REM{ }

TPclass + FPclass

T
×
TPclass + FNclass

T
.

(4)

5.1. E�ect of Independent and Coordinated Features on Sleep
Staging. In order to examine the e�ectiveness of the
extracted features using independent features of HI, RI,
BM, and coordinated features between HI and RI, we �rst
evaluate the feature importance using RF classi�er [42].
Figure 4 shows the contributions of both the independent
features (HI, RI, and BM) and the coordinated features
(CHR) to sleep stage classi�cation. As shown in Figure 4,
the feature importance of HI class features, RI class
features, CHR class features, and BM class features ac-
count for 25.4%, 23.2%, 32.6%, 18.8%, respectively.
Among them, ACD extracted by HI is the most important
feature, revealing that the cumulative di�erence during
sleep is particularly important for sleep staging. It is also
noted that CHR features contribute most to sleep stage
classi�cation, which demonstrates that coordination be-
tween HI and RI is essential to discriminate sleep stages.
Specially, Ratio of ACD to CHR performs better, which is
consistent with the excellent performance of ACD in the
independent features.

10 15 20 25 30 35 405
Feature index

CHR: 32.6%

HI: 23.2%

BM: 25.4%

RI: 18.8%

Fe
at

ur
e i

m
po

rt
an

ce

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 4: Feature importance of HI, RI, BM, and CHR.
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Figure 5: Accuracy and Kappa in di�erent timescales.
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estimated with stage fusion.

Table 5: Information of the subjects with sleep-disordered breathing.

Subject ID Gender Age AHI (times/hour) Severity Total (night) Valid (night)
A1 M 49 10.6 Mild 1 1
A2 F 70 6.3 Mild 2 1
A3 M 70 7.7 Mild 1 1
A4 F 69 8.1 Mild 1 1
A5 M 73 5.9 Mild 2 1
A6 M 50 6.7 Mild 1 1
A7 M 51 7.5 Mild 1 1

Table 6: Performance of the sleep-disordered breathing subjects.

Subject ID Accuracy (%) Kappa
1 76.07 0.58
2 75.30 0.48
3 65.11 0.39
4 78.49 0.63
5 68.11 0.41
6 79.81 0.67
7 82.62 0.62
Average 75.07 0.54
Std 5.85 0.11
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*en,we analyze the effect of time resolutionwith respect to
features extraction on sleep staging. As shown in Figure 5, both
the accuracy and Kappa tend to increase when t< 10 s and then
decrease as the timescale increases. A possible explanation to
this behavior is that non-contact-measured HI and RI suffers
from inevitable errors due to artifact motion and noise, as
shown in Figure 3. In this case, increasing the timescale yields a
higher accuracy of HI and RI. Benefiting from the increase of
timescale when t< 10 s, the improvement of feature accuracy
improved sleep staging performance. As the timescale grows
larger (i.e., t> 10 s), it simultaneously reduces the sensitivity
with respect to the variation ofHI andRI in different timescales,
thus leading to a reduced performance. Furthermore, it can be
seen that the classification results using CHR features perform
better than those without CHR features, demonstrating the
effectiveness of the CHR features. *e highest accuracy and
Kappa are 82.42% and 0.63 when the timescale is 9 s.

5.2. Sleep Stage Fusion. Next, we investigate the effect of
stage fusion as the postprocessing of classification on sleep
staging. Figure 6 shows the classification performance with
and without the proposed sleep stage fusion. It can be seen
that the applied stage fusion significantly improves the re-
sults, especially in Wake and REM. *e accuracy of Wake is
increased by 31.6%, and that of REM is increased by 39.9%.
*e result is reasonable since the epoch-by-epoch classified
sleep stages over a specific interval are mapped to an
identical sleep stage. Moreover, the accuracy of NREM still
maintains a high level of 89.8%, although it may be reduced
by 3.2% from 93.0% due to the slight fusion errors in the
fusion of Wake and REM.

To further demonstrate the performance improvement of
stage fusion, Figure 7 provides a typical examplewith andwithout
the proposed sleep stage fusion. As can be seen fromFigure 7, the
proposed stage fusion significantly improves the results.

5.3. Wake-REM-NREM Discrimination. We further verify
the confusion matrix based on RF classifier, and the result is
shown in Figure 8. It can be seen from Figure 8 that the
prediction accuracy rates of Wake, REM, and NREM are
67.3%, 53.7%, and 83.7%, respectively. Among them, the
dominant error comes from the misclassification between
REM andNREM stages. Taking the experimental results into
account, the main reason of low accuracy of recognition in
REM could be summarized to three aspects. (1) Frequent
body movements occur in both Wake and REM stages,
leading to a lower accuracy of feature extraction in terms of
HI, RI, and CHR, thereby reducing the accuracy of classi-
fication. (2) *e proportion of REM epochs is lower than
that of NREM and Wake. *erefore, the proportion of
misclassified epochs of REM in REM is higher than that in
the whole sleep stage, whereas the accuracy of the whole
system will be less affected.

5.4. Validation on Subjects Suffering from Sleep-Disorderd
Breathing. As a proof-of-concept with respect to the so-
designed sleep staging model, we further consider 7 subjects

with sleep-disordered breathing (most of these subjects
suffer frommild sleep apnea syndrome), aiming to verify the
effectiveness of the proposed design. *e data used in the
experiment was jointly recorded by *e First Affiliate
Hospital of Guangzhou Medical University and Guangzhou
SENVNV Co., and the experiment has obtained the consent
of the subjects, and personal private information is kept
confidential. *e information of the recruited subjects is
listed in Table 5.

Using the proposed scheme with noncontact-measured
vital signs, the performance of sleep staging in comparisonwith
PSG is shown in Table 6. It can be seen that the averaged
accuracy and Kappa coefficient with respect to the recruited
subjects suffering from sleep-disordered breathing are 75.07%
and 0.54, respectively. *is demonstrates the robustness of the
so-designed features and model. Figure 9 provides a typical
sleep stage classification from a subject with sleep-disordered
breathing.

6. Conclusion

*is paper studied feature-aided sleep stage classification using
noncontact-measured vital signs. In addition to the analysis of
independent features such as HI, RI, and BM, which are
characterized from BCG, respiratory rate, and body move-
ments signals in different timescales, we validated through
experiments that the coordinated features between HI and RI
play an important role in sleep staging. In order to improve the
performance of classification, we developed a rule-based
postprocessing to fuse the classified results of discrete time
dimensions. *e experimental results in comparison with PSG
demonstrate the effectiveness of the proposed design.
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