
Research Article
LSGDMwith Biogeography-Based Optimization (BBO)Model for
Healthcare Applications

A. Harshavardhan,1 Prasanthi Boyapati,2 S. Neelakandan ,3

Alhassan Alolo Abdul-Rasheed Akeji ,4 Aditya Kumar Singh Pundir ,5

and Ranjan Walia 6

1Department of CSE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India
2Department of CSE, R.V.R & J.C College of Engineering, Guntur, India
3Department of CSE, R.M.K Engineering College, Chennai, India
4Department of Marketing and Corporate Strategy, Tamale Technical University, Tamale, Ghana
5Department of ECE, Arya College of Engineering and Information Technology, Jaipur, India
6Department of Electrical Engineering, Model Institute of Engineering and Technology, Jammu, India

Correspondence should be addressed to Alhassan Alolo Abdul-Rasheed Akeji; aaakeji@tatu.edu.gh

Received 19 February 2022; Revised 26 March 2022; Accepted 7 April 2022; Published 30 April 2022

Academic Editor: Mohsen Ahmadi

Copyright © 2022 A. Harshavardhan et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Several studies aimed at improving healthcare management have shown that the importance of healthcare has grown in recent
years. In the healthcare industry, e�ective decision-making requires multicriteria group decision-making. Simultaneously, big
data analytics could be used to help with disease detection and healthcare delivery. Only a few previous studies on large-scale
group decision-making (LSDGM) in the big data-driven healthcare Industry 4.0 have focused on this topic.�e goal of this work is
to improve healthcare management decision-making by developing a new MapReduce-based LSDGM model (MR-LSDGM) for
the healthcare Industry 4.0 context. Clustering decision-makers (DM), modelling DM preferences, and classi�cation are the three
stages of the MR-LSDGM technique. Furthermore, the DMs are subdivided using a novel biogeography-based optimization
(BBO) technique combined with fuzzy C-means (FCM). �e subgroup preferences are then modelled using the two-tuple fuzzy
linguistic representation (2TFLR) technique. �e �nal classi�cation method also includes a feature extractor based on long short-
term memory (LSTM) and a classi�er based on an ideal extreme learning machine (ELM). MapReduce is a data management
platform used to handle massive amounts of data. A thorough set of experimental analyses is carried out, and the results are
analysed using a variety of metrics.

1. Introduction

Recent technologies, such as big data, the internet of things
(IoT), wearables, and so on, have a signi�cant impact on
society, healthcare organisations, and our daily lives. Big
data plays an important role in obtaining the necessary data
during the decision-making process. Big data is de�ned as a
complex and massive volume of data derived from various
sources and clinical data sets that provide critical infor-
mation for patient treatment [1]. Furthermore, big data has
the potential to improve healthcare operations through

data-driven decision-making in the ambiguous environ-
ment of Industry 4.0. Big data analytics provide signi�cant
bene�ts for evaluating and assimilation of massive amounts
of complex healthcare data. �e medical system keeps track
of the world’s most pressing social and economic issues in
order to �nd innovative solutions through technology and
science. �e Industry 4.0 model was �rst proposed in 2011,
and it was initially referred to as the production or
manufacturing process. While incorporating, medical
services and Industry 4.0 are complementary methodolo-
gies. Furthermore, with the rise of big data and the
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widespread use of electronic healthcare records of patients
in healthcare organisations, chasing solutions to pop-
ulation medical problems is no longer viable. Using big
data for better decision-making, on the other hand, poses
some healthcare challenges.

In recent years, group decision-making has received a lot
of attention in various areas of healthcare organisations [2].
)e more severe the challenge, the more complex it can
withstand the loss caused by a decision-making error. As a
result, many civil organisations and government depart-
ments, as well as managers and experts in various fields,
would be involved in decision-making. Based on the pref-
erences of decision-makers, LSGDM selects sufficient al-
ternates from a group of possible alternates [3]. When the
number of decision-makers (DM) increases, the standard
group decision-making problem transforms into the
LSGDM problem. LSGDM problem-solving methods typi-
cally consist of four phases: (i) the cluster standardised
individual decision matrices, (ii) standardising original in-
dividual decision metrics, (iii) selecting the best alternatives,
and (iv) aggregating the cluster decision metrics.

Based on the conventional decision-making method,
the current study significantly innovates by incorporating
four factors: distinct decision-makers’ preference data
expression, attribute weight determination method,
large-scale group clustering method, and large group
preference data aggregation method [4]. One of the most
common fields of study is large-scale group preference
data aggregation. Despite the fact that the number of
studies deliberating big data is steadily increasing, ap-
plications of large-scale group decision-making proce-
dures in the context of big data studies and medical
Industry 4.0 remain rare. )is work creates a new
MapReduce-based LSDGM model (MR-LSDGM) for the
Industry 4.0 environment to improve decision-making in
healthcare management. With the rapid advancement of
information technology, as exemplified by the Internet,
decision support systems will evolve toward socialisation
in the era of big data. )is is because DMs from various
areas can be invited to collaborate on difficult issues on a
single network platform. Simultaneously, we can conduct
online voting on a particular item and perform auto-
mated statistical analysis. Additionally, it may analyse
and research multitemporal and group events, such as
those on e-commerce websites and search engines, to
provide critical data support for qualitative decision-
making. It appears to be worthwhile to develop large-
scale group support tools to aid in decision-making, given
that the big data era may contain a variety of data sources,
including social media, mobile devices, and websites.
Several researchers have developed software imple-
mentations of LSGDM, including the WTALGDM for
LSGDM on energy network dispatch optimization,
MENTOR for visualizing opinion evolution, and a
multiagent system model for assisting with CRP. Other
application fields, such as healthcare and engineering,
require the use of these tools. A large number of simu-
lations are run to demonstrate the improved results of the

MR-LSDGM technique, and the experimental findings
are examined using several metrics.

2. Related Works

Li andWei [5] created an LSGDMmodel for making medical
management decisions. For describing the decision data, the
HFLTS is used. For clustering the DM intomany subgroups, a
clustering technique based on the ideal point is presented.)e
DM preference is then combined with the PDEHFLTS model
to retain the decision data. A subgroup weight method is
proposed for calculating the ranking weight based on the
subgroup size and the presented hesitant entropy of
PDEHFLTS. For large-scale GDM problems, Li et al. [6] used
a fuzzy cluster analysis to integrate heterogeneous data. Fuzzy
cluster analysis is used to divide large groups into smaller
ones, and F-statistics are used to calculate the number of
clusters required. )e original data is kept depending on the
degree of similarity. A consensus-building process is then
used among these smaller groups to reach a common un-
derstanding. While other groups could not agree, a feedback
system was devised to update the smaller GDM matrix, and
the TOPSIS model was used to select the best option.

Song and Yuan [7] proposed a new GDM method based
on arithmetic programming and employing IMGFLPR. As a
result, a consensus procedure based on IMGFLPR is de-
veloped, while dynamic adaptation of expert weights is
considered. Finally, problems with emergency plan election
are solved using the presented method, which demonstrates
the effective outcome of GDM. Wan et al. [8], inspired by
multiplayer game concepts, proposed a two-step optimi-
zation algorithm that first maximises individual fulfilment
while minimizing group conflict. )e provided approach
effectively saves decision-making time when it comes to
ensuring the quality of LSGDM.

Hsu et al. [9] identified eight potential developments for
providing a proper approach to the medical industry. )e
modified Z-DEMATELmethod is used to build the mutually
important relationship and prioritises this trend. By opti-
mising the classic fuzzy number and representing the as-
sessment environments’ confidence under uncertainty, the
Z-number technique improves the consistency of expert
evaluation. Liu et al. [10] developed an LGDA approach for
managing dependency in HRA based on the interval two-
tuple linguistic variable and cluster analysis model. In ad-
dition, an expandedMuirheadmean operator was developed
to determine the amounts of reliance between the activities
of consecutive operators. Finally, empirical medical de-
pendency analysis is used to demonstrate the applicability
and effectiveness of the presented LGDA model [11].

Du and Shan [12] proposed a dynamic intelligent in-
tegration suggestion approach for product ideas. )ey began
by creating one-of-a-kind product concept assessment
condition systems that included both output and input
criteria. )e following section describes a step for static data
combination and data extraction. Later, the fundamental
likelihood assignments function is used as a data extraction
approach to accurately reflect and effectively capture the
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validity of experts’ evaluations. Dursun et al. [13] proposed a
fuzzy multicriteria GDM architecture based on the fuzzy
integral and measure principle to evaluate the HCW
treatment alternatives for Istanbul. In the case of the GDM
problem, an expert consensus is required for the calculation
method to be carried out correctly. )e OWA operators are
used in this work to aggregate DM opinions.

Pan et al. [14] concentrated on using dynamic pro-
gramming to solve the large-scale GDM problem, in
which the data is in the form of linguistic variables. Be-
cause the linguistic variable cannot be directly computed,
the interval type-2 fuzzy set is used for encoding. )e
distinct similarity and distance models are then con-
structed concurrently in order to determine the rela-
tionship between the interval type-2 fuzzy set. Later, a
dynamic programming approach based on clustering
models was presented for clustering the DM from an
overall perspective. Gao et al. [15] created a novel para-
digm for selecting an appropriate physician in the index
system that balances the 2D calculation result. )e re-
searchers created questionaries and conducted field re-
search to bring the given technique closer to the actual
situation in China. )ey then calculated the best outcome
for the best medical services provided by doctors [16].

3. The Proposed MR-LSDGM Technique

)e MapReduce tool is used in this study to create a new
MR-LSDGM approach for the healthcare industry. )e
MR-LSDGM approach includes BBO-FCM-based DM
clustering, 2TFLR-based preference modelling, and
LSTM-OELM-based classification procedures. )e pro-
posed MR-LSDGM model is depicted in its entirety in
Figure 1. )e MapReduce tool is used by the MR-LSDGM
approach to managing massive amounts of data in the
healthcare industry. )e sections that follow provide a
more detailed explanation of these processes [17].

3.1. MapReduce. )e primary goal of the Map procedure is
to compute the geometric distance between cluster centres
and sampling point data. Read the data from Hadoop
Distributed File Systems (HDFS) and use the stated (value,
key) pair input formats as Map function input values, where
“key” denotes the sampling point data ID numbers and
“value” means the entire data sampling point and then read
the maximal consumption. )e minimal distance approach
would evaluate the major cluster centre, compute Euclidean
distances between other cluster centres using sample point
data, and integrate the membership degree (MD) [18].

)e primary goal of Reduce functions, on the other hand,
is to obtain a large number of Map function outputs. To
begin, obtain the key values pair from the Map functions,
where “key” represents the cluster centres and “value”
represents the sampling point data equivalent to the cluster
centres. )e data sample from a number of distinct cluster
centres is then merged, and a new cluster centre is evaluated.
Finally, it is determined whether the geometric distance
between the novel and equivalent cluster centres exceeds a

predetermined threshold or whether the number of itera-
tions exceeds that threshold.

Despite outperforming traditional hard clustering al-
gorithms in terms of clustering effects, fuzzy clustering al-
gorithms have a few drawbacks. )e current clustering
algorithms are extremely sensitive to early clustering centres.
Because the algorithms use the concept of gradual iteration,
the objective functions are continuously reduced during the
iteration. As a result, when the c clustering centre is arbi-
trarily chosen in each sample data set at first, the geometric
distance that would produce the last clustering results for
falling to the current optimum solution is smaller. To avoid
situations in which the geometric distance between the
arbitrarily chosen cluster centre is smaller, the minimum
and maximum distance methods were used to determine the
early cluster centre in this study.

3.2. Design of BBO-FCM Technique. In the beginning, the
BBO-FCM approach is used to divide the DMs into sub-
groups. Every feature vector with a coefficient between [0, 1]
belongs to one of the FCM clusters. Finally, the algorithm
labels all of the data points (feature vectors) based on the
maximum coefficient of these data points across all clusters.
By minimizing the following equation, the cluster centre and
fuzzy membership matrix are calculated.

􏽘
c

g�1
ui,j � 1, (1)

where u represents the sum of data; c indicates the
quantity of clusters; ug,j signifies the fuzzy association of jth
point to ith clusters; dg,j means the cluster centres and data
point l ∈ (1,∞), a fuzzy weight factor that determines the
quantity of fuzziness produced as a result In most cases, and
l� 2 is chosen (it can be stated that this value of m does not
generate optimum solutions for each problem).

Because of the constraints in (1), all points must com-
pletely allocate their memberships to each cluster [19]. )e

Data Collection Phase
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BBO‑FCM Technique

Preference of DM
using
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Feature Extraction
using
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Activity Recognition
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Figure 1: Overall process of MR-LSDGM model.

Journal of Healthcare Engineering 3



fuzzy weight centre of gravity of the data is used to define the
cluster centre (centroid)X.

vj � n 􏽘
n

j�1
ui,j, x

l
xj. (2)

As ug,j influences the calculation of the cluster centres ]i,

data with more memberships would have a greater influence
on the prototype position than data with fewer member-
ships. Because u(g, j) has an effect on the calculation of the
cluster centres vi, it is necessary to consider it. )e distance
d_ is used in the fuzzy C-means technique (g, j). Clustering
using fuzzy logic (sometimes referred to as soft clustering or
soft k-means) allows each individual data point to be
assigned to more than one cluster. For fuzzy C-means ap-
proach, distance dg,j is determined by

dg,ju
2

� xj − vi

�����

�����
2
. (3)

)e cluster centre vi represents the common value of that
cluster, where the ug,j components of the association matrix
denote the range where the data point xj is related to its
model. )e minimalization of divide function (1) would
derive the following equation:

dg,j

dgj

, x
1/(l− 1)

+ ug,j �
1
2
. (4)

Equation (4) is defined in an iterative manner as the
distance dg,j is based on membership ui,k. )e process to
compute the FCM is given below:

(i) Opt for the number of cluster c, 2≤ c< n; select m,
1≤ l<∞.InitializeU(0).

(ii) Compute the cluster centre ]i by (2).
(iii) Compute the novel partition matrix U(1) by (4).
(iv) Relate U(j) & U(j+1). When the variations of the MD

uk,i computed by proper standards are smaller when
compared to the provided threshold, end the pro-
cess and return to step (2).

)e BBO algorithm is used to define the optimal initial
cluster centre of the FCM technique. )e BBO has a
population-based optimised technique that simulates the
development and the balance of predator and prey in
different ecosystems. According to research, the BBO
produces better results than the other population-based
techniques [20]. )is technique utilises the BBO algorithm

to select the optimal initial cluster centre to use for its initial
cluster centre determination process. For each setting, the
BBO uses an optimal population-based technique to
simulate development and the balance between predators
and prey. It has been discovered through research that the
BBO generates superior results when compared to other
population-based approaches. From one iteration to the
next, a collection of solutions is retained, and all habitats
send and receive inhabitants. )e various habitats are
determined by their immigration and emigration rates,
which are probabilistically modified. An arbitrary number
of habitats are occasionally mutated during all iterations.
All of the solution parameters are now referred to as
suitability index variables (SIV). Simon was the first to
propose the concept of a biogeography-based optimization
method. Using the scientific understanding of migration
and the dispersion of species from one habitat to another,
this method has been devised and tested. Each location has
a habitat suitability index (HSI), which is based on the
concepts of this algorithm and acts in a similar way to the
fitness function in other population-centred algorithms. In
addition, the suitability index variables refer to the inde-
pendent factors that are used to determine the suitability
index of a settlement (SIV).

)e mathematical method of immigration (λk) and
emigration (μk) is expressed as follows:

λk � I 1 −
Sk

Smax
􏼠 􏼡,

μk � E
Sk

Smax
􏼠 􏼡,

(5)

where I refers to the maximal rate of immigration, E defines
the maximal rate of emigration, Smax implies the maximal
number of habitats, and Sk represents the habitant count of
k.

)e following are the modifications to all habitats that
improve the evaluation of BBO:

m(s) � mmax × 1 −
Pn

Pmax
􏼠 􏼡, (6)

where mmax represents the higher value of mutation
determined as a user, Pmax demonstrates the superior mu-
tation probabilities of every habitat. and Pn refers to the
mutation probabilities of nth habitat that is given by

Pn

�

�

− λn + μn( 􏼁Pn + μn+1Pn+1, n � 0;

− λn + μn( 􏼁Pn + μn+1Pn+1 + λn−1Pn−1, 1≤ n≤ Smax − 1 � 0;

− λn + μn( 􏼁Pn + λn−1Pn−1, n � Smax.

⎧⎪⎪⎨

⎪⎪⎩
(7)

At this point,
∅⟶ H

n
, HSI

n
􏼈 􏼉

I: sets an ecosystem of
habitat and calculates all equivalent HSIs, and Γ �

(n, m, λ, τ,Ω, M) describes the function that switches from

one optimised cycle to the next. )e six tuples of elements
are described, where n implies the number of habitats, m

refers to the number of SIVs, λ represents the rate of
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immigration, τ demonstrates the rate of emigration,Ω refers
to the migration function, and M indicates the mutation
operator.

3.3. Modelling Preferences of DMs Using 2TLFR Technique.
Once the DMs have been clustered, their perspectives can be
defined and fused using the 2TLFR technique to retain as
much decision information as possible. Decision-making in
healthcare is based on dynamic conditions and ambiguous
information, and most decision-makers prefer linguistic
variables or fuzzy values over hard numbers. In the two-
tuple linguistic depiction method, the data measured in the
linguistic hierarchy term set could be unified with no data
loss.

Definition 1. S � s0, s1, . . . , sg􏽮 􏽯 represents a linguistic term
set; βϵ[0, g] denotes the outcome of an aggregation index of
a group of labels measured in S.(sc, α) indicates linguistic
two tuples; scϵS and αϵ[−0.5, 0.5]; sc characterises the lin-
guistic label of the data; and αmeans the mathematical value
that expresses the values of the translation from the original
results β to the nearest index label c in S, namely, the
symbolic translation.

)e following function converts mathematical numbers
and linguistic two tuples. )ey can convert mathematical
values to linguistic two tuples using (9) [8].

Δ: [0, g]⟶ s×, (8)

Δ(β) �
sc, c � round(β),

α � β − r, α ∈ [−0.5, 0.5].
􏼨 (9)

Using the eq., they can convert a linguistic phrase to a
real value (between 0 and g).

Δ− 1
: s ×[−0.5, 0.5]⟶ [0, g]

Δ− 1
sc, α􏼐 􏼑 � c + α � β

. (10)

To further unify the dimension, they could use the eq. to
map the linguistic term between zero and one.

Δ− 1
: s ×[−0.5, 0.5]⟶ [0, 1],

Δ− 1
sc, α􏼐 􏼑 �

c + α
g

.
(11)

3.4. Automated Disease Classification Model. Finally, the
disease classification process is divided into three stages: feature
extraction using LSTM, classification using ELM, and pa-
rameter tuning using tree growth algorithm (TGA). As pre-
viously stated, convolution models can work on a single image
and transform it from input pixel to matrix/vector represen-
tation. Current CNN pretrained models are used for feature
extraction. )e main goal is that CNNmay not be trained, but
training may be provided by the BP errors from the LSTM-DL
classifiers via CNN multiple input images. Convolutional
neural networks (CNNs) are used because of their improved
transferability. Knowledge of this cutting-edge technology will

benefit not just researchers who use CNN for radiology and
medical imaging jobs but also clinical radiologists, since deep
learning may influence their practise in the near future. Fol-
lowingCNN training,medical professionals or computer-aided
detection (CADe) systems can specify the target lesions in
medical pictures during the deployment phase. Figure 2 depicts
a general LSTM cell. )e LSTM cell contains various gates and
parameters that control the behaviour of each memory cell.
Every cell state is governed by the activation function of gates.
For different types of gates, the input value is fed into the input
gate (I), forget gate (f), activation vector (c), and output gate
(o).

jt � ∈ j wpjpt + whjht−1 + wajat−1 + bj􏼐 􏼑,

ft � ∈ f wPpt + whht−1 + wafa−1 + bf􏼐 􏼑,

at � ftat−1 + jt∈a wpcpt + whaht−1 + ba􏼐 􏼑,

0t � ∈o wpopt + whot−1h + waoat−1 + bo􏼐 􏼑,

ht � 0t ∈ h at( 􏼁,

(12)

where wpj, whj, waj, whf, waf, wpa, wha, wpo, and wao denote
weight (input weight, hidden weight, output weight, etc.)
and bj, bf, ba, and b0 indicate the bias weight [21].

Each time step includes a single CNN series and an
LSTM model. As a single step, CNN could be passed and
used on every output to the LSTM input image for all input
images. )e result could be achieved by folding up a CNN
input framework with multiple layers in a time distribution
method. )e same layer is used multiple times to achieve a
similar result. To determine the presence of diseases, the
extracted features are fed into the ELM classifier. Assume a
training data A (xi, ti)􏼈 􏼉

N

i�1, the output functions of SLFN
using L hidden neuron could be determined by

f xi( 􏼁 � 􏽘

L

j�1
βjhj aj, bj, xi􏼐 􏼑 � h xi( 􏼁β, i � 1, . . . , N, (13)

where β � β1, . . . , βT
L denotes the output weight matrix and

h(xi) � [h1(a1, b1, xi), . . . , hj(aL, bL, xi)] represents the
network output equivalent to the training samples xi. hj(·)

indicates a nonlinear piecewise continuous function and
aj ∈Rd, and bj ∈ R(j � 1, 2, . . . , L) means a parameter of jth
hidden node.)e training network is to discover appropriate
network parameters for minimizing the error functions
‖Hβ − T‖2, where

Ct‑1

ht‑1

Xt

ht

tanh
tanh

Ct

ht

Figure 2: LSTM structure.
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H �

h x1( 􏼁

⋮

h xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

T �

t
T
1

⋮

t
T
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)

It represents an SLFN using an L hidden neuron and
denotes the hidden, output matrix, and target output.

ELM uses arbitrary hidden node parameters and the tune-
free trained approach to FFNN instead of iteratively upgrading
network parameters as in traditional gradient descent algo-
rithms. ELM is flexible because it employs a hidden activation
function, as demonstrated by the universal approximate ability
theorem. Almost any nonlinear piecewise continuous function
and its linear combination perform well in the ELM algorithm
[22].)e extreme learning machine (ELM) is a fast convergent
training method for single hidden layer feedforward neural
networks (SLFNs). )is type of SLFN allows for faster con-
vergence training and avoids the need for many iterations to
update the hidden layer weights. Compared to other classical
learning algorithms in applications with increasing noise, ELM
appears to outperform ELM in regression and classification
tests.With a single hidden layer of neurons and random feature
mapping, an ELM model learns quicker than other models.
High dimensions and large data sets have aroused substantial
scholarly interest in the low computing complexity.

)e TGA is used to optimise the ELM model’s parameter
computation, resulting in improved overall classification
performance. )e TGA approach is stimulated by the com-
petition between trees in the forest. A tree’s attention is divided
between food and sunlight. Exploration and exploitation are
the two major stages of the approach. During the exploration
stage, the tree moves toward the sunlight, allowing it to in-
vestigate new locations.)e tree is now fulfilledwith light in the
exploitation stage, and thus, it moves towards better nutrients
in the root, as it moves towards the global/local optimal. )e
forest’s tree population is classified into four types.

)e first group of trees has found a light source, and they
can now compete for food. To compete with light, the tree in
the second group switches to the two optimal options that are
closest to it. In the third group, a new tree is planted in place of
the worst tree. Finally, an optimal tree is used to create a novel
plant [23]. Initially, this approach arbitrarily creates the early
population of the tree (solution) within the lower and upper
bounds, where the fitness values for all solutions are calculated.
)e following is how the early population is produced.

xi,j � minj + rand · maxj − minj􏼐 􏼑, (15)

where xi,j is the jth variable of ith solution of the population,
rand represents an arbitrary value derived by the uniform
distribution, and minj and maxj indicates lower bound and
upper bound of jth variable, respectively.

Next, the population is arranged based on the fitness
values, and the present optimal solution at the jth iterations
is established. )e global optimal solutions are represented
as T

j

GB. )e optimal solution is allocated to the initial group
(N1), and the solution from this population carries out the
local search as follows:

T
j+1
i �

T
j

i

θ
+ r × T

j
i ,

(16)

where T
j+1
i represents the novel ith solution and T

j

i is the
ith solution in jth iteration. θ represents the rate of power
decreases, and r specifies an arbitrary number between
[0,1].

When the novel solution has a higher fitness value than
the current solution, greedy selections are used to find it.)e
novel solution either replaces the current one or keeps the
current solutions for the next generation.

)e second optimal solution is allocated to N2 sub-
population. All solutions from the N2 group must be
shifted to the two nearest solutions (from the initial and
second subpopulation) at distinct α angles. )e Euclidean
distance is used to measure the distance between two
solutions.

di � 􏽘

N1+N2

i�1
T

j
N2

− T
j
i􏼐 􏼑

2
⎛⎝ ⎞⎠

1/2

,

di �
di ifT

j

N2
≠T

j

i ,

∞ ifTj
N2

� T
j
i ,

⎧⎪⎨

⎪⎩

(17)

where dj denotes the distance of ith solution, )e trees that
exist now are depicted as T

j
N2
, and the ith solution in the

population are signified as T
j
i .

)e poorest solution from the population is found in the
third subpopulation, N3. )is solution is calculated by
replacing it with a recent arbitrary solution.

N3 � N − N1 − N2, (18)

where the population sizes are represented by N.N1 and N2
are the first and second subpopulation, respectively. Next,
the novel population (N) is determined by adding the initial
groups N1, N2, and N3.

N � N1 + N2 + N3. (19)

)e last group N4 includes arbitrary novel results.N4 is
the final group of entire set outcomes which contains ar-
bitrary novel findings.. Using mask operators, the pop-
ulation adapts an optimal solution from the initial group
(N), and the adapted solution is fused. )e fitness values are
used to organise the novel population, and the best N so-
lution is chosen for the next iteration. )e procedure is
repeated until the desired result is obtained. Finally, the best
solution is determined.
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4. Performance Validation

)e performance of the MR-LSDGM approach is investi-
gated in this section using the benchmark activity recog-
nition data set from the UCI repository [24]. )e data set
contains information on 30 people, each with 561 attributes.
)e data set contains 496 instances from the Walk class, 471
instances from the Up class, 420 instances from the Down
class, 491 instances from the Sitting class, 532 instances from
the Standing class, and 537 instances from the Lying class.

After five repetitions, the MR-LSDGM approach pro-
duced a collection of five confusion matrices, as shown in
Figure 3. )e graph shows that the MR-LSDGM method

yielded the best possible result in each execution run [25].
For example, the MR-LSDGM technique classified 493 in-
stances asWalk, 464 instances as Up, 415 instances as Down,
447 instances as Sit, 506 instances as Stand, and 537 in-
stances as Lay under run-1. Similarly, the MR-LSDGM
approach classified 495 instances as Walk, 466 instances as
Up, 416 instances as Down, 451 instances as Sit, 510 in-
stances as Stand, and 537 instances as Lay in run-2. Similarly,
the MR-LSDGM method classified 495 instances as Walk,
464 instances as Up, 416 instances as Down, 450 instances as
Sit, 508 instances as Stand, and 536 instances as Lay under
run-4. Furthermore, under run-5, the MR-LSDGM algo-
rithm classified 495 instances as Walk, 464 instances as Up,
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Figure 3: Confusion matrix analysis of MR-LSDGM model.
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Table 1: Result analysis of MR-LSDGM technique under different runs.

No. of runs Methods Sensitivity Specificity Precision Accuracy F-score

Run-1

Walk 0.994 1.000 1.000 0.999 0.997
Up 0.985 0.997 0.985 0.995 0.985

Down 0.988 0.998 0.986 0.996 0.987
Sit 0.910 0.989 0.943 0.976 0.926
Std 0.951 0.981 0.918 0.976 0.934
Lay 1.000 1.000 1.000 1.000 1.000

Average 0.971 0.994 0.972 0.990 0.972

Run-2

Walk 0.998 1.000 1.000 1.000 0.999
Up 0.989 0.998 0.992 0.997 0.990

Down 0.991 0.998 0.991 0.997 0.991
Sit 0.919 0.991 0.952 0.979 0.935
Std 0.959 0.983 0.926 0.979 0.942
Lay 1.000 1.000 1.000 1.000 1.000

Average 0.976 0.995 0.977 0.992 0.976

Run-3

Walk 0.998 1.000 1.000 1.000 0.999
Up 0.983 0.998 0.991 0.996 0.987

Down 0.991 0.998 0.986 0.997 0.988
Sit 0.915 0.989 0.943 0.977 0.929
Std 0.953 0.981 0.919 0.976 0.935
Lay 0.996 1.000 1.000 0.999 0.998

Average 0.973 0.994 0.973 0.991 0.973

Run-4

Walk 0.998 1.000 1.000 1.000 0.999
Up 0.985 0.998 0.992 0.996 0.988

Down 0.991 0.998 0.988 0.997 0.989
Sit 0.917 0.989 0.945 0.977 0.931
Std 0.955 0.982 0.922 0.977 0.938
Lay 0.998 1.000 1.000 1.000 0.999

Average 0.974 0.995 0.975 0.991 0.974

Run-5

Walk 0.998 1.000 1.000 1.000 0.999
Up 0.985 0.998 0.989 0.996 0.987

Down 0.988 0.998 0.988 0.997 0.988
Sit 0.923 0.989 0.942 0.978 0.932
Std 0.951 0.983 0.923 0.977 0.937
Lay 0.994 1.000 1.000 0.999 0.997

Average 0.973 0.995 0.974 0.991 0.973
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Figure 4: Result analysis of MR-LSDGM model with different measures.
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415 instances as Down, 453, Sit, 506, Stand, and 534 in-
stances as Lay [26].

)e classification result analysis of the MR-LSDGM
technique under varying execution runs is reported in Ta-
ble 1 and Figure 4. )e MR-LSDGM technique has resulted
in superior performance across all runs, as shown in Table 1.

For example, the MR-LSDGM technique achieved maxi-
mum performance with run-1, with an average sensitivity of
0.971, specificity of 0.994, precision of 0.972, accuracy of
0.990, and F-score of 0.972. )e MR-LSDGM method also
performed optimally in run-2, with an average sensitivity of
0.976, specificity of 0.995, precision of 0.977, accuracy of
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Figure 5: ROC analysis of MR-LSDGM model.
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0.992, and F-score of 0.976. Furthermore, with run-3, the
MR-LSDGM method achieved an average sensitivity of
0.973, specificity of 0.994, precision of 0.973, accuracy of
0.991, and F-score of 0.973. With run-5, the MR-LSDGM
approach improved efficiency, achieving an average sensi-
tivity of 0.973, specificity of 0.995, precision of 0.974, ac-
curacy of 0.991, and F-score of 0.973.

Figure 5 depicts the ROC analysis of the MR-LSDGM
method on the applied data set under various runs [27].
According to the results, the MR-LSDGM approach had the
highest ROC value in every run. For example, in run-1, the
MR-LSDGM technique achieved an increased ROC of
99.9888. In line with run-2, the MR-LSDGM method has a
better ROC of 99.7676. )e MR-LSDGM methodology then
achieved a maximum ROC of 99.9874 in run-3. Concur-
rently, the MR-LSDGM technique achieved a superior ROC
of 99.9721 in run-4. Finally, under run-5, the MR-LSDGM
method achieved a maximum ROC of 99.9416 [28].

An extended comparison analysis is provided in Table 2
[25] to demonstrate the improved performance of the MR-
LSDGM technique. With accuracy of 0.9375 and 0.9531,
respectively, the CNN-2016 and CC-2018 approaches pro-
duced ineffective results [29]. At the same time, the CNN-
LSTM and lightweight CNN approaches improved their
accuracy to 0.9627 and 0.958, respectively. Furthermore, the
CNN-BiLSTM and CNN-SF approaches have acceptable
accuracy values of 0.9705 and 0.9763, respectively. In
contrast, the proposed MR-LSDGM approach achieved an
effective performance of 0.991 [30].

As evidenced by the tables and statistics above, the MR-
LSDGM technique is clearly more effective than the other
procedures.

4.1. Discussion. )e healthcare IoTdata sets and performance
criteria for the proposed MR-LSGDM strategy are briefly
outlined in this section [31]. )e complete approach was de-
veloped using the MATLAB 2021a tool on a Core i3-3110M
processor running Windows 8 with 2GB RAM, and it was
tested on 8 healthcare IoT data sets (Table 1) [32]. Over 30
separate runs, the new BBO-FCM approach was compared to
existing algorithms such as CNN 2016, CNN 2018, CNN-SF,
CNN-LSTM, lightweight CNN, and CNN-BiLSTM in terms of
intracluster distance, purity index, standard deviation, root
mean square error, accuracy, and F-measure [33].

5. Conclusion

)e MapReduce tool is used in this study to create a new MR-
LSDGM approach for the healthcare sector. )e MR-LSDGM
approach includes BBO-FCM-based DM clustering, 2TFLR-
based preference modelling, and LSTM-OELM-based classifi-
cation procedures. To manage big data in the healthcare sector,
the MR-LSDGM technique employs the MapReduce tool.
Furthermore, the design of the BBO algorithm for determining
the primary cluster centres of the FCM technique, as well as
parameter optimization of ELM using the TGA technique,
contribute to improved overall classification results. A large
number of simulations are run to demonstrate the improved
outcomes of the MR-LSDGM technique, and the experimental
results are examined using several metrics. According to the
simulation results, the MR-LSDGM methodology out-
performed the other methods. In the future, the model pre-
sented here could be used in telemedicine applications to help
patients in remote areas.
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