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�e pharmacological mechanisms underlying the adverse e�ects of linezolid on thrombocytopenia have not been conclusively
determined. �is network pharmacology study aimed at investigating the potential pharmacological mechanisms of linezolid-
induced adverse reactions in thrombocytopenia. In this study, target genes for linezolid and thrombocytopenia were compared
and analyzed. Overlapping thrombocytopenia-associated targets and predicted targets of linezolid were imported to establish
protein-protein interaction networks. Gene Ontology and the Kyoto Encyclopedia of Genes and Genome pathway enrichment
analyses were performed to determine the enriched biological terms and pathways.�emechanisms involved in linezolid-induced
thrombocytopenia were established to be associated with various biological processes, including T cell activation, peptidyl serine
modi�cation, and peptidyl serine phosphorylation. �e top �ve relevant protein targets were obtained, including ALB, AKT1,
EGFR, IL6, and MTOR. Enrichment analysis showed that the targets of linezolid were positively correlated with T cell activation
responses. �e mechanism of action of linezolid was positively correlated with the PI3K-AKT signaling pathway and negatively
correlated with the Ras signaling pathway. We identi�ed the important protein targets and signaling pathways involved in
linezolid-induced thrombocytopenia in anti-infection therapy, providing new information for subsequent studies on the
pathogenesis of drug-induced thrombocytopenia and potential therapeutic strategies for rational use of linezolid in
clinical settings.

1. Introduction

Linezolid, the �rst oxazolidinone antibacterial drug to be
introduced on the market, is a broad-spectrum antibacterial
agent with 100% oral bioavailability. In vivo, linezolid
rapidly achieves e�ective blood concentrations with low
protein binding and favorable drug distribution [1]. A recent
meta-analysis of randomized clinical trials showed that the
e¢cacy of linezolid for treatment of Gram-positive bacterial
pneumonia was comparable to that of controls [2].

Linezolid-associated nephrotoxic e�ects are lower than
those of vancomycin; however, with widespread clinical uses
of linezolid, there are concerns about its platelet suppression
e�ects, anemia induction, and other hematologic adverse
e�ects [3–6]. Due to di�erences in design protocols and
anemia de�nitions among studies, incidences of reported
linezolid-associated adverse events have been shown to
range from 14.1% to 64.7% [7–9]. When administered for an
extended period of time, linezolid is associated with a high
rate of adverse events, the most common of which is anemia.
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0e mechanisms involved in linezolid-induced anemia have
yet to be fully clarified. Severe drug-induced anemia is as-
sociated with multiple mechanisms. 0erefore, through a
network pharmacology approach, we investigated the
mechanisms of linezolid-induced thrombocytopenia.

2. Materials and Methods

2.1. Screening for Potential Targets of Linezolid. 0e SMILES
ID of linezolid was obtained from the PubChem database
[10] (https://pubchem.ncbi.nlm.nih.gov/), imported into the
SwissTargetPrediction database [11] (http://www. swis-
stargetprediction.ch/) and the SEA database [12] (http://sea.
bkslab.org/) to obtain the corresponding compound targets,
followed by the GeneCards database [13] (https://www.
genecards.org/) to retrieve the compound targets of the
drug. Targets of the SwissTargetPrediction database were
selected with a probability >0 score for inclusion. To obtain
the final potential targets of linezolid, the obtained targets
were adjusted while duplicates were eliminated by the
UniProt database (https://www.uniprot.org/).

2.2. Screening for Potential Targets of �rombocytopenia.
Human gene searches were performed in the GeneCards
database, the NCBI database [15], the OMIM database [16]
(https://www. omim.org/), and the DisGeNETdatabase [17]
(https://www.disgenet.org/) using the keyword “0rombo-
cytopenia” for human gene searches. All identified targets
were de-duplicated and integrated to construct a database of
thrombocytopenia-related targets.

2.3. Potential Linezolid Targets for Adverse Reactions Asso-
ciatedwith�rombocytopenia. Target genes for the action of
linezolid and thrombocytopenia were matched and the re-
sults presented by a Venn diagram (Venny software version
2.1).

2.4. Establishment and Analysis of Overlapping Target
Networks. Overlapping target gene data for linezolid and
thrombocytopenia were imported into the STRING database
(https://string-db.org/cgi/input.pl) for protein-protein in-
teraction (PPI) analysis. 0e PPI network results were ob-
tained by loading the PPI data while network plots of
overlapping targets were prepared using the Cytoscape
software (version 3.8.0). Topological data analysis was
performed using the NetworkAnalyzer tool, using degree as
the reference standard and sorted by degree. Genes whose
scores were greater than the average score were selected as
key targets. In this study, screening of key genes was per-
formed via MCODE analysis. After importing the PPI
network data, gene clustering analysis and core target
screening were implemented using the MCODE module.

2.5. Pathway Enrichment Analysis. 0e Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway and Gene On-
tology (GO) enrichment analyses were performed to sys-
tematically analyze the functions of potential target genes for

linezolid-induced thrombocytopenia in terms of a network
of genes and molecules.

3. Results

3.1. Results of Target Screening of Linezolid and
�rombocytopenia. After removing repeated targets from
SwissTargets and SEA databases, 183 linezolid targets were
obtained. GenoCards, NCBI, OMIM, and DisGeNET were
used to collect the thrombocytopenia target data. We
combined data from four databases and removed duplicate
items to obtain 2068 thrombocytopenia-related targets.

3.2. Potential Targets for Linezolid-Induced �rombocytopenia.
After crossover analysis of the targets of linezolid and
thrombocytopenia-related targets, we obtained 85 over-
lapping targets, which may be responsible for linezolid-in-
duced thrombocytopenia (Figure 1 and Table 1).

3.3. PPI Network Analysis. 0e PPI network derived from
analysis of 85 drug-disease interaction targets was estab-
lished using the STRING website (Figure 2). 0e PPI net-
work in Figure 3 was created using the Cytoscape software,
where node sizes and color were adjusted based on the
degree value. Nodes with larger dimensions and darker
colors indicate larger degree values, whereas lines from thick
to thin indicate edge betweenness from large to small. Based
on our analyses, the top five targets are ALB, AKT1, EGFR,
IL6, and MTOR.

3.4. Results of Topological Data and MCODE Cluster
Analyses. 0rough degree sorting, genes with scores better
than the average were selected as key targets in the topo-
logical data analysis. 0irty-two key targets were screened,
and the top 20 targets are plotted in Figure 4. 0e horizontal
coordinates are the degree values of different targets. In this
study, screening of key genes was also performed by
MCODE analysis. After importing the constructed PPI
network, the MCODE module was used to analyze gene
clusters and to screen the core targets. We identified four
gene clusters and four core genes (MAPK14, PARP1,
MAPK8, and POLG) (Supplementary Table 1 presents
findings from MCODE cluster analysis).

3.5. Drug-Disease Target Network Development. A drug-
disease-relevant target network diagram was constructed
based on inclusion of potentially relevant targets to un-
derstand the complex interplay among linezolid, throm-
bocytopenia, and corresponding targets (Figure 5).

3.6. Enrichment Analysis of Target Pathways. Enriched GO
terms were categorized by biological processes (BP), mo-
lecular functions (MF), and cells components (CC) for
targets relevant to linezolid and thrombocytopenia. A total
of 1481 GO terms were obtained (55 CC terms, 1359 BP
terms, and 67MF terms). We selected the top 10 statistically
significant GO information terms; moreover, in GO
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enrichment circles, the circle size or line length represents
number of genes enriched, while the color represents
prominence of enrichment. Several biological processes were
associated with linezolid-induced thrombocytopenia, in-
cluding T cell activation, peptidyl-serine modification, and
peptidyl-serine phosphorylation. Various cellular compo-
nents are also involved, including the extrinsic component
of the membrane, mitochondrial inner membrane, and
transferase complex transferring phosphorus-containing
groups. Protein serine/threonine kinase activity, protein
tyrosine kinase activity, and transmembrane receptor

protein tyrosine kinase activity were the associated molec-
ular functions (Figures 6(a) and 6(b)).

In Figures 7(a) and 7(b), we selected the top 20 most
highly correlated KEGG pathway enrichment items to be
shown as bubble and bar plots.0e length of the bar and size
of the circle in the plots reflects the number of genes that
were enriched in KEGG, while color represents the signif-
icance of gene enrichment. 0e targets were found to be
markedly enriched in multiple pathways, including the
PI3K-AKT, Ras, FoxO, C-type lectin receptor, and the HIF-1
signaling pathways. It is shown that linezolid has positive
associations with reactions to Tcell activation.Moreover, the
effects of linezolid were positively correlated with the PI3K-
AKT signaling pathway and adversely correlated with the
Ras signaling pathway.

We plotted the drug-target-pathway network to visualize
the characteristics of linezolid-induced thrombocytopenia
during infection treatment. In Figure 8, the blue diamond
represents the drug, pink circles represent potential targets
of linezolid-induced thrombocytopenia, green arrows are
the top 20 most significant pathways, while the yellow square
represents the disease.

4. Discussion

Platelets are among the most important cells in the body and
play a role in accelerating blood clotting and hemostasis.
Impaired megakaryocyte maturation results in decreased
platelet production, leading to symptoms such as skin pe-
techiae, the gums, gastrointestinal bleeding, and in severe
cases, life-threatening brain hemorrhage. 0e mechanisms
involved in linezolid-induced anemia have not been fully
understood, while multiple mechanisms are involved in
development of linezolid-induced thrombocytopenia. An
83-year-old man was administered with linezolid for
Staphylococcus aureus treatment. After the initiation of
linezolid therapy, he developed progressive anemia. During
the linezolid-administration period, his hemoglobin levels
were 5.7 g/dL, reticulocyte percentage was 0.36%, while his
white blood cell and platelet counts were unchanged. Bone
marrow examination revealed a significant reduction in
erythropoiesis with cytoplasmic vacuolation of erythro-
blasts, suggesting that the anemia caused by linezolid may
have been due to myelosuppression [18]. 0e potential
hematological side effects associated with linezolid, in-
cluding pure red aplastic anemia are a public health concern.
Wang et al. evaluated the levels of reactive oxygen species,
malondialdehyde, and cholesterol as well as the activities of
antioxidant enzymes in blood samples after linezolid
treatment. 0ey found that serum levels of reactive oxygen
species and malondialdehyde were significantly elevated
while superoxide dismutase and catalase levels were sup-
pressed in the thrombocytopenic group, relative to the
normal platelet count group. 0ese findings suggest that
oxidative damage might be the underlying mechanism of
thrombocytopenia in patients receiving prolonged linezolid
treatment [19]. In an in vivo study, Tajima et al. found el-
evated levels of myosin light chain 2 (MLC2) phosphory-
lation in mature megakaryocytes affected by linezolid.

98 85 1983

Drug Disease

Figure 1: Potential targets for linezolid-induced
thrombocytopenia.

Table 1: 0e related target genes of linezolid-induced
thrombocytopenia.

Number Gene
symbol Number Gene

symbol Number Gene
symbol

1 CYP3A4 31 ND6 61 TBK1
2 CYP2D6 32 COX3 62 CASP7
3 CYP2C9 33 CYTB 63 AKT1
4 F5 34 TRNS2 64 CASP1
5 POLG 35 F10 65 PABPC1
6 TYMP 36 STAT3 66 FLT1
7 ALB 37 GBA 67 FGFR1
8 IL6 38 MAPK14 68 FLT3
9 COX2 39 PRKDC 69 ACHE
10 PIK3C2A 40 RORC 70 ELANE
11 CYP2C19 41 KDR 71 CDK2
12 IFNG 42 PIK3CB 72 IDO1
13 CCL2 43 CHEK1 73 ERBB2
14 IL10 44 P2RX7 74 EGFR
15 RRM2B 45 SYK 75 MTOR
16 SLC25A4 46 MET 76 AURKB
17 DGUOK 47 LRRK2 77 CDK1
18 FANCI 48 RAF1 78 CDK4
19 MPV17 49 JAK2 79 NAAA
20 TWNK 50 PARP1 80 AURKA
21 TRNM 51 ASAH1 81 ZAP70
22 PPBP 52 CNR2 82 SELE
23 NLRP3 53 PIK3CD 83 KIT
24 TRNL1 54 PIK3CG 84 MAPK8
25 TRNK 55 PIK3CA 85 RAD51
26 TRNF 56 ALOX5
27 CAT 57 PLAT
28 HSPD1 58 KLKB1
29 EPO 59 MAPK1
30 COX1 60 CD38
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Figure 3: 0e PPI network analysis of 85 drug-disease interaction targets according to the Cytoscape software.

Figure 2: 0e PPI network of 85 drug-disease interaction targets according to the STRING website.
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Biologically, MLC2 regulates platelet maturation [20].
Linezolid-induced thrombocytopenia may also result from
MLC2 phosphorylation, which blocks the maturation of
megakaryocytes into platelets.

In this study, we found that linezolid-induced throm-
bocytopenia is associated with the PI3K-AKT pathway. Our
conclusion is supported by the latest findings, which showed
that the PI3K-AKTpathway is a key pathway through which
the macrophage M2 subtype promotes megakaryocyte
maturation [21]. Platelets are produced by migration and
directed differentiation of hematopoietic stem cells into
megakaryocytes in the bone marrow microenvironment.

Megakaryocyte maturation and platelet production are
strictly regulated by the bone marrowmicroenvironment. In
vitro and in a macrophage-specific PI3K-knockdown mouse
model, genetic knockdown of the PI3K-AKT pathway im-
paired the ability of macrophages to support mega-
karyopoiesis, suggesting an important role of the PI3K-AKT
pathway in regulating macrophage M2megakaryopoiesis. In
addition, the TGF-β released by M2 macrophages promotes
megakaryopoiesis by upregulating the JAK2/STAT5 and
MAPK/ERK pathways. In this study, the core genes iden-
tified by MCODE analysis contained MAPK8 and MAPK14.
Our findings reveal the significance of the PI3K-AKT
pathway in linezolid-induced thrombocytopenia and pro-
vide a basis for in-depth studies on potential treatment
targets that promote megakaryopoiesis.

A previous case report concluded that linezolid causes
thrombocytopenia via immunosuppression. By performing
a bone marrow biopsy for a linezolid-administered patient
with associated thrombocytopenia, Bernstein et al. showed
that linezolid-induced thrombocytopenia is not associated
with myelosuppression or thrombocytopoiesis, and ade-
quate, normal megakaryocytes were detected. In contrast,
after the administration of immunoglobulin therapy, the rate
of platelet count decline slowed in this patient, suggesting
drug-induced immune-mediated thrombocytopenia[22].
We found that the mechanisms of action involved in line-
zolid-induced thrombocytopenia are associated with various
biological processes, including T cell activation. Immune
thrombocytopenia has traditionally been considered to be a
B-cell-mediated disorder, as antiplatelet antibodies are de-
tected in most patients. 0e nature of autoantigens, the
apparent processes of isotype switching, and affinity mat-
uration of antiplatelet antibodies suggest that for B cells to
induce an antiplatelet immune response, they require the
support of self-functioning CD4+ Tcells.0e pathogenesis of
immune thrombocytopenia can be traced to imbalanced01
and 02 subsets of CD4+ T cells. Numerous subsets of these
cells have been described, including017, 09,022, as well
as T follicular helper and regulatory T cells[23]. Elucidation
of the mechanisms of action of linezolid through immune-
mediated responses to platelet clearance will inform on the
roles of different immune cells and different targets for
thrombocytopenia treatment.

Based on the abovementioned studies, linezolid-induced
thrombocytopenia may be caused by multiple mechanisms
that may function together. Since most diseases today are
defined by phenotypes instead of mechanisms, we are hardly
aware of the mechanism of any disease and treat the
symptoms with low precision consistently [24, 25]. 0e
concept of network pharmacology refers to pharmacological
treatment that involves the combination of drugs that target
the causal disease module or signaling network and acts
synergistically on molecules within the network [26–28].
Network-based approaches offer the development of robust
multilayer computational networks integrating related data
may help to investigate complex biological pathways altered
by drug treatment or to better understand the complex
biological mechanisms that contribute to several diseases
[29, 30].
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Figure 5: Plotting of drug-disease target network for linezolid-
induced thrombocytopenia.
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Mechanistically, linezolid-associated thrombocytopenia
may be due to different mechanisms, which should be
further investigated. 0is study has some limitations. Not all

database information was included in this study, implying
that some targets may have beenmissed during screening. In
addition, the time of onset and change in action of linezolid-
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Figure 6: (a) Bar plot of GO enrichment analysis. (b) Bubble plot of GO enrichment analysis.
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Figure 7: (a) Bar plot of KEGG pathway enrichment analysis. (b) Bubble plot of KEGG pathway enrichment analysis.
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induced thrombocytopenia could not be interpreted and
analyzed in this study, and the effects of drug dose on disease
onset could not be analyzed.

5. Conclusions

0e mechanisms involved in linezolid-induced thrombo-
cytopenia were established to be associated with various
biological processes, including T cell activation, peptidyl
serine modification, and peptidyl serine phosphorylation.
0e top five relevant protein targets were obtained, including
ALB, AKT1, EGFR, IL6, and MTOR. Enrichment analysis
showed that the targets of linezolid were positively corre-
lated with T cell activation responses. 0e mechanism of
action of linezolid was positively correlated with the PI3K-
AKT signaling pathway and negatively correlated with the
Ras signaling pathway. We identified key proteins and
metabolic pathways associated with linezolid-induced
thrombocytopenia during anti-infection therapy, which
forms the basis for subsequent studies on the pathogenesis of
drug-induced thrombocytopenia and identification of po-
tential therapeutic strategies.
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