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Current guidelines on atrial �brillation (AF) emphasized that radiofrequency catheter ablation (RFCA) should be decided after
fully considering its prognosis. However, a robust prediction model re�ecting the complex interactions between the features
a�ecting prognosis remains to be developed. In this paper, we propose a deep learning model for predicting the late recurrence
after RFCA in patients with AF. Aiming to predict the late recurrence (LR) of AF within 1 year after pulmonary vein isolation, we
designed a multimodal model based on the multilayer perceptron architecture. For quantitative evaluation, we conducted 4-fold
cross-validation on data from 177 AF patients including 47 LR patients. e proposed model (area under the receiver operating
characteristic curve-AUROC, 0.766) outperformed the acute patient physiologic and laboratory evaluation (APPLE) score
(AUROC, 0.605), CHA2DS2-VASc score (AUROC, 0.595), linear regression (AUROC, 0.541), logistic regression (AUROC, 0.546),
extreme gradient boosting (AUROC, 0.608), and support vector machine (AUROC, 0.638). e proposed model exhibited better
performance than clinical indicators (APPLE and CHA2DS2-VASc score) and machine learning techniques (linear regression,
logistic regression, extreme gradient boosting, and support vector machine). e model will support clinical decision-making for
selecting good responders to the RFCA intervention.

1. Introduction

Radiofrequency catheter ablation (RFCA) is accepted as the
�rst-line therapy for patients with symptomatic atrial �-
brillation (AF) refractory to antiarrhythmic drugs [1], since
Häıssaguerre et al. suggested it as a treatment modality [2].
However, the bene�ts of RFCA in patients with AF are
frequently o�set by late recurrence (LR) after the procedure
[3]. Moreover, various attempts to modify the atrial sub-
strate, including linear ablation lesion set, ablation targeting
rotor, or complex fractionated atrial electrogram, do not
demonstrate superiority to pulmonary vein isolation [4, 5].
erefore, the most recent treatment guidelines for AF
recommend assessing the bene�t to patients for ensuring a
high probability of success after RFCA [1].

Although observational studies have suggested the du-
ration of AF, age, left atrium (LA) size, renal function, and
other factors as predictors of LR [6–9], no single factor can
accurately predict recurrence after AF ablation [1]. To im-
prove prediction, various models providing indicators such
as the CHA2DS2-VASc score [10, 11] and acute patient
physiologic and laboratory evaluation (APPLE) score [12]
have been developed. However, these models have shown
modest performance [13], as they are based on simple linear
regression where each risk factor is assigned one or two
points and the sum represents the �nal score.

Recently, machine learning (ML) methods have been
proposed to analyze high-order interactions between dif-
ferent features [14, 15]. For instance, a predictive model
based on a support vector machine (SVM) showed an area
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under the receiver operating characteristic curve (AUROC)
of 0.75 for predicting LR within 1 year after RFCA, by
considering the AF type (paroxysmal vs. persistent), pre-
vious ablation procedure, LA volume, and epicardial fat
volume as inputs [16]. In addition, deep learning methods
that automatically extract hierarchical features have out-
performed traditional ML methods. A recent study [35]
employed convolutional neural networks to predict LR from
the N-terminal probrain natriuretic peptide, paroxysmal AF,
LA appendage volume, and LA volume.

+e multilayer perceptron (MLP) technique which an-
alyzes complex nonlinear relations between input features
has demonstrated promising performance in various med-
ical applications [18–20]. +erefore, we proposed an MLP-
based model for predicting rhythm outcomes after RFCA in
patients with AF and compared our model with conven-
tional prediction models and other ML approaches.

2. Methods

2.1. Study Population and Ethical Statement. We analyzed
consecutive patients with AF who underwent RFCA at
Chungbuk National University Hospital (CBNUH) from
February 2017 to October 2020. All the patients were over 18
years old and underwent their first RFCA. Exclusion criteria
included patients with repeated RFCA, with substrate
modification lesion sets (e.g., ablation of complex frac-
tionated atrial electrogram or linear ablation), with a follow
up period below 1 year, and with missing values in study
features. +is study was approved by the Institutional Re-
view Board of CBNUH (approval no. 2021-12-009-001). As
this was a retrospective observational study, the requirement
for informed consent was waived. +is study was conducted
in accordance with the Declaration of Helsinki.

2.2.PreproceduralPreparationandEvaluations. Class I or III
antiarrhythmic drugs were discontinued at least half-lives of
five times before RFCA. Direct oral anticoagulants were not
interrupted during the periprocedural period. One day
before the procedure, transthoracic echocardiography and
transesophageal echocardiography were acquired from the
patients. In addition, the following echocardiographic pa-
rameters were collected for this study: left ventricular
ejection fraction (LVEF), left ventricle mass index, and LA
anterior-posterior diameter. +e estimated glomerular fil-
tration rate (eGFR) was also evaluated 1 day before the
procedure.

2.3. Radiofrequency Catheter Ablation. RFCA was per-
formed under sinus rhythm at our institution, except when
AF recurred immediately after cardioversion. +ree-di-
mensional mapping of the LA was constructed using the
EnSite NavX/Velocity system (St. Jude Medical, St. Paul,
MN, USA). Circumferential pulmonary vein isolation
around the antrum of the ipsilateral pulmonary veins was
performed using an irrigated TactiCath Quartz or TactiCath
TM Contract Force ablation catheter (St. Jude Medical) with
a maximum power of 25–40W. Radiofrequency energy with

contact force above 10–20 g was applied in each ablation
lesion point until the force-time integral exceed 400 gs. After
verifying the electrical isolation of the four pulmonary veins
with a bidirectional block, the existence of a nonpulmonary
vein trigger was assessed by cardioversion for AF evoked by
rapid atrial pacing under isoproterenol infusion.

2.4. Clinical Follow-Up. Intake of class I or III antiar-
rhythmic drugs continued until 3 months after catheter
ablation. +e rhythm status was assessed by surface elec-
trocardiography (EKG) and Holter monitoring at 2 weeks
and 1, 2, 3, 6, 9, and 12 months after discharge. In addition,
whenever a patient felt symptoms, EKG and Holter moni-
toring were performed in our institution. Anticoagulants
were prescribed to all patients up to 3 months after dis-
charge, and they were selectively prescribed according to the
CHA2DS2-VASc score afterward.

2.5. Definitions. +e endpoint of this study was the LR of
sustained atrial tachyarrhythmia within 1 year after RFCA.
Sustained atrial tachyarrhythmia was defined as atrial flutter,
atrial tachycardia, or AF lasting for more than 30 s in Holter
monitoring or more than 10 seconds in 12-lead EKG. LR was
defined as sustained atrial tachyarrhythmia within 1 year of
RFCA, but early recurrence during the blanking period of 3
months after ablation was not regarded as late recurrence.
+e AF duration was defined as the difference between the
date of the first AF documented on EKG and the date of
index RFCA. +e eGFR was calculated using the CKD-EPI
(chronic kidney disease–epidemiology collaboration)
equation as follows: eGFR� 141×min(Scr/κ, 1)α ×max(Scr/
κ, 1)−1.209 × 0.993Age × 1.018 [if woman]× 1.159 [if black],
where Scr is the serum creatinine level, κ is 0.7 for women
and 0.9 for men, α is −0.329 for women and −0.411 for men,
and min and max denote the minimum and maximum
between their arguments, respectively [21].

2.6. Dataset Preparation. For a small dataset, selecting in-
formative features is essential to ensure training stability and
convergence. +us, extreme gradient boosting (XGBoost)
was utilized to select informative features while omitting the
irrelevant ones according to the weight of each feature
during analysis (Figure 1).

In our dataset, only 47 patients (26.5%) experienced LR.
To address the data imbalance that drastically degrades ML
performance, we adopted the synthetic minority over-
sampling technique [22] for data augmentation according to
the neighborhood of the minority class. Note that this
technique was applied to the training set but not to the test set.

We performed 4-fold cross-validation on our dataset.
+e dataset was split into 4 equally sized folds. Specifically, in
each iteration, one-fold was used for testing (25%) and the
others were used for model training (75%).

Figure 2 shows the proposed deep learning model based
on the MLP architecture. +e model consists of three MLP
blocks and one output layer. Each MLP block comprises a
dense layer, a batch normalization layer, rectified linear unit
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Figure 1: Flowchart of the experimental procedure. Of the 15 factors, 11 were selected using the extreme gradient boosting (XGBoost)
algorithm. We used 4-fold cross-validation for model evaluation and applied the synthetic minority oversampling technique to the training
set in each fold. ML, machine learning; MLP, multilayer perceptron; PVI, pulmonary vein isolation.
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Figure 2: Network architecture based on multilayer perceptron (MLP) to predict the late recurrence probability. Dim, dimension; ReLU,
rectified linear unit.
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(ReLU) activation, and a dropout layer with a rate of 0.2 to
avoid overfitting. For the output layer, a dense layer followed
by sigmoid activation is used to calculate the LR probability.
We use weighted binary cross-entropy as the loss function to
handle data imbalance. In this study, the model was trained
for 1,000 epochs using the Adam optimizer with a learning
rate of 10−4.

2.7. Evaluation of Model Performance. We compared the
performance of the proposed model with that of various ML
techniques: linear regression, logistic regression, XGBoost
algorithm, and SVM. +e proposed model and ML tech-
niques were implemented and evaluated using the Keras and
TensorFlow 2 platforms in Python 3.8. +e proposed model
was trained on the CUDA 11.0.3 toolkit using an NVIDIA
GeForce RTX 3090 graphics processor.

For the quantitative evaluation, we determined the
AUROC, F1 score, sensitivity, and specificity. +e receiver
operating characteristic (ROC) curve is a statistical per-
formance measure that depicts the true positive rate
according to the false positive rate. +e AUROC ranges
between 0 and 1, with 0.5 indicating random guessing and 1
indicating perfect classification. +e F1 score ranges from 0
to 1 and is the harmonic mean of the precision and recall.
+e accuracy indicates the similarity between measured and
actual values, being an intuitive indicator of model per-
formance. +e sensitivity is a measure of the true positive
rate, and the specificity is a measure of the true negative rate.

2.8. Statistical Analysis. Categorical features were compared
using Pearson’s χ2 test or Fisher’s exact test when the
numbers were below five. +e normality of continuous
features was evaluated using the Shapiro–Wilk test. +e
difference for continuous features with normal distribution
was compared using Student’s t-test, and distributions with
skewed features were compared using the Mann–Whitney
test. +e ROC curves were plotted with the AUROC to
evaluate the diagnostic accuracy of the APPLE and
CHA2DS2-VASc score for LR after the procedure. All the
statistical analyzes were performed using SPSS version 28.0
(IBM, Armonk, NY, USA). We compared the performance
of the proposed model with that of the conventional APPLE
and CHA2DS2-VASc scores.

3. Results

3.1. Patient Characteristics. Fifteen of the 192 consecutive
patients were excluded because of follow-up loss (n� 2) or
additional substrate modification adjunct to PVI (n� 13). Of
the remaining 177 patients, 47 (26.5%) experienced LR
within 1 year after RFCA. LR was identified in 17 (19.1%) of
89 patients with paroxysmal AF and 30 (34.1%) of 88 pa-
tients with persistent AF. +e baseline characteristics of
patients with and without AF following RFCA are sum-
marized in Table 1. Patients with LR had higher APPLE
scores (1 (0–2) vs. 1 (1–2), p� 0.026) and proportion of
embolism events (8.5% vs. 19%, p� 0.047) than those
without LR. A higher proportion of women (12% vs. 23%,

p� 0.070) and LVEF below 50% (2.3% vs. 8.5%, p� 0.082),
large LA (41± 6 vs. 43± 7mm, p� 0.090), and low eGFR
(95± 21 vs. 88± 22, p� 0.055) were observed in patients with
LR compared with those without LR.

3.2. Feature Selection Using Extreme Gradient Boosting.
Figure 3 shows the relative importance of risk factors for LR
following RFCA.We selected representative features with an
f-score higher than 100 as input of the proposed model: age,
sex, height, weight, hypertension, AF type, AF duration, LA
diameter, left ventricular mass index, LVEF, and eGFR.

3.3. Performance Evaluation. To evaluate the model per-
formance, we performed 4-fold cross-validation on our
dataset. +e resulting AUROC, F1 score, sensitivity, speci-
ficity, and accuracy per iteration of the proposed model are
listed in Table 2. Each fold showed AUROC≥ 0.73. Figure 4
shows the confusion matrix for every fold, and Figure 5
shows the ROC curves for the 4-fold average and all folds.

Table 3 shows the quantitative evaluation results for the
evaluated models. +e APPLE and CHA2DS2-VASc score
underperformed the ML techniques (i.e., linear regression,
logistic regression, XGBoost algorithm, and SVM). Figure 6
shows the confusion matrices for all the evaluated models,
and Figure 7 shows the ROC curves. Our model achieves an
average AUROC of 0.766, F1 score of 0.632, sensitivity of
0.745, and specificity of 0.777.+emodel showed the highest
performance compared to those of the conventional pre-
diction models and ML approaches.

4. Discussion

Our results demonstrate that an MLP-based model using
easily accessible clinical and echocardiographic features
obtained during the preprocedural stage can suitably predict
LR after RFCA. Our model outperformed conventional
prediction models and ML approaches. +is approach may
support decision-making for selecting patients with AF
considering the LR probability after RFCA.

4.1. Interpretation of the Feature Importance. To observe the
impact of each feature on the MLP model training, we
utilized Shapley additive planation (SHAP) [23], which is
one of the widespread methods to explain model predictions
and provide visualization charts. More specifically, the
SHAP algorithm calculates the relative importance of the
features on the prediction.+emagnitude of the SHAP value
means the degree of influence on the prediction.+e positive
SHAP value indicates that the feature contribution to the
probability of AF recurrence is higher, and a negative SHAP
value indicates that the feature contribution to the proba-
bility of AF recurrence is lower.

As illustrated in Figure 8, the LA diameter was the most
powerful feature followed by AF duration, weight, eGFR,
and LV mass index. In addition, the SHAP results dem-
onstrated that the higher value of LA diameter, the higher
value of AF duration, patients with heart failure, patients
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with hypertension, the higher value of age, the higher value
of height, the lower value of sex (0: female, 1: male), patients
with diabetes mellitus, patients with stroke were associated
with an increased risk of AF recurrence. Interestingly, some
features showed unexpected contributions to the AF re-
currence in the SHAP results. +e AF type gave a lower

influence than AF duration, LV mass index, and LA di-
ameter, while the AF type is widely accepted as the primary
risk factor for LR after RFCA [24]. +is finding can be
explained by the fact that the rhythm outcome after RFCA
may differ according to the different burdens of AF, espe-
cially paroxysmal AF [38].
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Figure 3: Importance of features obtained from extreme gradient boosting algorithm.AF, atrial fibrillation; LV, left ventricular; LVEF, left
ventricular ejection fraction; LA, left atrium; eGFR, estimated glomerular filtration rate; HTN, hypertension; AF type, paroxysmal AF vs.
persistent AF; DM, diabetes mellitus; HF, heart failure; CAD, coronary artery disease.

Table 1: Baseline characteristics of patients with and without late recurrence following catheter ablation.

Without late recurrence (n� 130) With late recurrence (n� 47) P value
Age (years) 59 ± 10 60 ± 10 0.626
Age> 65 years 35 (27) 16 (34) 0.356
Female sex 16 (12) 11 (23) 0.070
Height (cm) 167 ± 7 166 ± 8 0.604
Body weight (kg) 72 ± 11 71 ± 12 0.552
BMI (kg/m2) 26 ± 3 26 ± 4 0.686
Persistent atrial fibrillation 58 (45) 30 (64) 0.024
AF duration (month) 23 ± 25 36 ± 41 0.054
Heart failure 4 (3) 7 (15) 0.009
Hypertension 49 (38) 13 (28) 0.217
Diabetes mellitus 21 (16) 9 (19) 0.639
Prior stroke or TIA or SE 11 (8.5) 9 (19) 0.047
Vascular disease 8 (6) 4 (9) 0.582
TTE findings
LA diameter (mm) 41 ± 6 43 ± 7 0.090
LA diameter ≥ 43mm 49 (38) 23 (49) 0.179
LVEF (%) 69 ± 9 68 ± 13 0.515
LVEF< 50% 3 (2.3) 4 (8.5) 0.082
LV mass index (g/m2) 87 ± 19 90 ± 28 0.452

Laboratory findings
eGFR (ml/min/1.73m2) 95 ± 21 88 ± 22 0.055
eGFR< 60ml/min/1.73m2 5 (4) 3 (6) 0.359

CHA2DS2-VASc score, median (IQR) 1 (0–2) 1 (0–2) 0.299
APPLE score, median (IQR) 1 (0–2) 1 (1–2) 0.026
Results are presented as n (%) or means with standard deviation. AF, atrial fibrillation; BMI, body mass index; eGFR, estimated glomerular filtration rate; LA,
left atrium; LV, left ventricle, LVEF, left ventricular ejection fraction; SE, systemic embolism; TIA, transient ischemic attack; TTE, transthoracic
echocardiography.
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4.2. Conventional Prediction Models for Radiofrequency
Catheter Ablation Prognosis in Patients with Atrial
Fibrillation. Clinical risk factors including the AF type and
duration [16, 17, 25], obesity [26], sleep apnea [27], and
hypertension [28] are associated with the development of
abnormal atrial substrate that leads to AF recurrence after
RFCA. Moreover, the LA diameter and volume [29], the
volume of epicardial fat [30], and the severity of atrial tissue
fibrosis [31] are structural predictors of the RFCA outcome
in patients with AF. However, no single factor has shown
superiority over others in predicting the outcome.

To overcome this limitation, various prediction models
combining well-known risk factors have been developed,
with models including ALARMEc, HATCH, CHA2DS2-
VASc, and APPLE scores showing a moderate performance
with AUROC ranging from 0.44 to 0.74 [32]. However,
these scoring models may not reflect high-order interac-
tions between various features because they consider
simple linear equations, in which one or two points are
arbitrarily assigned to the corresponding risk factors. Al-
though the concordance statistics of the BASE-AF2 score
have shown good to excellent discrimination ability of
0.61–0.94 [33], postprocedural features such as early re-
currence after RFCA should be included to show such
performance. Similarly, the MB-LATER score with
AUROC ranging from 0.57 to 0.83 should include early
recurrence after RFCA to calculate the scoring system to
provide an excellent performance [34].

4.3. Machine Learning Models for Radiofrequency Catheter
AblationPrognosis inPatientswithAtrialFibrillation. A deep
learning model has shown a good prediction performance
(C-index of 0.76) by simply using four features: N-terminal
pro brain natriuretic peptide, AF type, LA appendage vol-
ume, and LA volume [35]. +e easily obtainable input data
used in this model may enable practical application.
However, this model excludes accepted clinical features
including AF duration and comorbidities related to LR after
RFCA. More recently, Baalman et al. [36] proposed an ML
prediction model using input data selected from 166 clinical
features. Although the model suitably predicts LR (AUROC
of 0.73, 95% confidence interval of 0.68–0.77), the contin-
uous input features, such as age, LA volume index, and
CHA2DS2-VASc score, are expressed as discrete values,
leading to information loss.
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recurrence of atrial fibrillation after radiofrequency catheter ab-
lation obtained from the proposed model stratified over 4-fold
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Table 2: Quantitative evaluation results of the proposed model for 4-fold cross-validation.

AUROC F1 score Sensitivity Specificity Accuracy
Fold 1 0.760 0.615 0.727 0.781 0.767
Fold 2 0.803 0.640 0.727 0.812 0.791
Fold 3 0.766 0.640 0.727 0.812 0.791
Fold 4 0.735 0.629 0.786 0.706 0.729
Mean 0.766 0.633 0.745 0.777 0.768
+e mean values are indicated in bold.
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Unlike existing ML models, the proposed MLP-based
deep learning prediction model uses continuous and mul-
tiple features without information loss. Moreover, it can
achieve a superior discriminative ability compared with
established prediction models such as the APPLE and
CHA2DS2-VASc score. +e promising performance of our
model may be attributed to the ability of MLP to learn high-
order interactions between accepted risk factors and the
rhythm outcomes after RFCA.

4.4. Limitations of the Study. Various limitations of this
study should be noted. First, LR may have been under-
estimated because the rhythm outcome after RFCA was
evaluated by intermittent EKG and Holter monitoring.

Second, the study population included in this study was
limited. Nevertheless, to prevent overfitting due to the small
sample size and evaluate the test model robustness, we
employed 4-fold cross-validation, consistently achieving an
AUROC above 0.73 in each fold. +ird, deviations of the
patient’s characteristics may have occurred owing to rela-
tively short AF duration, a smaller proportion of heart
failure with reduced ejection fraction, and pulmonary vein
isolation lesion set at index procedure. +erefore, the model
performance should be confirmed by considering an ex-
ternal validation cohort in future work. Finally, we did not
consider a recent deep learning model that uses LA fibrosis
findings in magnetic resonance images as an input feature
[37].
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Figure 6: Confusion matrices of conventional prediction models and machine learning approaches. APPLE, acute patient physiologic and
laboratory evaluation.

Table 3: Quantitative evaluation results of evaluated models.

AUROC F1 score Sensitivity Specificity Accuracy
APPLE score 0.605 0.357 0.426 0.654 0.593
CHA2DS2-VASc score 0.595 0.397 0.489 0.646 0.605
Linear regression 0.541 0.412 0.574 0.562 0.565
Logistic regression 0.546 0.381 0.511 0.585 0.565
XGBoost 0.608 0.452 0.617 0.600 0.605
SVM 0.638 0.482 0.617 0.662 0.650
Proposed model 0.766 0.632 0.745 0.777 0.768
+e best and second-best results are shown in boldface and italics, respectively.
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persistent}; DM {0, 1}; HTN {0, 1}; sex {0: female, 1: male}; stroke {0, 1}; HF {0, 1}), the red and blue dots represent 1 and 0, respectively. AF,
atrial fibrillation; LV, left ventricular; LVEF, left ventricular ejection fraction; LA, left atrium; eGFR, estimated glomerular filtration rate;
HTN, hypertension; AF type, paroxysmal AF vs persistent AF; DM, diabetes mellitus; HF, heart failure; CAD, coronary artery disease.
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5. Conclusion

We proposed an MLP-based model that outperforms con-
ventional prediction models and state-of-the-art MLmethods
in predicting rhythm outcomes after RFCA in patients with
AF. +e model may support clinical decision-making for
selecting good responders to the RFCA intervention. In future
work, we will further to improve the proposed model by
considering imaging data related to the atrial substrate.
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