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Cost control is becoming increasingly important in hospital management. Hospital operating rooms have high resource
consumption because they are a major part of a hospital. ,us, the optimal use of operating rooms can lead to high resource
savings. However, because of the uncertainty of the operation procedures, it is difficult to arrange for the use of operating rooms in
advance. In general, the durations of both surgery and anesthesia emergence determine the time requirements of operating rooms,
and these durations are difficult to predict. In this study, we used an artificial neural network to construct a surgery and anesthesia
emergence duration-prediction system. We propose an intelligent data preprocessing algorithm to balance and enhance the
training dataset automatically. ,e experimental results indicate that the prediction accuracies of the proposed serial prediction
systems are acceptable in comparison to separate systems.

1. Introduction

In recent years, cost savings have become critical in hospitals
[1–3]. In addition to staff salaries, hospitals have to pay for
equipment, materials, and administrative expenses. A
conservative estimate of operating room utilization costs
exceeded $15 per minute in 2012 [1]. However, in 2017, the
estimate increased to $36 per minute [2].,e cost has always
been an important optimization objective in operating room
scheduling [3]. ,erefore, cost control is a key factor for
successful hospital management.

,e operating room is a core component of the hospital,
and its use contributes considerably to hospital costs [4]. In
general, surgeries require expensive resources, such as
equipment, materials, energy, and medical staff [5]. In some
hospitals, several operating rooms form a laminar flow
operation center, in which the energy cost of using five
operating rooms for one hour is almost the same as that of
using one operating room for one hour. However, the energy
cost of using one operating room for five hours is five times

that of using five operating rooms for one hour. If the
operating rooms are not optimally used, the cost is high.
Hence, detailed operating room scheduling is required to
ensure that all required resources are available at the right
time.

,erefore, a well-arranged operating room schedule can
reduce costs. However, such a schedule is difficult to achieve,
primarily because of the uncertainty in the operating room
use duration [6], which is determined by surgery and an-
esthesia emergence durations. Surgery duration is defined as
the time from the beginning to the end of surgery. Anes-
thesia emergence duration is the time from the end of the
surgery to the time when the patient wakes up. Anesthesia
emergence is relevant only in surgeries under general an-
esthesia. If the operating room schedule does not allocate
sufficient time for an operation, the next operation cannot
start on time. However, if the planned operation duration is
longer than the actual duration, the operating room will be
vacant, leading to a waste of resources. In extreme cases,
operating rooms may remain open beyond their planned

Hindawi
Journal of Healthcare Engineering
Volume 2022, Article ID 2921775, 17 pages
https://doi.org/10.1155/2022/2921775

mailto:pcshih@cyut.edu.tw
https://orcid.org/0000-0002-8211-3951
https://orcid.org/0000-0002-1890-1101
https://orcid.org/0000-0001-8428-7165
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2921775


working hours, incurring costly overtime wages and energy
consumption [7]. Similarly, an inaccurate estimate of the
duration of anesthesia emergence can lead to poor surgical
scheduling, resulting in resources wastage. In contrast,
optimal scheduling can reduce the resource consumption
that is caused by the difference between the estimated and
the actual operating room use times.

Previous studies have used several approaches to estimate
surgery duration [8–17]. A common method is to assume the
decisions of surgeons as the deciding factor. Surgeons make a
rough estimate of the operating room use times based on the
average duration of previous similar operations (previous
experience), the type of surgery, patient characteristics, and
other factors. [8]. ,ey tend to avoid risks and have limited
ability to estimate the duration of surgery [9]. Using this
method, the case duration was overestimated by up to 32% or
underestimated by 42% [10]. ,e second common approach is
to use electronic health records (EHRs) to calculate a given case
duration based on historical data [11]. Because EHR does not
take into consideration factors, such as body mass index,
anesthesia type, staff, and so on [12], its accuracy is modestly
higher for ordinary patients [11] and greatly dependent on
other factors. Another method is to simulate the case duration
according to the concept of probability distribution.
Commonly used probability distributions include the
hypergamma, lognormal, gamma, and Weibull distributions
[13]. ,is approach has often been used to describe the
stochastic duration of surgery, however, its accuracy has not
been reported in the literature. With the popularization of
artificial intelligence, numerous statistical and machine-
learning tools have been used to predict surgery durations.
,ese methods include Bayesian methods [14], regression
techniques [14–16], neural networks [14–16], and random
forests [17]. For example, Devi et al. [14] established neural
networks and regression models for three types of oph-
thalmic surgery studies (cataract, corneal transplant, and
oculoplastic surgery). ,e predicted root mean square error
was affected by the number of hidden layer neurons con-
structed by the model. Because of the different types of
surgeries, the RMSE was 0.0656–0.6295. Based on the
findings of reference [14], we conducted more in-depth
experiments on the decision-making of prediction model
architecture, including the number of hidden layers and the
number of neurons in each hidden layer.

Bartek et al. [15] used linear regression and supervised
machine learning to create surgeon-specific models (92
individual models) and service-specific models (12 service-
specific models). ,e prediction accuracies of the former
were 32% to 39% and better than those of the latter. Sha-
habikargar et al. [17] employed the filtered random forest
algorithm to predict the surgical duration. ,ey filtered the
data of 60,362 elective surgeries in two hospitals by deleting
missing, inconsistent, and duplicate values before modeling.
,e overall prediction error decreased by 44% (mean ab-
solute percentage error from 0.68 to 0.38%) compared to the
error without data preprocessing. ,erefore, for data pre-
processing, we referred to the data cleaning operation in
reference [17] and proposed an intelligent data pre-
processing algorithm to improve the data quality.

Tuwatananurak et al. [16] employed supervised learning
to learn 990 effective surgical data within three months. ,e
results showed a 7min improvement in absolute difference
between the predicted and actual case durations when
compared to that obtained using conventional EHR. ,e
method also resulted in a 70% reduction in overall sched-
uling inaccuracy. As hospitals seek more economical process
arrangements, the patient’s anesthesia recovery is being
moved from the operating room to the postanesthesia care
unit, resulting in the separation of anesthesia recovery time
from operation time. ,us, these two must be predicted
separately. To the best of our knowledge, no study has been
reported on the prediction of anesthesia awakening time.
,erefore, in this study, we constructed a serial artificial
neural network (ANN) to predict the operation and anes-
thesia recovery time.

Artificial intelligence has been recently adopted to
various prediction problems and has resulted in good
prediction performance. For example, an ANN was used to
predict the recidivism of commuted prisoners [18] and solve
the ship detection problem [19]. A support vector machine
(SVM) was used to classify the reclaimed wafers into good
and not good categories [20]. ,e driver lane-keeping ability
in the fog problem was solved using an association rule [21].
,e ANN has been used to solve various types of prediction
problems and has better accuracy than SVM in supervised
learning [20, 22]. ,erefore, to predict the duration of
surgery and anesthesia emergence more accurately for
arranging the operating rooms more efficiently and ef-
fectively, ANN was used to construct the surgery duration
prediction system in our previous study [23], and we used
ANN to construct the anesthesia emergence duration
prediction system in this study. ,e anesthesia emergence
duration is affected by the surgery duration: the longer the
surgery duration, the longer the anesthesia emergence
duration. ,us, the former is an input variable for the
anesthesia emergence duration prediction system. How-
ever, the actual surgery duration is unknown before the
procedure is performed. ,erefore, we, firstly, constructed
two prediction systems: surgery duration and anesthesia
emergence duration prediction systems, and then com-
bined them to obtain the final prediction system. We used
the predicted surgery duration as the input variable for the
anesthesia emergence duration prediction system.
According to the experimental results, the prediction ac-
curacy of the final prediction system was 95.52%. Besides,
we developed an intelligent data preprocessing algorithm
to balance and enhance the dataset for the ANN. ,is
algorithm automatically calculates the most appropriate
replication time.

,e remainder of this paper is organized as follows:
Section 2 introduces the ANN, perceptron, and multilayer
perceptron (MLP). Section 3 describes the experiments
conducted and the data preprocessing algorithm. Section
4 discusses the experimental results of the three prediction
systems: surgery duration, anesthesia emergence dura-
tion, and final prediction systems. Finally, the conclusions
and suggestions for future research are presented in
Section 5.
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2. Review of the Artificial Neural Network

2.1. Artificial Neural Network. An ANN is a complex arti-
ficial system based on mathematical models based on the
function, structure, and information processing of the hu-
man brain and nervous system [24, 25]. Similar to the
human brain, an ANN is a self-learning system that learns to
predict outputs by performing numerous iterations. All
types of ANN nodes are akin to the neurons in the human
brain, each of which is used as the input of the next node,
after the weighting function [26, 27]. In the learning process,
the weights are updated using a systematic algorithm. To
obtain better output accuracy, the ANN often performs the
backpropagation learning algorithm, i.e., it uses a certain set
of weights and biases to perform an iteration, calculate the
error with the output and actual value, propagate backwards,
and update the weights and bias by the error to ensure that
after several such forward and backward propagations, the
output accuracy is high [28, 29]. After the ANN is trained,
new data can be classified or predicted using the received
stimulus (new input data), weights, and biases.

,e ANN is a powerful tool for learning and modeling
complex linear or nonlinear relationships. To be more
precise, the model it builds is similar to a “black box.” ,e
nature of the relationship between the input and output data
is unknown [30]. ANNs have been widely applied in a wide
range of problems in multiple fields, including engineering
[31, 32], biology, mathematics, and medicine, to analyze and
predict various diseases [33].

2.2. Perceptron. ,e perceptron model was derived from the
MP model established by McCulloch and Pitts [34]. By
simulating the principles and processes of biological nerve
cells, the MP model describes the mathematical theory and
network structure of artificial neurons and proves that a
single neuron can realize a logical function. ,e MP model
contains input, output, and computation functions. ,e
input and output are analogous to the dendrite and axon of a
neuron, respectively, whereas the calculation is similar to the
processing conducted in the nucleus, with each synapse
being assigned a weight.

Inspired by the MP model, the perceptron model con-
sists of two layers. ,e first layer, called the input layer,
receives the stimulus and passes it to the last layer. In the
final layer, called the output layer, all input stimuli are
multiplied with their respective weights, and the perceptron
adds all the weighted stimuli and bias using the summation
function. Finally, the perceptron uses an activation function
to simulate data processing in the brain [35]. ,e basic
network structure of a perceptron is shown in Figure 1.

2.3. Multilayer Perceptron. To better handle nonlinear
problems, Hecht-Nielsen proposed a multilayer perceptron
by placing additional layers (s) of neurons between the input
and output layers [35]. As shown in Figure 2, there are two
fundamental components of the basic MLP structure:
neurons and the links between neurons. ,e ni neurons are
the processing elements, and the links are interconnections.

Every link has a corresponding weight parameter wj or bias
parameter bi. When a neuron receives stimuli from other
neurons via links, it processes the information and produces
an output. Moreover, these intermediate layers are assumed
to not be disturbed by the external environment. ,erefore,
they are called hidden layers, and the nodes of hidden layers
are called hidden nodes. Similar to the perceptron, the input
neurons receive external stimuli, and the output neurons
deliver the output. Using similar neuron dynamics, hidden
neurons receive stimuli from neurons at the front of the
network and relay the output to the neurons at the back of
the network [18].

3. Experiments

3.1. Data Setting. Operational records collected between
January 2019 and July 2020 from the Affiliated Hospital of
Panzhihua University were used as samples in this study.,e
records were used only for academic purposes and were
anonymized to protect privacy.

In total, 15,754 samples were collected for this study.
,ese samples were the data of patients without hepatic and
renal diseases. To eliminate potential factors that could
influence the operation time, all samples from emergency
surgery patients or patients admitted to the intensive care
unit after surgery were excluded. ,us, records from only
patients with complete case data were included. Samples
with all types of anesthesia were considered to predict the
duration of surgery, whereas only samples under general
anesthesia were considered to predict the duration of an-
esthesia emergence.

To improve the prediction accuracy of the model, we
collected the data available preoperatively and identified the
influencing factors of surgery and anesthesia emergence
durations as the input variables of the model through lit-
erature survey and physician interviews. ,e input and
output variables of the surgery and anesthesia emergence
duration prediction systems are presented in Tables 1 and 2,
respectively. In Table 1, the input variables are composed of
three parts: basic patient information and preoperative
physiological data (A1–A18), surgeon information
(A20–A23), and operation information (A19 and A24). In
Table 2, the input variables are composed of three parts:
basic patient information and preoperative physiological
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Figure 1: Basic structure of perceptron.
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data (A1–A18), anesthesiologist information (A20–A23),
and operation information (A19 and A24). By comparing
these tables, we observed that the 20th and 24th input var-
iables of the two systems were different. Firstly, as men-
tioned in the data setting criteria, samples with both local
and general anesthesia were used in the first system, whereas
only samples with general anesthesia were used in the second
system. Hence, they were subdivided into four types of
general anesthesia. Furthermore, the duration of surgery was
dependent on the surgeon, whereas the duration of anes-
thesia emergence was dependent on the anesthesiologist.
Moreover, the surgical grade had a profound impact on the
duration of surgery but a negligible effect on the duration of
anesthesia emergence. Hence, it was ignored in the latter
case. In summary, the duration of surgery may affect the
duration of anesthesia emergence. ,erefore, the output
variable of the first system was used as the 24th input
variable of the second system. Given that the duration of
surgery was less than 4 h, all samples with a duration of less
than 4 h were used to predict the duration of surgery. Given
that most durations of anesthesia emergence are less than
1 h, all samples with a duration of less than 1 h were used to
predict the duration of anesthesia emergence. ,erefore, the
last row of Table 1 shows that the surgery duration was
divided into four scales: no more than one hour, 1 h to 2 h,
2 h to 3 h, and 3 h to 4 h. Similarly, the duration of anesthesia
emergence was divided into four scales: no more than 15, 15
to 40, 40 to 50, and 50 to 60min, as shown in the last row of
Table 2.

,e success of an ANN depends heavily on appropriate
data preprocessing. Hence, all data in this study were
preprocessed using data transformation [36], inspection
[37], and exclusion of outliers. After data preprocessing,
6,507 and 5,790 surgery samples were retrospectively used
to predict the durations of surgery and anesthesia emer-
gence, respectively. In addition, normalizing the data is
recommended to avoid gradient explosion and eliminate
the influence of data heterogeneity, which can hinder the

learning process [38]. All the data normalized ranged
between 0.1 and 0.9. Moreover, balancing and enriching
data are essential steps in solving classification problems
[39]. We propose an intelligent data-preprocessing algo-
rithm to balance and enhance the dataset. ,ereafter, we
divided the dataset into training, testing, and validation
datasets. ,e most important process of this algorithm was
data balancing. ,e purpose of data balancing is to reduce
the differences in the amount of data in each category. Two
examples of data balancing are shown in Figure 3. ni in-
dicates the amount of data in category i, and nmax indicates
the maximum of ni. All categories must balance the data
based on nmax. In Figure 3, for example, n1 represents the
amount of data in Category 1 and is equal to 60. nmax is
equal to 100. Category 1 must balance data based on nmax.
,e difference between the original n1 (60) and nmax (100)
values is 40. If we increase the amount of data in categories
1 to 120, the difference between 2 × n1 (120) and nmax (100)
decreases to 20. ,erefore, in category 1, the best multiple
was 2. In another example, n2 indicates the amount of data
in category 2 and is equal to 30. If we increase the amount
of data in categories 2 to 90, the difference between 3 × n2
(90) and nmax (100) is 10. However, if the amount of data in
categories 2 to 120 is increased, the difference between 4 ×

n2 (120) and nmax (100) increases to 20. ,erefore, in
category 2, the best multiple is 3. Based on the above
concept, the rules of multiplication for data balancing are
listed in Table 3. In Table 3, if 2/k − 2nmax ≥ ni > 2/knmax, the
multiple of the data balance is k − 1/2. ,e main process of
the intelligent data preprocessing algorithm is illustrated in
Figure 4. ,is algorithm requires only the normalized data,
multiple to be used for enhancement, and the partition
ratio of the dataset as input. Finally, we obtained the
balanced, enhanced, and partitioned dataset. We generated
new samples and expanded the database size by adding
slight noise to the input data while maintaining the same
output category. ,e value of the noise was between −0.03
and +0.03.
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Figure 2: Basic structure of MLP.
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After data balancing, the data were increased by three
times in the initial experiments and ten times in the final
experiment. In addition, data representation was an essential
part of a successful ANN [37]. In this study, the output
variable was categorized according to four binary numbers,
namely, 1000, 0100, 0010, and 0001, where the position of 1
indicates the category.

3.2. Computing Environment Settings. We used Python 3.7
(64 bit) as the compiler to write the program. ,e hardware
included an Intel Core (TM) i7-10510U (2.3GHz) CPU,
8GB of memory, and Windows 10 Home Edition (64 bit)
operating system.

3.3. Experimental Structure. ,e experiment was conducted
in two parts. In the first part, we used MLP to construct the
surgery duration prediction system and the anesthesia
emergence duration prediction system. To determine the
optimal architecture of both models, we conducted two sets
of experiments with the same data partitioning and pa-
rameter settings. ,e total dataset was divided into three
datasets, namely training, testing, and validation, in the
respective proportions of 60, 20, and 20% [39, 40].

In the MLP, the Adam optimizer was used to adjust the
weights and the cross-entropy loss function to calculate the
loss of the prediction system. ,e batch size was set to 100,
and the number of training cycles was set to 200 and 1,000 in

Table 1: Input and output variables of the surgery duration prediction system.

Variables Name Description

Input

1. Gender (A1)
(1) Male
(2) Female

2. BMI (A2) Body mass index
3. SBP (A3) Systolic blood pressure
4. DBP (A4) Diastolic blood pressure
5. PR (A5) Pulse rate
6. RR (A6) Respiration rate
7. Temperature (A7) Body temperature

8. Heart function classification (A8)

(1) I level
(2) II level
(3) III level

9. RBC (A9) Red blood cell
10. HB (A10) Hemoglobin
11. HCT (A11) Hematocrit
12. PLT (A12) Platelet
13. K (A13) Potassium
14. NA (A14) Sodium
15. CL (A15) Chlorine
16. APTT (A16) Activated partial thromboplastic time
17. PT (A17) Prothrombin time
18. TT (A18) ,rombin time

19. American society of anesthesiologists (ASA) classification (A19)

(1) I level
(2) II level
(3) III level

20. Anesthesia type (A20)
(1) Local anesthesia
(2) General anesthesia

21. Surgeon title (A21)

(1) Physician
(2) Attending physician
(3) Deputy chief physician
(4) Chief physician

22. Seniority of surgeon (A22) ,e working years of surgeon
23. Age of surgeon (A23) —

24. Surgical grade (A24)

(1) Small
(2) Medium
(3) Large
(4) Super

Output (original) Duration of surgery (T)

(1) ≤ 1 hour
(2) 1-2 hours
(3) 2-3 hours
(4) 3-4 hours

Output (statistical) Duration of surgery (T)

(1) 1000
(2) 0100
(3) 0010
(4) 0001
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Table 2: Input and output variables of the anesthesia emergence duration prediction system.

Variables Name Description

Input

1. Gender (A1)
(1) Male
(2) Female

2. BMI (A2) Body mass index
3. SBP (A3) Systolic blood pressure
4. DBP (A4) Diastolic blood pressure
5. PR (A5) Pulse rate
6. RR (A6) Respiration rate
7. Temperature (A7) Body temperature

8. Heart function classification (A8)

(1) I level
(2) II level
(3) III level

9. RBC (A9) Red blood cell
10. HB (A10) Hemoglobin
11. HCT (A11) Hematocrit
12. PLT (A12) Platelet
13. K (A13) Potassium
14. NA (A14) Sodium
15. CL (A15) Chlorine
16. APTT (A16) Activated partial thromboplastic time
17. PT (A17) Prothrombin time
18. TT (A18) ,rombin time

19. American society of anesthesiologists (ASA) classification
(A19)

(1) I level
(2) II level
(3) III level

20. Anesthesia type (A20)

(1) Intravenous general anesthesia
(2) Intravenous-inhalational balanced anesthesia
(3) General anesthesia with block anesthesia
(4) General anesthesia with intraspinal
anesthesia

21. Title of anesthesiologist (A21)

(1) Physician
(2) Attending physician
(3) Deputy chief physician
(4) Chief physician

22. Seniority of anesthesiologist (A22) ,e working years of anesthesiologist
23. Age of anesthesiologist (A23) —

24. Duration of surgery (A24)

(1) ≤ 1 hour
(2) 1-2 hours
(3) 2-3 hours
(4) 3-4 hours

Output (original) Duration of anesthesia emergence (T)

(1) ≤ 15 minutes
(2) 15–40 minutes
(3) 40–50 minutes
(4) 50–60 minutes

Output
(statistical) Duration of anesthesia emergence (T)

(1) 1000
(2) 0100
(3) 0010
(4) 0001

30 60

40 20

2010

60

90 100

100

120

120
n1= 60

nmax= 100

n2= 30

Figure 3: Two examples of data balancing.
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the final experiment of the optimal architecture.,e number
of hidden layers and hidden nodes in each layer are critical
determiners of the results [35, 39, 41]. We used a trial-and-
error method to identify an optimal number of hidden layers
and hidden nodes. ,e number of hidden layers was set to
three, four, five, and six, and the number of hidden layer
nodes of each layer was set to 64, 128, 256, and 512, re-
spectively. ,us, the experimental results of the 16 pa-
rameter combinations were obtained for comparison and
analysis. To reduce the stochastic effects of the experiments,
we conducted ten experiments for each parameter combi-
nation. Finally, we obtained the two optimal architectures
and weights used in the second part. Figures 5 and 6 show
the MLP structure of the surgery duration prediction system
and anesthesia emergence duration prediction system,
respectively.

In the first part, we used the actual duration of surgery as
the input variable of the second model. However, as men-
tioned in Section 3.1, the output variable of the first model
was the input variable of the second model. ,erefore, in the
second part, we merged these two prediction systems into
one. In other words, we used the predicted duration of
surgery as an input variable for the second model. ,us, we
intersected 6,507 surgery samples with 5,790 anesthesia
emergence prediction samples and obtained 4,285 samples.
,e predicted surgical duration was obtained by feeding the
samples into the first prediction system. ,e predicted
duration of surgery was combined with other attributes of
the samples and fed into the second prediction system to
determine the duration of anesthesia emergence. Figure 7
shows the final combination prediction system.

4. Experimental Results and Analysis

4.1. Experimental Results of the Surgery Duration Prediction
System. We used a trial-and-error method to identify the
final architecture of the surgery duration prediction system.
,e experimental results are listed in Tables 4–11. Tables 4
and 5 present the prediction accuracy and loss value, re-
spectively, of the surgery duration prediction system. In
addition, to further explore the performance of several
different MLP architectures, the experimental results were
analyzed using the t-test, as shown in Tables 6–10. Table 11
lists the running time costs for each architecture. We de-
termined the final architecture of the MLP based on the
maximum prediction accuracy and a reasonable running
time cost.

In Table 4,Mean and Std indicate the average prediction
accuracy and standard deviation, respectively, over ten ex-
periments. Max and Min indicate the maximum and

minimum prediction accuracies during 10 experiments,
respectively. Here, 3-64 denotes the MLP model with 3
hidden layers and 64 hidden neurons in each hidden layer.
In the three hidden layer architectures in Tables 4 and 5, the
3-512 architecture had the maximum average prediction
accuracy (0.7254) and the minimum loss value (0.6664) in
the testing dataset. As shown in Table 6, the 3-512 archi-
tecture is significantly better than the 3-64 and 3-128 ar-
chitecture. However, the 3-512 architecture is not
significantly better than the 3-256 architecture.,e p value is
0.4854. In other words, the 3-512 architecture and 3-256
architecture had similar prediction accuracies. In Table 11,
we notice that the 3-512 architecture had a longer running
time (1806.50 s) than the 3-256 architecture (584.24 s). In
other words, among the three hidden layer architectures, the
3-256 architecture reduced runtime costs by 67.66% com-
pared with the 3-512 architecture. ,erefore, in the three
hidden layer architectures, we chose the 3-256 architecture
prediction system.

In the four, five, and six hidden layer architectures, in
Tables 4 and 5, we note that the 4-256, 5-256, and 6-256
architectures had the maximum average prediction accu-
racies (0.7711, 0.7601, and 0.7493, respectively) and the
minimum loss values (0.6551, 0.6579, and 0.6606, respec-
tively) in the testing dataset. In Tables 7 and 8, the MLP
model with 256 neurons is significantly better than those
with 64 and 128 neurons. However, the MLPmodel with 256
neurons was not significantly better than the model with 512
neurons. ,e p values were 0.1291 and 0.4207, respectively.
In other words, in four-and five-hidden-layer architectures,
the MLP models with 256 and 512 neurons had similar
prediction accuracies. However, from Table 11, we note that
the 4-256 and 5-256 architectures reduced runtime costs by
69.49 and 72.23% compared with the 4-512 and 5-512 ar-
chitectures, respectively. ,erefore, in four and five hidden
layer architectures, we chose the 4-256 and 5-256 archi-
tecture prediction systems. In Table 9, among the six hidden
layer architectures, the 6-256 architecture was significantly
better than the other architectures.

In all architectures, in Tables 4 and 5, the 4-256 archi-
tecture had the maximum average (Mean) prediction ac-
curacies (0.7711, 0.8468, and 0.7714) and the minimum loss
values (0.6551, 0.6364, and 0.6550) in the testing, training,
and validation datasets, respectively. In addition, the 4-256
architecture had the best maximum (Max) and minimum
(Min) prediction accuracy in almost all the testing, training,
and verification datasets. In Table 10, the 4-256 architecture
was significantly better than the 3-256 and 6-256 architec-
tures but not significantly better than the 5-256 architecture.
However, the p value (0.0710) was close to 0.05. In other

Table 3: Rules of multiplication on data balancing.

,e amount of the data of the category i (ni) ,e multiple of the data balance

nmax ≥ ni > 2nmax/3 (3 − 1)/2 � 1
2nmax/3≥ ni > 2nmax/5 (5 − 1)/2 � 2
2nmax/5≥ ni > 2nmax/7 (7 − 1)/2 � 3
⋮ ⋮
2nmax/(k − 2)≥ ni > 2nmax/k (k − 1)/2
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Figure 4: Intelligent data preprocessing algorithm flow chart.
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words, the 4–256 architecture was significantly better than
the 5-256 architecture. In addition, in Table 11, the 4-256
architecture saved 18.07% of the runtime cost compared to
the 5-256 architecture. ,erefore, the final architecture of
the surgery duration prediction system is a 4-256
architecture.

After determining the best architecture of the surgery
duration prediction system, we further improved the pre-
diction accuracy through dropout mechanism, data en-
richment, and longer training time.,e experimental results

are listed in Tables 12–15. Tables 12 and 13 present the effect
of the dropout mechanism, and Tables 14 and 15 present the
impact of the data enrichment and longer training time on
the 4-256 architecture, respectively. In Tables 12 and 13, we
note that the 4-256 architecture without the dropout
mechanism had the maximum average prediction accuracy
(0.7711) and minimum loss value (0.6551) in the testing
dataset. With an increase in the dropout probability, the
average prediction accuracy decreases. In other words, the
dropout mechanism cannot improve the prediction

MLP

The surgery duration
prediction system 

A1

A2

A3

A24

T

T: The predicted duration
of surgery

Figure 5: MLP structure to predict duration of surgery.

MLP

The anesthesia emergence
duration prediction system 

T: The predicted duration
of anesthesia emergence

A1

A2

A3

A24

A24: The actual duration of surgery

T

Figure 6: MLP structure to predict duration of anesthesia emergence.

The surgery duration
prediction system 

The anesthesia emergence
duration prediction system 

MLPMLP

T: The predicted duration
of anesthesia emergence

A1

A2

A3

A24

A1

A2

A3

A24

A24: The predicted duration of surgery

T

Figure 7: Final combination prediction system.
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accuracy of the surgery duration prediction system. We
enriched the data 10 times, and in Tables 14 and 15, the 4-
256 architecture with 10 times the data had a better average
prediction accuracy (0.8788) and loss value (0.6284) in the

testing dataset. We also increased the training time to 1,000
epochs and found that the average prediction accuracy
increased to 0.9485, and the average loss value decreased to
0.6110 in the testing dataset. In other words, data

Table 4: Prediction accuracy of the surgery duration prediction system.

Layers-neurons
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min
3-64 0.6013 0.0127 0.6173 0.5737 0.6614 0.0140 0.6758 0.6308 0.6033 0.0105 0.6171 0.5789
3-128 0.6830 0.0174 0.6991 0.6374 0.7507 0.0160 0.7656 0.7117 0.6863 0.0122 0.7010 0.6567
3-256 0.7252 0.0131 0.7418 0.7056 0.7996 0.0135 0.8233 0.7797 0.7266 0.0160 0.7556 0.7098
3-512 0.7254 0.0131 0.7491 0.7108 0.7996 0.0117 0.8179 0.7836 0.7261 0.0117 0.7401 0.7093
4-64 0.6506 0.0124 0.6655 0.6260 0.7180 0.0090 0.7305 0.7053 0.6536 0.0115 0.6729 0.6323
4-128 0.7340 0.0118 0.7498 0.7078 0.8084 0.0087 0.8269 0.7955 0.7349 0.0087 0.7564 0.7254
4-256 0.7711 0.0115 0.7919 0.7560 0.8468 0.0118 0.8675 0.8303 0.7714 0.0124 0.7918 0.7564
4-512 0.7639 0.0156 0.7878 0.7312 0.8402 0.0186 0.8681 0.8049 0.7656 0.0161 0.7877 0.7352
5-64 0.6614 0.0111 0.6790 0.6421 0.7335 0.0108 0.7481 0.7139 0.6624 0.0100 0.6771 0.6468
5-128 0.7359 0.0138 0.7582 0.7182 0.8116 0.0129 0.8331 0.7950 0.7329 0.0123 0.7471 0.7165
5-256 0.7601 0.0195 0.7854 0.7272 0.8386 0.0189 0.8608 0.8059 0.7636 0.0182 0.7885 0.7347
5-512 0.7584 0.0168 0.7817 0.7366 0.8365 0.0154 0.8569 0.8140 0.7559 0.0149 0.7848 0.7376
6-64 0.6701 0.0126 0.6916 0.6464 0.7424 0.0158 0.7656 0.7110 0.6680 0.0144 0.6863 0.6368
6-128 0.7201 0.0168 0.7491 0.6948 0.7960 0.0173 0.8269 0.7717 0.7201 0.0158 0.7533 0.7033
6-256 0.7493 0.0161 0.7749 0.7200 0.8297 0.0161 0.8605 0.7994 0.7499 0.0165 0.7740 0.7163
6-512 0.7281 0.0233 0.7548 0.6792 0.8046 0.0234 0.8345 0.7588 0.7271 0.0204 0.7574 0.6858

Table 5: Loss value of the surgery duration prediction system.

Layers-neurons
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min
3-64 0.6974 0.0030 0.7041 0.6936 0.6828 0.0034 0.6903 0.6795 0.6969 0.0026 0.7029 0.6935
3-128 0.6771 0.0042 0.6882 0.6735 0.6604 0.0040 0.6701 0.6567 0.6763 0.0031 0.6839 0.6731
3-256 0.6665 0.0032 0.6712 0.6626 0.6481 0.0033 0.6529 0.6423 0.6662 0.0039 0.6705 0.6590
3-512 0.6664 0.0032 0.6700 0.6605 0.6481 0.0030 0.6521 0.6435 0.6664 0.0030 0.6708 0.6627
4-64 0.6850 0.0028 0.6907 0.6818 0.6686 0.0022 0.6717 0.6656 0.6843 0.0028 0.6891 0.6797
4-128 0.6643 0.0028 0.6703 0.6604 0.6459 0.0022 0.6492 0.6412 0.6641 0.0022 0.6665 0.6587
4-256 0.6551 0.0028 0.6588 0.6501 0.6364 0.0029 0.6404 0.6312 0.6550 0.0030 0.6586 0.6501
4-512 0.6569 0.0038 0.6649 0.6511 0.6380 0.0046 0.6467 0.6311 0.6565 0.0039 0.6639 0.6513
5-64 0.6824 0.0029 0.6876 0.6779 0.6646 0.0027 0.6693 0.6610 0.6821 0.0025 0.6860 0.6785
5-128 0.6639 0.0034 0.6682 0.6583 0.6451 0.0032 0.6492 0.6398 0.6645 0.0031 0.6688 0.6611
5-256 0.6579 0.0048 0.6661 0.6517 0.6383 0.0047 0.6464 0.6327 0.6570 0.0045 0.6640 0.6506
5-512 0.6583 0.0042 0.6639 0.6527 0.6389 0.0038 0.6446 0.6339 0.6589 0.0036 0.6632 0.6519
6-64 0.6802 0.0032 0.6863 0.6748 0.6623 0.0039 0.6702 0.6565 0.6807 0.0036 0.6883 0.6763
6-128 0.6679 0.0043 0.6742 0.6605 0.6489 0.0043 0.6549 0.6413 0.6677 0.0039 0.6719 0.6596
6-256 0.6606 0.0040 0.6680 0.6542 0.6405 0.0040 0.6480 0.6329 0.6604 0.0041 0.6690 0.6544
6-512 0.6659 0.0058 0.6782 0.6595 0.6468 0.0058 0.6581 0.6394 0.6661 0.0050 0.6761 0.6585

Table 6: ,e t-test in 3 hidden layer architecture.

Architecture 3-128 3-256 3-512
3-64 0.0000∗ 0.0000∗ 0.0000∗
3-128 — 0.0000∗ 0.0000∗
3-256 — — 0.4854

Table 7: ,e t-test in 4 hidden layer architecture.

Architecture 4-128 4-256 4-512
4-64 0.0000∗ 0.0000∗ 0.0000∗
4-128 — 0.0000∗ 0.0001∗
4-256 — — 0.1291

Table 8: ,e t-test in 5 hidden layer architecture.

Architecture 5-128 5-256 5-512
5-64 0.0000∗ 0.0000∗ 0.0000∗
5-128 — 0.0025∗ 0.0021∗
5-256 — — 0.4207

Table 9: ,e t-test in 6 hidden layer architecture.

Architecture 6-128 6-256 6-512
6-64 0.0000∗ 0.0000∗ 0.0000∗
6-128 — 0.0004∗ 0.1942
6-256 — — 0.0145∗
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enrichment and increasing training time improved the
prediction accuracy of surgery duration prediction system.
,e final architecture of the surgery duration prediction
system is the 4-256 architecture without dropout mecha-
nism, trained with 10 times the data over 1,000 epochs.

4.2. Experimental Results of the Anesthesia Emergence Du-
ration Prediction System. We used a trial-and-error method
to determine the final architecture of the anesthesia emer-
gence duration prediction system. ,e experimental results
are presented in Tables 16–23. Tables 16 and 17 present the
prediction accuracy and loss values of the model, respec-
tively. To further explore the performance of several dif-
ferent MLP architectures, the experimental results were also
analyzed using t-tests, as shown in Tables 18–22. Table 23
lists the running time costs for each architecture. We de-
termined the final architecture of the MLP based on the
maximum prediction accuracy and a reasonable running
time cost.

In the three hidden layer architectures in Tables 16 and
17, the 3-512 architecture had the maximum average pre-
diction accuracy (0.7391) and the minimum loss value
(0.6632) in the testing dataset. As shown in Table 18, the 3-
512 architecture was significantly better than the 3-64 and
3-128 architectures. However, the 3-512 architecture is
not significantly better than the 3-256 architecture. ,e p
value was 0.4726. In other words, the 3-512 architecture
and 3-256 architecture had similar prediction accuracies.
In Table 23, we note that the 3-512 architecture have a
longer running time (1928.91 s) than the 3-256 architec-
ture (613.93 s); hence, the 3-256 architecture reduced the

runtime cost by 68.17%. ,erefore, we determine that the
3-256 architecture was the best architecture for the pre-
diction system.

In the four and five hidden layer architectures, as listed in
Tables 16 and 17, the 4-256 and 5-256 architectures show the
maximum average prediction accuracies (0.7836 and 0.7905,
respectively) and the minimum loss values (0.6520 and
0.6503, respectively) in the testing dataset. In Table 19, the 4-
256 architecture is significantly better than the 4-64 and 4-
128 architectures, but not significantly better than the 4-512
architecture. However, the p value (0.0892) was close to 0.05.
In other words, the 4-256 architecture was significantly
better than the 4-512 architecture. In Table 23, the 4-256
architecture saved 68.15% of the runtime cost compared
with the 4-512 architecture. ,erefore, among the four
hidden layer architectures, we determine that the best ar-
chitecture of the prediction system was the 4-256 archi-
tecture. In Table 20, the 5-256 architecture is significantly
better than the other five hidden-layer architectures.

In the six hidden layer architectures, in Tables 16 and 17,
the 6-128 architecture have the maximum average predic-
tion accuracy (0.7454) and the minimum loss value (0.6616)
in the testing dataset. As shown in Table 21, the 6-128 ar-
chitecture is significantly better than the 6-64 and 6-512
architectures. However, the 6-128 architecture is not sig-
nificantly better than the 6-256 architecture. ,e p value was
0.3675. ,erefore, the 6-128 and 6-256 architectures have
similar prediction accuracies. However, as shown in Ta-
ble 23, the 6-256 architecture have a longer running time
(1204.03 s) than the 6-128 architecture (988.21 s). ,erefore,
the 6-128 reduced the runtime cost by 17.93% and was the
best architecture for the prediction system.

In all architectures, as listed in Tables 16 and 17, the 5-
256 architecture had the maximum average (Mean) pre-
diction accuracies (0.7905, 0.8443, and 0.7924) and mini-
mum loss values (0.6503, 0.6370, and 0.6499) in the testing,
training, and validation datasets, respectively. In addition,
the 5-256 architecture had the best maximum (Max) and
minimum (Min) prediction accuracy in almost all testing,
training, and verification datasets. In Table 22, the 5-256
architecture was significantly better than the 3-256 and 6-
128 architectures, but not significantly better than the 4-256
architecture. ,e 5-256 architecture and 4-256 architecture
have similar prediction accuracies. Finally, in Table 23, the 4-
256 architecture reduced the runtime costs by 26.90%
compared to the 5-256 architecture.,erefore, we determine
that the final architecture of the anesthesia emergence du-
ration prediction system is the 4-256 architecture.

After we determined the best architecture of the anes-
thesia emergence duration prediction system, we further
improved the prediction accuracy using the dropout
mechanism, data enrichment, and longer training time. ,e

Table 10: ,e t-test in 3–6 hidden layer architectures.

Architecture 4-256 5-256 6-256
3-256 0.0000∗ 0.0001∗ 0.0009∗
4-256 — 0.0710 0.0013∗
5-256 — — 0.0979

Table 11: Running time cost of each architecture of the surgery
duration prediction system.

Architecture Time (s)
3-64 339.72
3-128 404.73
3-256 584.24
3-512 1806.50
4-64 375.72
4-128 474.83
4-256 756.63
4-512 2480.10
5-64 404.15
5-128 560.63
5-256 923.48
5-512 3325.30
6-64 448.18
6-128 622.16
6-256 1072.77
6-512 4155.28
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Table 12: Prediction accuracy of the surgery duration prediction system with dropout mechanism.

Architecture Dropout
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4-256

Without 0.7711 0.0115 0.7919 0.7560 0.8468 0.0118 0.8675 0.8303 0.7714 0.0124 0.7918 0.7564
0.1 0.7287 0.0115 0.7485 0.7112 0.8112 0.0120 0.8289 0.7907 0.7298 0.0122 0.7466 0.7093
0.2 0.6562 0.0058 0.6648 0.6474 0.7263 0.0056 0.7349 0.7178 0.6558 0.0048 0.6622 0.6467
0.3 0.5930 0.0085 0.6061 0.5794 0.6471 0.0096 0.6660 0.6290 0.5930 0.0087 0.6062 0.5782

Table 13: Loss value of the surgery duration prediction system with dropout mechanism.

Architecture Dropout
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4-256

Without 0.6551 0.0028 0.6588 0.6501 0.6364 0.0029 0.6404 0.6312 0.6550 0.0030 0.6586 0.6501
0.1 0.6655 0.0029 0.6703 0.6605 0.6452 0.0030 0.6502 0.6408 0.6653 0.0030 0.6703 0.6613
0.2 0.6834 0.0014 0.6852 0.6812 0.6662 0.0014 0.6682 0.6640 0.6834 0.0010 0.6854 0.6823
0.3 0.6989 0.0019 0.7020 0.6956 0.6858 0.0023 0.6900 0.6811 0.6988 0.0021 0.7023 0.6953

Table 14: Prediction accuracy of the surgery duration prediction system with data enrichment and longer training time.

Layers Neurons Multiple Epochs
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4 256
3 200 0.7711 0.0115 0.7919 0.7560 0.8468 0.0118 0.8675 0.8303 0.7714 0.0124 0.7918 0.7564
10 200 0.8788 0.0134 0.8930 0.8453 0.8920 0.0128 0.9055 0.8602 0.8738 0.0138 0.8878 0.8398
10 1000 0.9485 0.0055 0.9550 0.9402 0.9530 0.0046 0.9599 0.9472 0.9473 0.0059 0.9570 0.9389

Table 15: Loss value of the surgery duration prediction system with data enrichment and longer training time.

Layers Neurons Multiple Epochs
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4 256
3 200 0.6551 0.0028 0.6588 0.6501 0.6364 0.0029 0.6404 0.6312 0.6550 0.0030 0.6586 0.6501
10 200 0.6284 0.0033 0.6368 0.6248 0.6251 0.0031 0.6329 0.6218 0.6296 0.0034 0.6380 0.6262
10 1000 0.6110 0.0014 0.6130 0.6093 0.6098 0.0011 0.6113 0.6081 0.6112 0.0015 0.6134 0.6088

Table 16: Prediction accuracy of the anesthesia emergence duration prediction system.

Layers-neurons
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min
3-64 0.6168 0.0137 0.6367 0.5958 0.6685 0.0156 0.6905 0.6492 0.6243 0.0133 0.6509 0.6039
3-128 0.6910 0.0069 0.7013 0.6812 0.7419 0.0093 0.7529 0.7240 0.6953 0.0081 0.7060 0.6816
3-256 0.7387 0.0085 0.7545 0.7282 0.7869 0.0062 0.7941 0.7743 0.7411 0.0083 0.7557 0.7266
3-512 0.7391 0.0148 0.7705 0.7241 0.7913 0.0150 0.8183 0.7758 0.7425 0.0132 0.7674 0.7266
4-64 0.6578 0.0112 0.6729 0.6372 0.7093 0.0091 0.7215 0.6921 0.6621 0.0097 0.6749 0.6437
4-128 0.7370 0.0163 0.7619 0.7180 0.7885 0.0158 0.8135 0.7652 0.7393 0.0157 0.7594 0.7124
4-256 0.7836 0.0152 0.8131 0.7650 0.8342 0.0132 0.8581 0.8178 0.7847 0.0157 0.8091 0.7558
4-512 0.7731 0.0181 0.7915 0.7359 0.8301 0.0167 0.8502 0.8016 0.7801 0.0177 0.8003 0.7451
5-64 0.6809 0.0153 0.7040 0.6570 0.7377 0.0150 0.7568 0.7095 0.6889 0.0187 0.7140 0.6558
5-128 0.7632 0.0201 0.7965 0.7365 0.8162 0.0207 0.8524 0.7841 0.7643 0.0201 0.7993 0.7411
5-256 0.7905 0.0158 0.8114 0.7651 0.8443 0.0151 0.8653 0.8206 0.7924 0.0167 0.8117 0.7599
5-512 0.7531 0.0246 0.7828 0.6956 0.8096 0.0227 0.8354 0.7561 0.7569 0.0211 0.7815 0.7060
6-64 0.6812 0.0166 0.7053 0.6477 0.7389 0.0161 0.7561 0.7023 0.6883 0.0155 0.7094 0.6537
6-128 0.7454 0.0143 0.7730 0.7210 0.8057 0.0139 0.8289 0.7780 0.7499 0.0141 0.7732 0.7225
6-256 0.7420 0.0282 0.7866 0.7030 0.8014 0.0272 0.8419 0.7649 0.7429 0.0275 0.7892 0.7029
6-512 0.7044 0.0170 0.7329 0.6812 0.7630 0.0178 0.7910 0.7351 0.7101 0.0160 0.7411 0.6905
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experimental results are listed in Tables 24–27. Tables 24 and
25 present the effect of the dropout mechanism, and Ta-
bles 26 and 27 present the impact of data enrichment and
longer training time on the 4-256 architecture. In Tables 24
and 25, we can easily observe that the 4-256 architecture
without the dropout mechanism had the maximum average
prediction accuracy (0.7836) and minimum loss value
(0.6520) in the testing dataset. With an increase in dropout
probability, the average prediction accuracy decreases. ,us,
the dropout mechanism cannot improve the prediction
accuracy of the anesthesia emergence duration prediction
system. We then enriched the data ten times. In Tables 26
and 27, the 4-256 architecture with 10 datasets had a better
average prediction accuracy (0.8956) and loss value (0.6242)
in the testing dataset.We increased the training time to 1,000
epochs, and we determined that the average prediction

Table 17: Loss value of the anesthesia emergence duration prediction system.

Layers-neurons
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min
3-64 0.6935 0.0033 0.6985 0.6887 0.6811 0.0038 0.6857 0.6758 0.6917 0.0032 0.6967 0.6852
3-128 0.6751 0.0018 0.6777 0.6726 0.6625 0.0023 0.6669 0.6598 0.6740 0.0020 0.6775 0.6714
3-256 0.6633 0.0021 0.6658 0.6593 0.6514 0.0016 0.6546 0.6495 0.6627 0.0021 0.6662 0.6590
3-512 0.6632 0.0037 0.6670 0.6554 0.6502 0.0037 0.6539 0.6435 0.6623 0.0033 0.6660 0.6561
4-64 0.6835 0.0027 0.6887 0.6801 0.6707 0.0022 0.6749 0.6676 0.6823 0.0023 0.6868 0.6792
4-128 0.6636 0.0041 0.6682 0.6573 0.6509 0.0039 0.6566 0.6448 0.6631 0.0038 0.6695 0.6584
4-256 0.6520 0.0037 0.6566 0.6450 0.6395 0.0033 0.6438 0.6337 0.6518 0.0038 0.6589 0.6459
4-512 0.6547 0.0045 0.6641 0.6501 0.6405 0.0042 0.6477 0.6355 0.6529 0.0043 0.6615 0.6481
5-64 0.6776 0.0037 0.6833 0.6721 0.6635 0.0037 0.6705 0.6588 0.6756 0.0045 0.6834 0.6695
5-128 0.6571 0.0049 0.6637 0.6490 0.6440 0.0052 0.6520 0.6350 0.6569 0.0050 0.6628 0.6482
5-256 0.6503 0.0040 0.6567 0.6450 0.6370 0.0037 0.6428 0.6319 0.6499 0.0042 0.6578 0.6449
5-512 0.6597 0.0061 0.6740 0.6525 0.6456 0.0056 0.6589 0.6393 0.6588 0.0052 0.6713 0.6526
6-64 0.6775 0.0041 0.6859 0.6717 0.6633 0.0040 0.6725 0.6590 0.6758 0.0038 0.6841 0.6703
6-128 0.6616 0.0035 0.6676 0.6550 0.6466 0.0034 0.6535 0.6409 0.6605 0.0034 0.6673 0.6548
6-256 0.6624 0.0069 0.6720 0.6514 0.6476 0.0067 0.6566 0.6376 0.6622 0.0068 0.6721 0.6508
6-512 0.6718 0.0043 0.6777 0.6646 0.6572 0.0044 0.6642 0.6503 0.6704 0.0040 0.6751 0.6629

Table 18: ,e t-test in 3 hidden layer architecture.

Architecture 3-128 3-256 3-512
3-64 0.0000∗ 0.0000∗ 0.0000∗
3-128 — 0.0000∗ 0.0000∗
3-256 — — 0.4726

Table 19: ,e t-test in 4 hidden layer architecture.

Architecture 4-128 4-256 4-512
4-64 0.0000∗ 0.0000∗ 0.0000∗
4-128 — 0.0000∗ 0.0001∗
4-256 — — 0.0892

Table 20: ,e t-test in 5 hidden layer architecture.

Architecture 5-128 5-256 5-512
5-64 0.0000∗ 0.0000∗ 0.0000∗
5-128 — 0.0017∗ 0.1651
5-256 — — 0.0004∗

Table 21: ,e t-test in 6 hidden layer architecture.

Architecture 6-128 6-256 6-512
6-64 0.0000∗ 0.0000∗ 0.0032∗
6-128 — 0.3675 0.0000∗
6-256 — — 0.0010∗

Table 22: ,e t-test in 3–6 hidden layer architectures.

Architecture 4-256 5-256 6-128
3-256 0.0000∗ 0.0000∗ 0.1106
4-256 — 0.1680 0.0000∗
5-256 — — 0.0000∗

Table 23: Running time cost of each architecture of the anesthesia
emergence duration prediction system.

Neurons Time(s)
3-64 329.91
3-128 426.52
3-256 613.93
3-512 1928.91
4-64 380.23
4-128 485.55
4-256 862.83
4-512 2709.28
5-64 399.41
5-128 579.37
5-256 1180.40
5-512 3490.63
6-64 434.80
6-128 988.21
6-256 1204.03
6-512 4245.20
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accuracy increased to 0.9544, and the average loss value
decreased to 0.6095 in the testing dataset. Finally, the ar-
chitecture of the anesthesia emergence duration prediction
system is a 4-256 architecture without a dropout mecha-
nism, trained with 10 times of data over 1,000 epochs.

4.3. Experimental Results of the Final Combination Prediction
System. In this section, we discuss the results of the final
system obtained by combining the surgery duration pre-
diction system with the anesthesia emergence duration
prediction system. As mentioned in Section 1, we predicted
the duration of anesthesia emergence using the surgery
duration. However, we could not obtain the actual duration
before surgery. We then used the predicted surgery duration
as the input variable for the anesthesia emergence duration
prediction system. As mentioned in Section 3.3, we used
4,285 samples in the final combination prediction system. To
compare the prediction accuracy of the final combination
prediction system, we used 4,285 samples in the surgery
duration prediction system and the anesthesia emergence
duration prediction system. ,e experimental results are
listed in Table 28.

As shown in Table 28, the prediction accuracy of the
anesthesia emergence duration prediction system is 0.9645.
It means that 96.45% of the anesthesia emergence duration
prediction accuracy can be obtained by inputting the actual
surgery duration. ,e prediction accuracy of the surgery
duration prediction system is 0.9671. It indicates that in the
final combination prediction system, the input variable A24
is 96.71% correct. Finally, the prediction accuracy of the final
combination prediction system is 0.9645. It implies that
95.52% of the anesthesia emergence duration prediction
accuracy can be obtained by inputting 96.71% of the correct
prediction of surgery duration time.,is value (95.52%) was
close to 96.45%.,e difference between these two prediction
systems is only 0.93% and less than 1%. ,us, the prediction

Table 24: Prediction accuracy of the anesthesia emergence duration prediction system with dropout mechanism.

Architecture Dropout
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4-256

Without 0.7836 0.0152 0.8131 0.7650 0.8342 0.0132 0.8581 0.8178 0.7847 0.0157 0.8091 0.7558
0.1 0.7438 0.0114 0.7632 0.7251 0.8062 0.0135 0.8334 0.7841 0.7462 0.0144 0.7750 0.7178
0.2 0.6582 0.0090 0.6773 0.6469 0.7194 0.0079 0.7336 0.7088 0.6680 0.0042 0.6743 0.6597
0.3 0.6073 0.0105 0.6248 0.5916 0.6572 0.0117 0.6752 0.6366 0.6175 0.0087 0.6308 0.6053

Table 25: Loss value of the anesthesia emergence duration prediction system with dropout mechanism.

Architecture Dropout
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4-256

Without 0.6520 0.0037 0.6566 0.6450 0.6395 0.0033 0.6438 0.6337 0.6518 0.0038 0.6589 0.6459
0.1 0.6620 0.0028 0.6665 0.6574 0.6465 0.0033 0.6520 0.6398 0.6614 0.0036 0.6686 0.6543
0.2 0.6832 0.0022 0.6860 0.6785 0.6680 0.0019 0.6706 0.6645 0.6807 0.0011 0.6826 0.6788
0.3 0.6955 0.0026 0.6996 0.6911 0.6833 0.0028 0.6883 0.6789 0.6930 0.0021 0.6961 0.6899

Table 26: Prediction accuracy of the anesthesia emergence duration prediction system with data enrichment and longer training time.

Layers Neurons Multiple Epochs
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4 256
3 200 0.7836 0.0152 0.8131 0.7650 0.8342 0.0132 0.8581 0.8178 0.7847 0.0157 0.8091 0.7558
10 200 0.8956 0.0144 0.9077 0.8582 0.9056 0.0131 0.9157 0.8718 0.8954 0.0135 0.9061 0.8609
10 1000 0.9544 0.0029 0.9590 0.9503 0.9577 0.0022 0.9610 0.9538 0.9551 0.0031 0.9590 0.9502

Table 27: Loss value of the anesthesia emergence duration prediction system with data enrichment and longer training time.

Layers Neurons Multiple Epochs
Testing dataset Training dataset Validation dataset

Mean Std Max Min Mean Std Max Min Mean Std Max Min

4 256
3 200 0.6520 0.0037 0.6566 0.6450 0.6395 0.0033 0.6438 0.6337 0.6518 0.0038 0.6589 0.6459
10 200 0.6242 0.0036 0.6335 0.6212 0.6217 0.0033 0.6301 0.6192 0.6242 0.0034 0.6328 0.6216
10 1000 0.6095 0.0007 0.6106 0.6084 0.6087 0.0005 0.6097 0.6079 0.6094 0.0008 0.6106 0.6084

Table 28: Prediction accuracy of the final combination prediction
system.

Prediction system Accuracy
,e anesthesia emergence duration prediction system 0.9645
,e surgery duration prediction system 0.9671
,e final combination prediction system 0.9552
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accuracy of the final combination prediction system is
acceptable.

5. Conclusion and Future Research

In this study, we proposed an intelligent data preprocessing
algorithm that balances data automatically and used the MLP
model to construct the surgery and anesthesia emergence
duration prediction systems. Based on existing patient data, we
identified the main attributes that affected the prediction of
surgery duration and anesthesia emergence duration and then
preprocessed the data accordingly. ,ese two systems were
extensively tested, compared, and analyzed to determine their
implementation. By combining these two prediction systems,
we were able to predict the duration of anesthesia emergence
from the predicted duration of surgery. ,ere are several in-
teresting findings from the experimental results.

Firstly, the proposed intelligent data preprocessing al-
gorithm has three functions: data balance, data enhancement,
and dataset partitioning. In particular, it can calculate the
proper multiples of each category to balance the data auto-
matically, depending on the amount of data in each category.
Using this algorithm, we did not need to calculate the
multiples for each category. ,erefore, our workload on data
balancing was reduced, especially for a large number of
categories. No similar automatic processing algorithm has
been found in the limited literature research. ,erefore, we
thought that the proposed algorithm could be extended to the
data balance of data preprocessing. Secondly, the model ar-
chitecture parameters have an important impact on the
prediction accuracy of the model, which is consistent with the
research findings of literature [14]. In their study, they took
ophthalmic surgery as the research object and found that the
prediction error of the model was affected by the number of
hidden layer neurons. In our research, we further expanded
the exploration of the model architecture and found that
4–256 architecture is the most suitable for both prediction
systems. Besides, we found that the smaller the architecture,
the lower the accuracy. Conversely, the larger the architecture,
the longer the running time. It also shows the importance and
necessity of exploringmodel architecture parameters.,irdly,
overtraining did not occur. ,erefore, the dropout mecha-
nism could not improve the prediction accuracy of the two
prediction systems. However, data augmentation and longer
learning period improved the prediction system.,ese results
are consistent with the theory of artificial neural network. In
addition, in literature [16, 17], the influence of data quality on
the prediction accuracy of the model was studied, and it was
found that data quality affects the prediction accuracy of the
model. In this study, we found that the quantity and quality of
data are very important to the prediction accuracy of the
model. Finally, before the operation is performed, it is very
important to predict the surgery and anesthesia emergence
duration in advance for the effective scheduling of the op-
eration. ,erefore, after combining these two prediction
systems, we used the predicted surgery duration to accurately
predict the anesthesia emergence duration. Based on the
prediction accuracy, the combination of these two prediction
systems is acceptable.

It is worth noting that the data used in this study were
collected from the Affiliated Hospital of Panzhihua Uni-
versity in China. ,erefore, one of the limitations of this
study is that the experimental results of this study may only
be applicable to the same type of hospitals in China. Besides,
we still have many variables that were not considered in this
study, such as the data for physical examination before
surgery. In fact, we attempted to collect preoperative
physical examination data and integrate them with the data
used in this study. However, we found too many missing
values in the physical examination data.We hypothesize that
the main reason for this is that patients undergo different
physical examinations. ,erefore, the integrated data con-
tained a large number of missing values. We also believe that
patients undergoing the same type of surgery should un-
dergo the same physical examination. ,erefore, we suggest
that in the future, depending on the organs that are subject to
surgery, we could use specific physical examination items to
predict the surgery duration and anesthesia emergence
duration and obtain a more accurate prediction system.
Finally, we aimed to predict the exact duration of surgery
and anesthesia emergence duration. It can enable the
scheduling of surgery to achieve resource use optimization,
energy saving, carbon reduction, cost savings, and improve
patient’s satisfaction. If we can accurately predict the actual
surgery time, we will be able to optimize the surgery
schedule. However, in practice, there are too many uncertain
factors that will affect the prediction of surgery time, which
makes it difficult to accurately predict the actual surgery
time. ,erefore, in our study, we converted the actual
surgery time into a time interval (1 hour) to improve the
accuracy of prediction. However, if the length of the time
interval is too long, it will affect the optimization of surgical
scheduling. ,erefore, in the future, we suggest that the
length of the time interval could be shortened, e.g., to 30
minutes, to improve the optimization of surgical scheduling.
Besides, in the future, we also intend to use the predicted
surgery and anesthesia emergence durations to further re-
search operating room scheduling.
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room scheduling with uncertain surgery durations: exact
analysis and heuristics,” European Journal of Operational
Research, vol. 286, no. 1, pp. 49–62, 2020.

[8] S. Gul, B. T. Denton, and J. W. Fowler, “A progressive hedging
approach for surgery planning under uncertainty,” INFORMS
Journal on Computing, vol. 27, no. 4, pp. 755–772, 2015.

[9] K. W. Soh, C. Walker, M. O’Sullivan, J. Wallace, and
D. Grayson, “Case study of the prediction of elective surgery
durations in a New Zealand teaching hospital,” 8e Internal
Journal of Health Planning and Management, vol. 35, no. 6,
pp. 1593–1605, 2020.

[10] D. M. Laskin, A. O. Abubaker, and R. A. Strauss, “Accuracy of
predicting the duration of a surgical operation,” Journal of
Oral and Maxillofacial Surgery, vol. 71, no. 2, pp. 446-447,
2013.

[11] A. Wu, C. C. Huang, M. J. Weaver, and R. D. Urman, “Use of
historical surgical times to predict duration of primary Total
knee arthroplasty,”8e Journal of Arthroplasty, vol. 31, no. 12,
pp. 2768–2772, 2016.

[12] J. P. Tuwatananurak, S. Zadeh, X. Xu et al., “Machine learning
can improve estimation of surgical case duration: a pilot
study,” Journal of Medical Systems, vol. 43, Article ID 44, 2019.

[13] G. C. Lou, N. Geng, and Y. Lu, “Surgery duration fitting based
on hypergamma probability distribution,” Industrial Engi-
neering & Management, vol. 23, no. 1, pp. 51–58, 2018.

[14] S. P. Devi, K. S. Rao, and S. S. Sangeetha, “Prediction of
surgery times and scheduling of operation theaters in
optholmology department,” Journal of Medical Systems,
vol. 36, pp. 415–430, 2012.

[15] M. A. Bartek, R. C. Saxena, S. Solomon et al., “Improving
operating room efficiency: machine learning approach to
predict case-time duration,” Journal of the American College of
Surgeons, vol. 229, no. 4, pp. 346–354, 2019.

[16] J. P. Tuwatananurak, S. Zadeh, X. Xu et al., “Machine learning
can improve estimation of surgical case duration: a pilot

study,” Journal ofMedical Systems, vol. 43, no. 3, Article ID 44,
2019.

[17] Z. Shahabikargar, S. Khanna, A. Sattar, and J. Lind, “Improved
prediction of procedure duration for elective surgery,” Studies
in Health Technology and Informatics, vol. 239, pp. 133–138,
2017.

[18] P.-C. Shih, C.-Y. Chiu, and C.-H. Chou, “Using dynamic
adjusting NGHS-ANN for predicting the recidivism rate of
commuted prisoners,” Mathematics, vol. 7, no. 12, Article ID
1187, 2019.

[19] J. I. Hwang and H. S. Jung, “Automatic ship detection using
the artificial neural network and support vector machine from
X-band sar satellite images,” Remote Sensing, vol. 10, no. 11,
p. 1799, 2018.

[20] M.-L. Liu and F.-C. Tien, “Reclaim wafer defect classification
using SVM,” in Proceedings of the Asia Pacific Industrial
Engineering and Management Systems Conference, Taipei,
Taiwan, December 2016.

[21] A. Das, M. M. Ahmed, and A. Ghasemzadeh, “Using tra-
jectory-level SHRP2 naturalistic driving data for investigating
driver lane-keeping ability in fog: an association rules mining
approach,” Accident Analysis & Prevention, vol. 129,
pp. 250–262, 2019.

[22] F.-C. Tien, T.-H. Sun, and M.-L. Liu, “Reclaim wafer defect
classification using backpropagation neural networks,” in
Proceedings of the International Congress on Recent Devel-
opment in Engineering and Technology, pp. 22–24, Kuala
Lumpur, Malaysia, August 2016.

[23] X. Chen, L. Huang, W. Liu, P.-C. Shih, and J. Bao, “Automatic
surgery duration prediction using artificial neural networks,”
in Proceedings of the Fifth International Conference on
Computer Science and Application Engineering, Sanya, China,
October 2021.

[24] V. Kakkad, M. Patel, and M. Shah, “Biometric authentication
and image encryption for image security in cloud framework,”
Multiscale and Multidisciplinary Modeling, Experiments and
Design, vol. 2, pp. 233–248, 2019.

[25] K. Jha, A. Doshi, P. Patel, and M. Shah, “A comprehensive
review on automation in agriculture using artificial intelli-
gence,” Artificial Intelligence in Agriculture, vol. 2, pp. 1–12,
2019.

[26] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A comparative
analysis of logistic regression, random forest and KNN
models for the text classification,” Augmented Human Re-
search, vol. 5, Article ID 12, 2020.

[27] P. Parekh, S. Patel, N. Patel, and M. Shah, “Systematic review
and meta-analysis of augmented reality in medicine, retail,
and games,” Visual Computing for Industry, Biomedicine, and
Art, vol. 3, Article ID 21, 2020.

[28] S. Panchiwala and M. Shah, “A comprehensive study on
critical security issues and challenges of the IoT world,”
Journal of Digital Information Management, vol. 2, pp. 257–
278, 2020.

[29] D. Patel, Y. Shah, N. ,akkar, K. Shah, and M. Shah,
“Implementation of Artificial Intelligence Techniques for
Cancer Detection,” Augmented Human Research, vol. 5,
Article ID 6, 2020.

[30] M. I. Jahirul, M. G. Rasul, R. J. Brown et al., “Investigation of
correlation between chemical composition and properties of
biodiesel using principal component analysis (PCA) and
artificial neural network (ANN),” Renewable Energy, vol. 168,
pp. 632–646, 2021.

[31] A. A. Gab-Allah, A. H. Ibrahim, and O. A. Hagras, “Predicting
the construction duration of building projects using artificial

16 Journal of Healthcare Engineering



neural networks,” International Journal of Applied Manage-
ment Science, vol. 7, no. 2, pp. 123–141, 2015.

[32] H. Moayedi, M. Mosallanezhad, A. S. A. Rashid,
W. A. W. Jusoh, and M. A. Muazu, “A systematic review and
meta-analysis of artificial neural network application in
geotechnical engineering: theory and applications,” Neural
Computing & Applications, vol. 32, pp. 495–518, 2020.

[33] M. Sordo, “Introduction to Neural Networks in Healthcare,”
Open Clinical, pp. 1–17, 2002.

[34] W. S. McCulloh and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” 8e Bulletin of Mathematical
Biophysics, vol. 5, pp. 115–133, 1943.

[35] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley Long-
man, Boston, MA, USA, 1990.

[36] F. U. Dowla and L. L. Rogers, Solving Problems in Environ-
mental Engineering and Geosciences with Artificial Neural
Networks, MIT Press, Cambridge, MA, USA, 1995.

[37] T. Masters, Practical Neural Network Recipes in C++, Morgan
Kaufmann, San Francisco, CA, USA, 1994.

[38] M. H. Hassoun, Fundamentals of Artificial Neural Networks,
MIT Press, Cambridge, MA, USA, 1995.

[39] K. Swingler, Applying Neural Networks - a Practical Guide,
Morgan Kaufman, San Francisco, CA, USA, 1996.

[40] M. McCord-Nelson and W. T. Illingworth, A Practical Guide
to Neural Nets, Addison-Wesley Longman, Boston, MA, USA,
1991.

[41] G. Lachtermacher and J. D. Fuller, “Back propagation in time-
series forecasting,” Journal of Forecasting, vol. 14, no. 4,
pp. 381–393, 1995.

Journal of Healthcare Engineering 17


