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Background. Korotko� sound (KS) is an important indicator of hypertension whenmonitoring blood pressure. However, its utility
in noninvasive diagnosis of Chronic heart failure (CHF) has rarely been studied. Purpose. In this study, we proposed a method for
signal denoising, segmentation, and feature extraction for KS, and a Bayesian optimization-based support vector machine al-
gorithm for KS classi�cation. Methods. �e acquired KS signal was resampled and denoised to extract 19 energy features, 12
statistical features, 2 entropy features, and 13 Mel Frequency Cepstrum Coe�cient (MFCCs) features. A controlled trial based on
the VALSAVAmaneuver was carried out to investigate the relationship between cardiac function and KS. To classify these feature
sets, the K-Nearest Neighbors (KNN), decision tree (DT), Naive Bayes (NB), ensemble (EM) classi�ers, and the proposed BO-
SVM were employed and evaluated using the accuracy (Acc), sensitivity (Se), speci�city (Sp), Precision (Ps), and F1 score (F1).
Results. �e ALSAVA maneuver indicated that the KS signal could play an important role in the diagnosis of CHF. �rough
comparative experiments, it was shown that the best performance of the classi�er was obtained by BO-SVM, with Acc (85.0%), Se
(85.3%), and Sp (84.6%). Conclusions. In this study, a method for noise reduction, segmentation, and classi�cation of KS was
established. In the measured data set, our method performed well in terms of classi�cation accuracy, sensitivity, and speci�city. In
light of this, we believed that the methods described in this paper can be applied to the early, noninvasive detection of heart disease
as well as a supplementary monitoring technique for the prognosis of patients with CHF.

1. Introduction

Blood pressure monitoring that makes use of Korotko�
sound (KS) has been widely utilized to detect potential
hypertension in patients [1–3]. KS enables shorter test
duration, simple processing, and strong anti-interference
capabilities and has clear signal characteristics. Because of
these advantages, meticulous experimental methods and
diagnostic algorithms will enable the early nondestructive
diagnosis of cardiovascular disease [4, 5]. �e characteristics
of KS can be divided into a short, rapid impact, followed by a
rumble or murmur. Lange and Hecht [6] found that KS was
accompanied by a sharp drop in cu� pressure. �ey believed

that KS was caused by brachial artery vibration. Toward this
end, Rodbard and Robbins [7] used an experimental model
to simulate KS. �is set of experiments supported a con-
nection between a sudden drop in cu� pressure and the
opening of the brachial artery. Researchers have since found
that blood ©ow also plays an important role in the devel-
opment of KS. Sykes et al. [8] used real-time two-dimen-
sional ultrasound and Doppler techniques to study Bradley
artery movements and blood ©ow turbulence during blood
pressure measurement. Here, the KS was hypothesized to be
derived from large oscillations in the brachial artery and ©ow
turbulence in the blood. Benmira et al. [9] performed a
detailed analysis of KS and ECG signals using B-mode and
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duplex ultrasonography and concluded that KS resulted
from the pounding produced by the vibration of an arterial
wall and the rumbling produced by the turbulence of blood
flow.

Accordingly, the KS mechanism might be directly or
indirectly related to the state of the arteries and the state of
the heart. Gosse et al. [10] used the time interval of KS
(QKD) and parameters of the equivalent KS interval
(QKDh) to study associations between KS and arterio-
sclerosis, heart disease, and stroke. .e authors found a
strong association between QKDh and cardiovascular
disease, which is suggested to be used as a diagnostic basis
for stroke. Ormerod et al. [11] found that QKD parameters
were strongly associated with stroke caused by aortic
sclerosis, while the relationships between cardiac embolism
and small artery occlusion subtypes were not clear.
Ramakrishnan [12] studied the effects of age and gender on
the amplitude of KS, suggesting that the amplitude of KS
could be used to predict atherosclerosis. .ese studies have
shown that KS indirect features could be used to prove that
there is a strong association between arteriosclerosis and
cardiovascular disease. However, studies on the direct
association between KS′ direct features, such as time-fre-
quency characteristics, and heart disease have rarely been
carried out.

It is vital to note that one of the most significant
noncommunicable diseases that endanger human life and
health is heart disease [13], particularly CHF. Heart disease
patients have grown dramatically in number during the
past few decades, particularly in economically poor regions.
However, the diagnosis of CHF is a time-consuming
process that necessitates expensive medical equipment,
making it an unaffordable burden for the majority of low-
income people. .is considerably increases the risk of the
condition, making it more difficult to treat and prevent
chronic heart failure. With the development of machine
learning (ML) technology in the medical field [14, 15], an
effective, cheap solution for the prediagnosis of CHF has
been possible.

.e identification and categorization of heart sound
(HS) have received the majority of research attention in
the area of cardiac disease prediagnosis. [16] .e noise
reduction, preprocessing, and classification of enormous
volumes of HS data using machine learning algorithms
have produced outstanding results in these studies.
[17, 18] However, the professionalism of the HS acqui-
sition procedure severely limits the adoption of this
technology in the general population.

.e objective of this project is to increase the probability
of early detection of CHF disease through the study of
prediagnosis of CHF, to improve the quality of life of po-
tentially high-risk people with CHF. In consideration of the
widespread use of the KS method in blood pressure mon-
itoring, this paper proposed a time-frequency analysis
technology and machine learning algorithm to investigate
Chronic heart failure (CHF) classification based on KS time-
frequency features. .is method will be used to establish a
clear relationship between KS and CHF. .e method de-
scribed in this paper is divided into four steps:

(1) Noise reduction of KS signals using the Wiener
filtering method

(2) Energy envelope-based signal segmentation
(3) Signal feature extraction based on time-frequency

analysis method
(4) KS Signal classification utilizing ML algorithms.

.is article aims to establish a practical and noninvasive
prediagnosis method that is highly conducive to promotion
among individuals without medical expertise. .e primary
contributions of this work can be summarized as follows:

(i) A KS-specific denoising, segmentation, and feature
extraction approach was created.

(ii) .e Valsalva maneuver was used to demonstrate the
association between KS signal features and CHF,
and the direct correlation between KS signals and
CHF was established.

(iii) .e energy features, statistical features, entropy
features, and MFCCs features of KS signals were
extracted, and the effects of different features on
classification performance were investigated by the
ML algorithm.

(iv) .e feasibility of the KS signals in early CHF di-
agnosis was demonstrated using a feature extraction
technique and a machine learning algorithm, pro-
viding a novel technical route for convenient and
noninvasive CHF diagnosis.

2. Related Works

Due to the shortage of studies on the automatic classification
of KS signals, we will use HS detection methods for cardiac
disorders as the inquiry object to examine the current re-
search progress. HS-based diagnosis of cardiac diseases
involves signal noise reduction, signal segmentation, feature
extraction, and classification. [18].

Noise reduction has become an important aspect of HS
signal processing due to environmental noise, electromag-
netic noise, power frequency noise, human breath sound,
lung sound, and other factors. Reasonable noise reduction
will improve the signal-to-noise ratio of audio and the di-
agnostic model’s accuracy. Wavelet denoising, empirical
mode decomposition denoising, adaptive denoising, sin-
gular value decomposition (SVD) denoising, and combi-
nation approaches are all commonly used noise reduction
methods. [19] Mondal et al. [20] introduced an HS denoising
method based on a combined framework of wavelet packet
transform (WPT) and SVD..e experimental study showed
that their method was more reliable and robust than the
industry standard method. Deng and Han [21] proposed an
adaptive denoising algorithm, which did not need the
predefined base function and can be performed in an
adaptive way for different noise levels and group sizes.
Compared with the conventional wavelet methods, this
algorithm had a better denoising effect at low noise levels.

HS signal segmentation is a commonly used method for
HS signal feature extraction, such as envelope-based
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methods, feature-based methods, machine learning ap-
proaches, and hidden Markov model (HMM) based
methods. .e accuracy of the classification model will be
significantly influenced by signal segmentation technology,
so researchers had invested many efforts to increase the
accuracy of signal segmentation. .almayer et al. [22]
proposed an envelope-based approach that was evaluated
using two distinct methods for extracting envelope curves:
the Hilbert transform and the short-time Fourier transform.
.e classification results revealed that the Hilbert transform
performed better in terms of F1 score and computing effort,
achieving an F1 score of up to 95.7% and an average of 90.5%
for the S1 classification. Giordano and Knaflitz [23]
employed the Shannon energy envelope algorithm to per-
form a reliable quantitative characterization of the timing of
the occurrence of HS components; they believed that this
method was more efficient than other energy envelope
methods due to the lack of a search-back phase in the HS
detection process. Springer et al. [24] proposed an enhanced
hidden Markov algorithm for HS signal segmentation,
which included duration dependencies and logistic regres-
sion-based emission probabilities, and the implementation
of an extension to the Viterbi algorithm for use with hidden
semi-Markov models (HSMMs). Li et al. [25] used the
Empirical Wavelet Transform (EWT) to decompose S1 and
theHilbert Transform to extract the instantaneous frequency
(IF) of the mitral component (M1) and the tricuspid
component (T1). Chen et al. [26] proposed a deep neural
network (DNN) method for recognizing S1 and S2 HS by
MFCCs.

.e development of machine learning algorithms pro-
motes the advancement of heart disease prediagnosis
technology. A large number of algorithms and models have
been presented for the diagnosis of cardiac disease. [27]
Potes et al. [28] identified heart sounds with an integrated
algorithm and a deep learning algorithm, reaching 86%
classification accuracy on the 2016 PhysioNet/CinC Chal-
lenge database. Since then, an increasing number of re-
searchers have focused on the identification of cardiac
disease using heart sounds. Juniati et al. [29] used the
Higuchi Algorithm to calculate the fractal dimension of the
HS and classified fractal dimension by KNN and Fuzzy
c-mean clustering methods, and the best accuracy obtained
was 86.17% based on the proposed method. Noman et al.
[30] proposed a Markov-switching autoregressive with a
switching linear dynamic system (MSAR-SLDS) to model
the raw HS signals and extracted 37 MFCCs features and 16
time and frequency-domain features; finally, using HMM on
the large 2016 PhysioNet/CinC Challenge database, a clas-
sification accuracy of 86.1% was obtained. Nogueira et al.
[31] proposed a methodological combination of time do-
main and frequency domain features of phonocardiogram
signals to improve cardiac disease automatic classification.
Using an SVM radial basis algorithm, they obtained an
accuracy of approximately 83.22%. Shi et al. [32] collected
the HS signal through radar technology and extracted the
Springer Features and Custom Features. For classification
research, the proposed Ensemble (EM) Classifiers were used,
and they achieved a classification accuracy of 96.36%.

Gjoreski et al. [33] established a CHF detection approach
based on heart sounds using filtering, segmentation, feature
extraction, and machine learning. .eir method, which was
based on data from 122 subjects, had a 96% classification
accuracy and an 87% detection accuracy for CHF. A few
years later, Gjoreski et al. [34] used a combination of classical
machine learning and an end-to-end deep learning model to
classify 947 subjects in six public HS datasets and one
collected CHF dataset, achieving a 92.9 % classification
accuracy. Zheng et al. [35] extracted time-domain, fre-
quency-domain, and nonlinear features to build multiscale
and multidomain heart sound features and achieved a
classification accuracy of 82% using a least-squares support
vector machine (LS-SVM).

Prediagnosis of heart disease has also yielded im-
pressive results in the field of non-heart sound moni-
toring. Reddy et al. [36] used an adaptive genetic
algorithm with fuzzy logic (AGAFL) model to predict
heart disease, and the experimental results showed that
the classification accuracy of this method was obviously
better than that of the existing Rule Based Fuzzy Logic
Classifier with Locality Preserving Projection (LPP-RBFL)
and Fuzzy Logic Classifier with Rough Set algorithm (RS-
FL). Hussain et al. [37] used support vector machine
(SVM), decision tree (DT), K-nearest neighbors (KNN),
and ensemble (EM) classifiers for CHF detection by
collecting multimodal features to capture temporal,
spectral, and complex dynamics features, with the SVM
linear kernel providing the best classification accuracy of
93.1%. Ali et al. [38] proposed the hybrid grid search
algorithm (HGSA) to optimize an SVM model for CHF
detection, achieving 92.22% accuracy. A few years later,
Ali and Bukhari [39] proposed a two-stage decision
support system based on mutual information (MI) and the
optimal neural network configuration to overcome
overfitting and optimize the generalization factor.
According to their suggested method, the best accuracy
was up to 93.3%.

3. Methods and Materials

3.1. System Overview. Figure 1 gives an overview of the
proposed system’s functionality. Firstly, the collected signals
are preprocessed, which includes resampling, noise reduc-
tion, and signal recognition. .en, the features of the sound
signal are analyzed, in order to extract the effective features.
.is involves sound signal segmentation, wavelet packet
(WP) decomposition, feature extraction, and feature
regularization.

Given that the KS signal consists of a group of rapid and
short-pulse sound, the accurate extraction of feature sets is
the focus of the current study. In addition, there are sig-
nificant differences in the signal length between different
groups of people, so the characteristic data set needs to be
normalized using a root mean square value, maximum value,
and minimum value. Finally, the signal feature sets are fed
into theMLmodels for training and prediction, to ultimately
diagnose CHF.
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3.2. Participants. A total of 300 subjects were selected. As
shown in Table 1, the study included 115 healthy subjects
aged 22 to 63 years old, with systolic blood pressures ranging
from 96 to 126mmHg and diastolic blood pressures ranging
from 63 to 84mmHg. CHF patients ranged in age from 43 to
79 years old, with systolic blood pressure ranging from 94 to
164mm Hg and diastolic blood pressure ranging from 57 to
98mm Hg. �ose with CHF had a left ventricular ejection
fraction that was less than 50%, and all selected patients were
evaluated by experienced cardiologists.

Before the KS signal acquisition process, subjects were
fully aware of the testing procedures and asked to sign
authorization forms. All subjects were anonymous. �e data
collection process was completed using standard testing
equipment within the Department of Cardiology at the
Fourth People’s Hospital of Zhejiang University. �e study
was authorized by the Ethics Committee of Zhejiang
University.

3.3. Data Processing Process. We carried out preprocessing
of data through signal denoising, signal location, signal
segmentation, feature extraction, etc. A ©owchart of KS is
shown in Figure 2.

3.4. Wiener Filtering. Wiener �ltration is a denoising
method based on the minimum error between the predicted
result and the true value. �e basic working principle of
Wiener �ltration is as follows (Figure 3) [40]:where s(n) is a
pure sound signal, and d(n) is a noise signal. �e Wiener
�ltration algorithm requires a digital �lter. Assuming the
input signal is y(n), the output of the �lter is as follows:

s′(n) � y(n) · hn � ∑
+∞

m�−∞
y(n −m) · hm, (1)

where hm is the �lter coe�cient vector.
�e least root mean square error criterion, as given in the

formula (2), is used in Wiener �ltering to ensure that the
output signal is as similar to the original signal as possible.

E e2{ } � E (s − x · h)2{ } � min . (2)

3.5. Shannon Envelope. Due to its excellent processing ef-
�ciency and noise-resistance, the Shannon energy method
has emerged as one of the most commonly used segmen-
tation algorithms for HS [23]. Based on these advantages, we
decided to use the Shannon energy envelope algorithm for
KS segmentation in this paper. �e KS signal was truncated
into multisegment, 40ms signal set for the calculation, and
the signal’s envelope was calculated using a window with a
50% overlap.�e Shannon energy of each segment is de�ned
as follows [41]:

Ej � −
1
N
∑
N

i�1
Zi

2 · log Zi
2, (3)

where Zi is normalized intercepted signal, Zi� xi/max|xi|. xi
is the intercepted signal.

�en, Shannon energy was normalized via (4) to obtain
the normalized Shannon energy.

Pj �
Ej −mean Ej( )

std Ej( )
. (4)

According to some studies, normalized average Shannon
energy is sensitive to noise, which can lead to false seg-
mentation. Signal segmentation is more di�cult with KS,
because valuable signals and high-intensity murmurs always
overlap. Although the high-order Shannon technique can
further minimize murmurs, it can also prevent valuable
signals from being identi�ed [42], particularly in the early

Preprocessing Characteristics Machine learning
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KS identify

Segmentation

WP decomposition
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KS Feature set

Healthy
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DT

NB
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Figure 1: Classi�cation ©owchart for CHF diagnosis based on a KS signal.

Table 1: Basic subject information.

Subjects Ages SBP DBP Num
Healthy 42± 22 111± 15 73± 10 115
CHF patients 61± 17 129± 35 77± 20 185
Note. SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, Num:
number of the subjects.
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stages of KS. Fortunately, the Wiener �ltering method we
used successfully minimizes the noise level and overcomes
the problem with the Shannon energy approach in KS signal
segmentation. �e extraction e�ect diagram of the Shannon
energy envelope for the KS is shown in Figure 4(b).

3.6. Location and Segmentation. A peak signal was taken as a
benchmark for locating the sound, and a threshold value was
set at 0.2x the maximum peak within the envelope of the
sound signal. Overlocalization occurred when multiple
peaks in a single KS signal caused localization error, which
compounded subsequent calculation inaccuracies. In addi-
tion, due to the interference of factors such as the friction
between the stethoscope diaphragm and the skin, arm swing,
and other factors, abnormal wide-band noise often occurred
at the beginning and end of the KS signal. �ese interfering
elements can greatly occlude the signal recognition process.
�us, it is necessary to recheck results at each step to
eliminate invalid information such as abnormal anchor
points and overlocalization anchor points. �e following
criteria were designed for signal recognition:

(1) If the time interval between two anchor points was
less than 100ms, these anchor points would be
combined into a single anchor point;

(2) �ere will be a period of silence before the KS ap-
pears and after it disappears during the KS test. �e
silent phase should be noiseless. However, due to the
friction between the skin and the microphone, the
signals we collected frequently contained aberrant
pulse noises, which should be recognized and
eliminated by signal segmentation.

Here, the starting point of the KS signal began with the
anchor point and searched forward for 300ms. �e ending
point of the KS signal began with the anchor point and
searched backward for 500ms. �e segmentation results of
the identi�ed energy envelopes within the KS signal are
shown in Figures 4(c) and 4(d), where B means the be-
ginning of the KS, and E means the ending of the KS.

3.7. Feature Extraction. We extracted a total of 47 features
for each KS signal, including 19 energy features, 12 statistics
features, 2 entropy features, and 13 MFCCs features. �e
feature extraction procedure was as follows:

3.7.1. Energy-Based Features. Based on WP coe�cients, the
energy distribution of each signal component was extracted.
�e statistical energy formula based on the WP analysis is as
follows: [43].

E(i, j) � ∫ Si,j
∣∣∣∣∣
∣∣∣∣∣
2
dt � ∑

2j−1

k�0
xj,k
∣∣∣∣∣

∣∣∣∣∣
2
, (5)

y(n)=s(n)+d(n) h(n) s′ (n)

Figure 3: Flow chart of wiener �ltering.

Original KS signal

Wiener filter noise 
reduction

Signal segmentation

Feature extraction

Energy-based features
Statistical features based

on time-frequency MFCC features

Data set of KS features

Figure 2: Flowchart for KS preprocessing.
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where E(i,j) is the energy of the WP, and xj,k is the wavelet
coe�cient.

Unlike HS or other stable signals, the duration of the KS
signal varies from person to person, resulting in a large
variation in the length of the test data. A three-layer WP
decomposition was carried out on all e�ective KS signals. As a
result, 8 groups of wavelet coe�cients were obtained, and the
ratio of energy of each wavelet coe�cient to total energy was
calculated, using formula (6).�is set of data was de�ned as the
global energy ratio, or Stotal(50–100), Stotal(100–150),
Stotal(150–200), Stotal(200–250), Stotal(250–300), Stotal(300–350),
and Stotal(350–400).

S total(j) �
E(j)
Etotal

, (6)

where E(j) is the energy of each wavelet coe�cient,
and Etotal is sum of the energies of all the wavelet
coe�cients.

Each individual KS signal was decomposed by the WP,
and each WP coe�cient energy ratio was calculated by (7)
and (8). Here, the energy ratio within 50–100Hz is de�ned as
the ratio of low frequency energy (en); the energy ratio
within 100–400Hz is de�ned as high frequency energy
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Figure 4: Schematic diagram of signal location and segmentation results: (a) the denoised KS signal; (b) Shannon envelope of the KS signal;
(c) segmentation results from Shannon envelope calculations; (d) segmentation results for the KS signal.
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(en_h); and the energy ratio within 50–400Hz is defined as
total energy (Et).

en �
En(50−100Hz)

En total(50−400Hz)
, (7)

en h �
En(150−400Hz)

En total(50−400Hz)
. (8)

Here, En(50−100Hz) is the energy within 50–100Hz of each
individual KS signal; En(150−400Hz) is the energy within
150–400Hz of each individual KS signal; and En total(50−400Hz)
represents the total energy of each individual KS signal.

.e variability of the KS energy ratio and time interval
was calculated using (9)–(12), in order to study the influence
of CHF on KS energy and the time interval.

enr �
en


n
i�1 en

n, (9)

enr h �
en h


n
i�1 en h

n, (10)

Ep �
Et


n
i�1 Et

n, (11)

TM �
Ti


n
i�1 Ti

n, (12)

where n is the number of all KS signals in a data set, and Ti is
time interval between each KS signal. A total of 19 energy-
based features are obtained after extracting each KS signal
according to the description given above.

3.7.2. Statistical Features. Statistical parameters of each KS
signal were extracted: mean, median, standard deviation,
mean absolute deviation, 1st quartile, 3rd quartile,
interquartile range, skewness, kurtosis, dominant frequency,
dominant frequency magnitude, and dominant frequency
ratio.

3.7.3. Entropy Features. Signal entropy, as a nonlinear
property, reflects the complexity of a set of time series
signals. .e signal’s entropy increases with its effective in-
formation content. In this study, the signal entropy and
frequency entropy of a KS signal were extracted, and the
signal entropy and frequency entropy were stated as follows
[44]:

Hs � −  p(x)log(p(x)). (13)

When computing the signal entropy, p(x) is the
probability that the signal x falls in the time domain X(L),
and X (L) represents the KS time domain interval. When
computing frequency entropy, p(x) is the probability that
the signal x falls in the frequency domain Z(L), and Z (L) is
the KS frequency domain interval.

3.7.4. Mel Frequency Cepstrum Coefficient. Mel frequency is
a speech spectra simulating human hearing. .e energy
signal output is created by constructing several groups of
Mel filters, which are independent of the original signal. .e
MFCCs algorithm is more suitable for the auditory char-
acteristics of human hearing, and it still performs well when
the signal-to-noise ratio is low. .e decorrelated Mel
cepstrum coefficients are expressed as follows using the
discrete cosine transform (DCT) [45]:

MFCCs n1(  � 
M

m�1
log[E(m, k)]

· cos
(m − 0.5)

M
· n1 · π , n1 � 1, 2, . . . , L,

(14)

where n1 is the order of MFCCs, M is the number of tri-
angular filters, and E(m, k) is the output energy generated by
the Mel filter. From each KS signal, we extract 13 Mel
cepstrum features.

3.8. Support Vector Machine (SVM) Based on Particle Swarm
Optimization. SVM is an efficient machine learning method
based on statistical learning theory, which was first proposed
by Cortes and Vapnik [46, 47]. .e main objective is to
establish a classified hyperplane as the decision surface, in
order to maximize the distance between positive and neg-
ative examples [37]. In SVMs, a kernel function g and
penalty function c have great influence on the selection of a
hyperplane; they are also the key to determining the clas-
sification accuracy. At present, there is no recognized op-
timal method to select the appropriate kernel function and
penalty function, so this study has been designed, in part, to
solve this problem by using a Bayesian optimization
algorithm.

.e Bayesian optimization (BO) algorithm is an efficient
optimization algorithm because it utilizes prior beliefs to
help direct the sampling of the object and to trade off ex-
ploration and exploitation of the search space [48, 49]. .e
BO algorithm utilizes the Bayesian theorem to find the
parameters that make the objective function globally optimal
through known prior information. According to the theory,
for a given event E, the posterior probability P(M|E) of
modelM is proportional to the likelihood probability to P(E|
M) of E given M multiplied by the a priori probability P(M)
of M [49], as shown as follows:

P(M|E)∝P(E|M)P(M). (15)

Many studies have shown that the BO algorithm is
suitable for expensive and time-consuming optimization
tasks; when combined with the SVM algorithm, it will
significantly enhance the computational efficiency, classifi-
cation accuracy, and generalization ability of the SVM
model. [50, 51].
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3.9. K-Nearest Neighbors Classification Algorithm. .e KNN
algorithm is one of the most widely used in machine
learning. Its basic classification principle is to use given
samples as a reference, calculate the distance between un-
known samples and given samples, and then choose the K
closest given samples to the unknown samples. .e un-
identified samples and the Nearest neighbor samples are put
into the same group using the majority-vote voting criterion.
.e major principles of the KNN algorithm are as follows
[29]: to begin, select the K value, which should be an odd
integer to ensure the classification’s accuracy. Second, de-
termine the distance between two samples; the distance
function chosen has a significant impact on the KNN
classification performance. Finally, classification rules: the
majority-voting voting rule is the most commonly used
classification rule in the KNN.

3.10. Naive Bayes Classification Algorithm. .e Naive Bayes
(NB) classification is a classification method based on the
Bayesian theorem and independent assumption of feature
conditions. .e algorithm is simplified based on the
Bayesian algorithm, which assumes that when the target
value is given, the attributes are conditionally independent
of each other. Based on the known prior probability, the
primary procedure of this method is to estimate the pos-
terior probability of variables belonging to a specific cate-
gory. For the given training data, Naive Bayes first learns the
joint probability distribution of input and output based on
the independent assumption of feature conditions and then
applies the Bayesian theorem to determine the maximum
posterior probability based on this distribution for new
examples.

3.11. Decision Tree Classification Algorithm. .e DT algo-
rithm is a method of approximating discrete function values
by classifying data using a set of criteria. .e DT has the
advantages of visual interpretability and statistical rigor,
which promote the improved design of classification algo-
rithm models [52]. DT creation method can be divided into
two steps: the decision tree is first generated by the training
sample set. .en, the decision tree generated in the previous
stage is tested, corrected, and trimmed. Test data is used to
validate the decision tree’s production rules, and the
branches that affect prebalance accuracy are pruned to
improve the decision tree’s accuracy and model
performance.

3.12. Ensemble Learning Classification Algorithm. EM
learning is an algorithm for solving learning tasks by con-
structing several machine learners, which can be used for
classification problems, regression problems, feature selec-
tion, outlier identification, etc. [53]. For training set data, we
can create an enhanced learner by training several inde-
pendent learners and designing a classifier combination
strategy. Two issues must be considered while utilizing EM
learning: first, how to gather a large number of individual
learners; second, how to select a combination strategy to

integrate these individual learners into a powerful learner.
Individual learners usually have two options: one is that all
individual learners are of the same type, known as homo-
geneous individual learners, and the other is that all indi-
vidual learners are not exactly of the same type, known as
heterogeneous individual learners. Additionally, EM
learning can be classified into bagging algorithm, boosting
algorithm, stacking algorithm, etc. based on various com-
bination strategies.

3.13. Evaluation Metrics. For the binary classification task,
we will obtain four classification results. When a positive
sample is correctly classified, we call it a true positive signal
(TP), while an incorrectly classified-positive sample is called
a false negative signal (FN). When a negative sample is
correctly identified, we call it a true negative signal (TN). On
the other hand, it is defined as a false positive signal (FP)
[54]. Accuracy (Acc), sensitivity (Se), specificity (Sp), Pre-
cision (Ps), and F1 score (F1) were introduced as evaluation
metrics for classifying KS in order to evaluate each classifier’s
performance [55], defined as follows:

Acc �
TP + TN

TP + FN + TN + FP
,

Se �
TP

TP + FN
,

Sp �
TN

TN + FP
,

Ps �
TP

TP + FP
,

F1 � 2 ·
Se · Ps
Se + Ps

.

(16)

4. Result

4.1. Sensitivity Study. It is widely hypothesized that KS is a
result of interactions between blood flow and the brachial
artery..e current study investigates how changes in cardiac
output may impact brachial artery KS.

.e Valsalva maneuver [56], which is commonly used in
clinics, has been utilized to simulate abnormal states of
cardiac function and reduce the cardiac ejection volume
artificially. Specifically, the Valsalva maneuver involves a
deep inhalation followed by a forced exhalation while still in
the holding state. Doing so can effectively increase pressure
in the chest, reduce venous return, and change the volume of
blood transfusion to the heart. In this study, ejection volume
to the heart was modified in the same volunteer. .e hy-
pothesis was that this intervention would effectively elimi-
nate interference factors such as sex, age, and health status
and enable control of cardiac ejection volume as a single
variable.

Figure 5 shows a comparison of KS time frequency
diagrams before and after Valsalva-related action. It can be
seen that the KS′ high frequency energy signal was weakened
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after the Valsalva maneuver. In addition, we found that the
number of e�ective signals derived from the KS changed in
some test results, which may have been directly related to the
pro�ciency and strength of the Valsalva maneuver.

Table 2 shows that when the cardiac ejection volume
decreased due to the Valsalva maneuver, the global energy of
the KS signal signi�cantly changed. In fact, the mean square
error of the low frequency energy ratio decreased by 30.71%,
and the same was true for the high frequency energy ratio,
which decreased by 23.62%, and the time interval, which
decreased by 14.23%. In addition, the mean square error of
the total energy ratio increased by 135.53%.

Moreover, the KS extrema also directly varied with
cardiac ejection volume. �e maximum value of low fre-
quency energy increased by 6.87%, while that of the total
energy ratio and high frequency energy ratio decreased by
49.94% and 1.88%, respectively.

A local energy ratio comparison showed that the energy
ratio between 50 and 100Hz, 200–250Hz, 250–300Hz,
300–350Hz, and 350–400Hz increased by 17.02%, 60.88%,
739.07%, 2647.8%, and 1910.61%, respectively. Conversely,
the energy ratio between 100–150Hz and 150–200Hz de-
creased by 59.39% and 52.24%, respectively. Accordingly, it
is apparent that the spectral impact of Valsalva maneuver on
the KS signal was signi�cantly correlated with frequency,
especially as the KS energy increased signi�cantly within the
50–100Hz and 200 Hz-400 Hz bands. Although the
mechanism behind these spectral changes is not clear at
present, these phenomena provide a meaningful basis for
further research. In addition, the time interval remained
unchanged (±2%). �is could be explained by the fact that
the experiments in this study only involved changes to
cardiac ejection and did not have any adverse e�ects on the
volunteers’ heart function.

�e results of the comparative experiment showed that
the Valsalva maneuver had a signi�cant e�ect on KS. More
importantly, a direct correlation between blood ©ow and KS
was demonstrated.

4.2. Results of Classi�ers. �e energy features, statistical
features, entropy features, and MFCCs features were
extracted from KS signal datasets from 115 healthy people
and 185 CHF patients. Each KS signal had 48 features in
total, which were divided into three datasets: feature set A
contained energy features, statistical features, and entropy
features; feature set B contained statistical features, entropy
features, and MFCCs features; feature set C contained all the
features.

We randomly selected 80% of the data as the training set
and 20% as the test set. �e machine learning algorithms
such as TD with �ne, medium, and coarse, KNN with �ne,
medium, and cosine, NB with Gaussian and Kernel, EMwith
AdaBoost tree, Bagged tree and RUSBoost tree, and the BO-
SVM were employed and validated using ten-fold cross-
validation on the training set. �e performance of
each classi�er was evaluated on the test set by Acc, Se, Sp, Ps,
and F1.
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Figure 5: Time-frequency comparison of KS before and after the Valsalva maneuver. (a) Original signal. (b) Valsalva signal.

Table 2: Comparison of KS characteristics before and after the
Valsalva maneuver.

KS parameters Ns Vm V(%)
std_enr 12.8 8.89 30.71
std_enr_h 4.99 3.813 23.62
std_TM 19.69 16.89 14.23
std_Ep 7.56 17.81 −135.53
TM_max 104.43 103.25 1.12
TM_min 94.55 96.28 −1.82
enr_max 91.48 97.76 −6.87
enr_min 51.37 69.55 −35.39
enr_h_max 14.05 13.78 1.88
enr_h_min 0.37 0.29 22.70
Ep_max 284.13 142.24 49.94
Ep_min 23.92 23.22 2.921
Stotal(50–100) 75.02 87.79 −17.02
Stotal(100–150) 20.86 8.47 59.39
Stotal(150–200) 3.56 1.70 52.24
Stotal(200–250) 0.46 0.74 −60.88
Stotal(250–300) 0.063 0.53 -739.07
Stotal(300–350) 0.017 0.47 −2647.8
Stotal(350–400) 0.014 0.29 −1910.61
Note. Ns: Normal state, Vm: Valsalva maneuver, V: variation.
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Table 3 shows the performance of each classifier when
the feature sets of energy features, statistical features, and
entropy features were considered. .e coarse DTperformed
the best among the DT classifiers, with Acc (76.7%), Sp
(91.2%), Sp (57.7%), Ps (73.8%), and F1 (90.4%). .e second
was medium DT, with Acc (75.4%), Se (82.4%), Sp (66.7%),
Ps (75.7%), and F1 (83.6%); the fine DT received the lowest
score, with Acc (75.0%), Se (82.4%), Sp (65.4%), Ps (75.7%),
and F1 (84.4%). .e fine KNN has the highest classification
accuracy among all the KNN classifiers, with Acc (81.7%), Se
(82.4%), Sp (80.8%), Ps (84.8%), and F1 (85.7%); the me-
dium KNN performed secondly, with Acc (78.3%), Se
(85.3%), Sp (69.2%), Ps (78.4%), and F1 (86.5%); the cosine
KNN came the third, with Acc (76.7%), Se (85.3%), Sp
(65.4%), Ps (76.3%), and F1 (86.4%). Among the NB clas-
sifiers, the kernel NB performed the best, with Acc (80.0%),
Se (82.4%), Sp (76.9%), Ps (82.4%), and F1 (85.2%); the
Gaussian NB came the second, with Acc (71.7%), Se (58.8%),
Sp (88.5%), Ps (87.0%), and F1 (69.5%). In the EM classifiers,
the RUSBoost tree obtained Acc (83.3%), Se (82.4%), Sp
(84.6%), Ps (87.5%), and F1 (86.3%); the AdaBoost tree
obtained Acc (81.7%), Se (82.4%), Sp (80.8%), Ps (84.8%),
and F1 (85.7%); the Bagged tree obtained Acc (80.0%), Se
(91.2%), Sp (65.4%), Ps (77.5%), and F1 (90.3%). .e per-
formance of BO-SVM was Acc (83.3%), Se (79.4%), Sp
(88.5%), Ps (90.0%), and F1 (85.1%).

When statistical features, entropy features, and MFCCs
features were taken into consideration, the performance
comparison of each classifier is shown in Table 4. When
using DT classifiers, the coarse tree had the best perfor-
mance, with Acc (73.3%), Se (85.3%), Sp (57.7%), Ps
(72.5%), and F1 (86.5%), followed by the medium tree, with
Acc (71.7%), Se (79.4%), Sp (61.5%), Ps (73.0%), and F1
(82.2%); and the fine tree got Acc (70.0%), Se (76.5%), Sp
(61.5%), Ps (72.2%), and F1 (80.0%). Among all KNN
classifiers, the medium KNN performed the best, with Acc
(78.3%), Se (82.4%), Sp (73.1%), Ps (80.0%), and F1
(84.8%); the fine KNN obtained Acc (73.3%), Se (70.6%), Sp
(76.9%), Ps (80.0%), and F1 (76.6%), and the cosine KNN

with Acc (73.3%), Se (82.4%), Sp (61.5%), Ps (73.7%), and
F1 (84.3%). By using NB classifiers, the best performance
was achieved by the kernel NB, with Acc (76.7%), Se
(85.3%), Sp (65.4%), Ps (76.3%), and F1 (86.4%), followed
by the Gaussian NB, with Acc (75.0%), Se (64.7%), Sp
(88.5%), Ps (88.0%), and F1 (74.4%). When the EM clas-
sifiers were applied, the RUSBoost tree got the best per-
formance, with Acc (81.7%), Se (88.2%), Sp (73.1%), P
(81.1%), and F1 (88.7%); the Bagged tree came the second,
with Acc (80.0%), Se (88.2%), Sp (69.2%), Ps (78.9%), and
F1 (88.5%), followed by the AdaBoost tree, with Acc
(78.3%), Se (85.3%), Sp (69.2%), Ps (78.4%), and F1
(86.5%). .e BO-SVM got Acc (80.0%), Se (79.4%), Sp
(80.8%), Ps (84.4%), and F1 (83.7%).

Finally, we combined all the features together, in-
cluding energy features, statistical features, entropy fea-
tures, and MFCCs features. Each classifier was trained and
tested using these features, and the results are displayed in
Table 5. Based on the DT classifiers, the best performance

Table 3: Performance of classifiers in feature set A.

Classifier Acc(%) Se(%) Sp(%) Ps(%) F1(%)
DT
Fine 75.0 82.4 65.4 75.7 84.4
Medium 75.4 82.4 66.7 75.7 83.6
Coarse 76.7 91.2 57.7 73.8 90.4
KNN
Fine 81.7 82.4 80.8 84.8 85.7
Medium 78.3 85.3 69.2 78.4 86.5
Cosine 76.7 85.3 65.4 76.3 86.4
NB
Gaussian 71.7 58.8 88.5 87.0 69.5
Kernel 80.0 82.4 76.9 82.4 85.2
EM
AdaBoost 81.7 82.4 80.8 84.8 85.7
Bagged 80.0 91.2 65.4 77.5 90.3
RUSBoost 83.3 82.4 84.6 87.5 86.3
BO-SVM 83.3 79.4 88.5 90.0 85.1

Table 4: Performance of classifiers in feature set B.

Classifier Acc(%) Se(%) Sp(%) Ps(%) F1(%)
DT
Fine 70.0 76.5 61.5 72.2 80.0
Medium 71.7 79.4 61.5 73.0 82.2
Coarse 73.3 85.3 57.7 72.5 86.5
KNN
Fine 73.3 70.6 76.9 80.0 76.6
Medium 78.3 82.4 73.1 80.0 84.8
Cosine 73.3 82.4 61.5 73.7 84.3
NB
Gaussian 75.0 64.7 88.5 88.0 74.4
Kernel 76.7 85.3 65.4 76.3 86.4
EM
AdaBoost 78.3 85.3 69.2 78.4 86.5
Bagged 80.0 88.2 69.2 78.9 88.5
RUSBoost 81.7 88.2 73.1 81.1 88.7
BO-SVM 80.0 79.4 80.8 84.4 83.7

Table 5: Performance of classifiers in feature set C.

Classifier Acc(%) Se(%) Sp(%) Ps(%) F1(%)
DT
Fine 76.7 73.5 80.8 83.3 79.4
Medium 76.7 73.5 80.8 83.3 79.4
Coarse 70.0 67.6 73.1 76.7 73.7
KNN
Fine 80.0 79.4 80.8 84.4 83.7
Medium 78.3 85.3 69.2 78.4 86.5
Cosine 83.3 88.2 76.9 83.3 89.0
NB
Gaussian 70.0 67.6 73.1 76.7 73.7
Kernel 76.7 79.4 73.1 79.4 82.7
EM
AdaBoost 80.0 79.4 80.8 84.4 83.7
Bagged 83.3 100 61.5 77.3 95.7
RUSBoost 81.7 76.5 88.5 89.7 83.1
BO-SVM 85.0 85.3 84.6 87.9 88.2
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was obtained by the �ne DTand the medium DT, with Acc
(76.7%), Se (73.5%), Sp (80.8%), Ps (83.3%), and F1
(79.4%); coarse DTgot Acc (70.0%), Se (67.6%), Sp (73.1%),
Ps (76.7%), and F1 (73.7%). �e best performance of KNN
classi�ers was obtained by the cosine KNN, with Acc
(83.3%), Se (88.2%), Sp (76.9%), Ps (83.3%), and F1
(89.0%); the �ne KNN obtained Acc (80.0%), Se (79.4%), Sp
(80.8%), Ps (84.4%), and F1 (83.7%); the medium KNN had
the lowest performance, with Acc (78.3%), Se (85.3%), Sp
(69.2%), Ps (78.4%), and F1 (86.5%). Using NB classi�ers,
the Gaussian NB got the performance of Acc (70.0%), Se
(67.6%), Sp (73.1%), Ps (76.7%), and F1 (73.7%); and the
kernel NB got Acc (76.7%), Se (79.4%), Sp (73.1%), Ps
(79.4%), and F1 (82.7%). As the EM classi�ers were used,
the Bagged tree obtained Acc (83.3%), Se (100%), Sp
(61.5%), Ps (77.3%), and F1 (95.7%); the RUSBoost tree
obtained Acc (81.7%), Se (76.5%), Sp (88.5%), Ps (89.7%),
and F1 (83.1%); and the AdaBoost tree obtained Acc
(80.0%), Se (79.4%), Sp (80.8%), Ps (84.4%), and F1
(83.7%). �e BO-SVM achieved the best performance of all
classi�ers, with Acc (85.0%), Se (85.3%), Sp (84.6%), Ps
(87.9%), and F1 (88.2%).

Figure 6 depicts the best performance of the �ve type
classi�ers across three datasets.�e associated classi�ers are the
�ne DTand mediumDTon the feature set C, the coarse DTon
the feature set A, the cosine KNN on the feature set C, the BO-
SVM on the feature set C, Kernel NB on the feature set A, the
Bagged tree on the feature set C, and the RUSBoost tree on the
feature set A, respectively.

5. Discussion

�e study on the diagnosis method of heart failure disease
based on KS was an early exploratory research. Why were we
interested in this? As we know, the KS signal is very easy to
collect. Every year, a large number of people take blood
pressure tests at home, or in community hospitals and
physical examination centers [57]. If these data can be used
e�ectively, it will be of great signi�cance for early nonin-
vasive diagnosis and early warning study of heart failure. It
was exciting that the Valsalva maneuver demonstrates a
substantial association between cardiac output and Coriolis
sound, which gives a solid foundation for our future re-
search, as shown in Table 2 and Figure 5.

In order to achieve the research purpose of this paper, we
investigated CHF classi�cation based on multimode KS fea-
tures. To investigate the in©uence of di�erent features on
classi�cation results, 19 energy features, 12 statistical features, 2
entropy features, and 13 MFCCs features were extracted and
divided into three groups. �e three sets are as follows: feature
set A included 19 energy features, 12 statistical features, and 2
entropy features; feature set B included 12 statistical features, 2
entropy features, and 13 MFCCs features; and feature set C
included all features. Five evaluation metrics, that is, accuracy,
sensitivity, speci�city, accuracy, and F1 score, were used to
evaluate each classi�er’s performance.

Accuracy, sensitivity, and speci�city are critical metrics
for evaluating medical diagnosis algorithms. Accuracy is the
proportion of correctly classi�ed samples to all samples.
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Sensitivity describes the classifier’s ability to identify pa-
tients. Specificity indicates the classifier’s ability to recognize
healthy people [58].

Table 3 shows that the best accuracy when considering
the energy feature, statistical feature, and entropy feature
was 83.3%, achieved by the BO-SVM classifier and the
RUSBoost tree. Both classifiers showed high recognition
capabilities for both patients and normal people. Addi-
tionally, we can see that there were slight differences between
the two classifiers. .e sensitivity (82.4%) of the RUSBoost
tree was higher than that of BO-SVM (79.4%), while the
specificity (84.6%) was slightly lower than that of BO-SVM
(88.5%). Fine KNN and AdaBoost tree are the second
classifiers, with accuracy, sensitivity, and specificity of 81.7%,
82.4%, and 80.8%, respectively. .e RUSBoost tree classifier
had the highest classification accuracy of all classifiers, and
its sensitivity and specificity were both above 80%. So, in our
opinion, the RUSBoost tree outperformed other classifiers in
Feature set A.

As we can see in Table 4, when statistical features, en-
tropy features, and MFCCs features were considered, the
RUSBoost tree had the highest accuracy of 81.7%, followed
by BO-SVM and Bagged tree at 80.0%. .e RUSBoost tree
and the Bagged tree have higher sensitivity (88.2%) than
SVM (79.4%), but their specificity (only 73.1% and 69.2%
respectively, less than 80.8% of BO-SVM) is not very ex-
cellent. .is demonstrates that although the ensemble al-
gorithmwas very effective in identifying CHF patients, it had
some shortcomings in identifying normal people in Feature
set C. Because of its more balanced performance, we believed
that BO-SVM outperformed other classifiers in this feature
set in terms of accuracy, specificity, and sensitivity.

Results in Table 5 show that, after taking into account all of
the energy features, statistical features, entropy features, and
MFCCs features, the classifier’s accuracy was the highest of all
three data sets, at 85.0%, as achieved by BO-SVM..e second-
place classifiers were the Bagged tree and cosine KNN, which
had an accuracy of 83.3%. In terms of sensitivity and speci-
ficity, BO-SVMhad Se (85.3%), Sp (84.6%), Bagged tree had Se

(100%), Sp (61.5%), and cosine KNN had Se (88.2%), Sp
(76.9%). In Feature set C, BO-SVM also outperformed other
classifiers in terms of accuracy, sensitivity, and specificity,
offering a high detection rate of CHF and normal people.

According to the results displayed above, BO-SVM
performed the best in all three feature sets, with the highest
classification accuracy of 85.0% achieved in all the feature
sets. Furthermore, we observed that the EM classifiers also
performed well in the KS feature classification, frequently
outperforming other classifiers. .ese two algorithms are
both excellent classifiers that can be used in KS-based
classification.

In terms of the influence of the feature set on classification
results, the energy features proposed in this paper had an
obvious influence on the classifier’s performance. .e highest
classification accuracy (83.3%) of Feature set A (energy feature,
statistical feature, and entropy feature) is higher than that
(81.7%) of Feature set B (statistical feature, entropy feature,
and MFCCs feature), demonstrating the superiority of energy
over MFCCs in KS signal classification. Additionally, the
highest classification accuracy of the classifiers reached 85.0%
after adding the energy feature to Feature set B (which became
Feature set C). As shown in Figure 6, the best performance of
all types of classifiers was obtained primarily through Feature
set C, demonstrating that the feature data set extraction
scheme proposed in this paper is scientifically significant.

Many researchers have made significant achievements in
the CHF prediagnosis based on acoustic signals. Although their
research object HS differs from the KS of this work, their
algorithms and concepts can be used as a reference for this
article. As shown in Table 6, CHF classification algorithm based
on heart sound had made remarkable achievements, with
outstanding classification accuracy, sensitivity, and specificity.
Compared with their results, the proposed CHF diagnosis
method based on KS signal is not very outstanding in classi-
fication accuracy. However, it should be noted that this is the
first time we have publicly reported the KS-based CHF di-
agnosis algorithm, and all of our results are obtained on the
clinical measured data set, which makes our findings have

Table 6: Comparison of CHF classification algorithms based on acoustics.

Authors Data set Number of subjects Method Performance

Zheng
et al.(2015) [59] Collected by HS acquisition system 88 healthy volunteers and 64 CHF

patients LS-SVM
Acc 95.39%
Se 96.59%
Sp 93.75%

Potes et al.
(2016) [28] PhysioNet databases 2575 normal signal and 665 abnormal

signal AdaBoost and CNN
Acc 86.0%
Se 94.2%
Sp 77.8%

Gjoreski et al.
(2020) [34]

Six (A to F) PhysioNet Challenge
datasets & measured HS by digital

stethoscope

3153 signals from PhysioNet
Challenge datasets &110 healthy

people, 51 CHF recorded by digital
stethoscope

Machine-learning (ML)
and end-to-end Deep

Learning(DL)

Acc 92.9%
Se 82.3%

Sp 96.2%

Zheng et al.
(2022) [35]

Dataset from first Affiliated hospital
and the University-Town hospital of

Chongqing medical University

51 healthy volunteers and 224 CHF
patients LS-SVM

Acc 82%
Se 82.1%
Sp 95.5%

Our method
Dataset of measured KS from the

Fourth People’s hospital of Zhejiang
University

115 healthy subjects and 185 CHF
patients BO-SVM

Acc 85%
Se 85.3%
Sp 84.6%
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clinical guiding significance. As a result, we believe that the
proposed method’s results in terms of classification accuracy,
sensitivity, and specificity are encouraging.

6. Conclusions

In this paper, we proposed a CHF prediagnosis method
based on the KS signal. Denoising, signal segmentation, and
feature extraction methods were established for KS signals,
and 19 energy features, 12 statistical features, 2 entropy
features, and 13 MFCCs features were extracted. A control
experiment was designed to investigate the connection
between KS features and CHF disease. .rough this ex-
periment, we found that the characteristics of KS changed
significantly as cardiac output changed, demonstrating a
direct link between the KS signal and CHF disease.

Based on this critical conclusion, we proposed a Bayesian
optimization algorithm-based support vector machine model
to further investigate the research of CHF classification and
compared our method to the conventional machine learning
algorithm. A 10-fold cross-validation was used in model
training and testing. Each classifier’s performance was eval-
uated using accuracy, sensitivity, specificity, accuracy, and F1
scores. According to our analysis of the performance of each
classifier in categorizing the multimodal feature data set, we
found that our proposed BO-SVM algorithm performed the
best, with Acc (85.0%), Se (85.3%), and Sp (84.6%), followed
by Bagged tree, RUSBoost tree, and cosine KNN, with Acc
(83.3%), Se (100%), and Sp (61.5%); Acc (83.3%), Se (82.4%),
and Sp (84.6%); and Acc (83.3%), Se (88.2%), Sp (76.9%), and
Ps (83.3%), respectively. .e classifier achieved satisfactory
accuracy and met the expected purpose of this paper: early
detection of CHF using KS.

.ese results showed that the early diagnosis algorithm
of CHF based on the KS signal proposed in this paper was
scientifically significant. In particular, progress toward
precise and meaningful KS feature extraction was thor-
oughly correlated with CHF diagnosis. Although the ac-
curacy is inadequate when compared to the present CHF
diagnosis algorithm based on heart sound, we believe that, as
a potential analysis approach, our prediction accuracy has
room to develop. Moving forward, further machine learning
studies should be performed using larger data sets and
optimized algorithms. Such studies may enable quick and
convenient diagnosis of nondestructive cardiac dysfunction.
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