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Inmultiagent systems, social dilemmas often arise whenever there is a competition over the limited resources.+emajor challenge
is to establish cooperation among intelligent virtual agents for solving the situations of social dilemmas. In humans, personality
and emotions are the primary factors that lead them toward a cooperative environment. To make agents cooperate, they have to
become more like humans, that is, believable. +erefore, we hypothesize that emotions according to the personality give birth to
believability, and if believability is introduced into agents through emotions, it improves their survival rate in social dilemma
situations. +e existing researches have introduced different computational models to introduce emotions in virtual agents, but
they lack emotions through neurotransmitters. We have proposed a neurotransmitters-based deep Q-learning computational
model in multiagents that is a suitable choice for emotion modeling and, hence, believability. +e proposed model regulates the
agents’ emotions by controlling the virtual neurotransmitters (dopamine and oxytocin) according to the agent’s personality. +e
personality of the agent is introduced using OCEAN model. To evaluate the proposed system, we simulated a survival scenario
with limited food resources in different experiments. +ese experiments vary the number of selfish agents (higher neuroticism
personality trait) and the selfless agents (higher agreeableness personality trait). Experimental results show that by adding the
selfless agents in the scenario, the agents develop cooperation, and their collective survival time increases. +us, to resolve the
social dilemma problems in virtual agents, we can make agents believable through the proposed neurotransmitter-based
emotional model. +is proposed work may help in developing nonplayer characters (NPCs) in games.

1. Introduction

Artificially intelligent agents are being employed in the field
of robotics [1], games [2], entertainment [3], education [4],

healthcare [5], customer services [6], and many more. A
multiagent system (MAS) is a group of autonomous agents
interacting in the same environment to achieve a common
goal [7]. In these multiagent systems (MASs), situation of
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social dilemmas often arises. As Shaver [8] defined, social
dilemmas mean that individuals from a group, society, or
culture compete to use limited public goods [9] shared
among them. +e case of social dilemmas occur in many
computational problems such as in competitive structure
during file sharing in peer-to-peer systems [10], limited food
resources, and their high consumption during simulated
survival scenarios [11] and common shared medium among
all nodes during bandwidth allocation in telecommunication
systems [12].

+e capacity to solve social dilemma problems benefits
the whole community in the long run. For instance, in
Hardin’s “Tragedy of the Commons” [13], a social dilemma
in the survival scenario, a common pasture, is shared among
a community of herdsmen to graze sheep. If each herdsman
has a small number of sheep, then the pasture provides
plenty of grass to the animals of all herdsmen, which is
beneficial for the community in the long run. However, if
each herdsman increases his number of sheep for his benefit,
the grass is soon scarce in the pasture.+e literature suggests
that cooperation is necessary among the people to resolve
social dilemmas [14–16]. +erefore, to solve the social di-
lemma among AI-controlled virtual agents, these agents
must have believability so that cooperation and coordination
are developed among them [17].

+e general idea of believability in virtual agents is re-
alistic and human-like characters in virtual worlds. Bog-
danovych et al. [18] define a believable virtual agent that is an
autonomous agent with its behavior, personality, distinct
emotional state, internal goals, and beliefs. +is definition
explains that personality, emotions, motivation, and social
relationships are the key features of believable agents. It
suggests that intelligent agents can effectively deal with social
dilemma problems when equipped with an empathetic
personality through positive emotions, internal motivations,
and the capacity to alter their decisions after observing the
environment and needs of other agents.

In the literature, believability has been explored initially
for virtual agents but only limited to their visual appearance
[19]. +ese works focused on facial expressions [20], motion
control [21], hair [22], and dress [23] simulation of virtual
agents. Later, many researchers argued that only the physical
properties of agents are not sufficient to introduce believ-
ability, which can be introduced by making agents rationale
that makes goal-oriented decisions [10]. +erefore, the focus
was shifted towards the development of models for utility-
maximizing rational agents [24].

+e rational agents are not adaptable in complex en-
vironments as they tend to make self-centered decisions
[25]. Hence, these agents must be equipped with emotions,
as emotions can affect their goals [26], which in turn alter
their actions, thus playing a vital part in decision-making
capabilities. +e neurological studies suggest that an emo-
tional mind has a substantial contribution to the process of
decision-making [27]. +erefore, emotions are a necessity to
be included in the rational reactive models for the creation of
believable artificial intelligent agents [25]. Literature also
suggests that person-specific elements, such as personality
[28, 29] and mood [30], also affect the emotion processing

mechanism.+erefore, it is also necessary to model the effect
of personality on the emotion processing mechanism for the
creation of believable virtual agents.

In the last decade, there has been a tremendous ad-
vancement in affective computing by introducing various
emotional models [31–39] for virtual agents, but these models
fail during social dilemmas scenarios. In our opinion, without
cooperation between artificial intelligent agents, all the agents’
survival as a community is impossible. However, simple rule-
based emotions are not enough for multiagents while con-
sidering the community’s collective survival [38]. Neuro-
transmitters are the chemicals that control emotions in
humans. +e development of virtual neurotransmitters in
intelligent agents can regulate emotions and help improve the
agents’ decision-making capabilities. We argue that a neu-
rotransmitter-based emotion modeling in intelligent agents
can introduce cooperation and coordination among multi-
agents and provide collective survival of the community in a
virtual world. More specifically, this paper addresses the
following research questions.

(i) How do emotions introduce believability in virtual
agents?

(ii) How do emotions increase cooperation between
agents?

(iii) Does the introduction of emotions by controlling
and regulating the virtual neurotransmitters im-
prove the decision-making capability of agents?

+e major contribution of this paper is the neurotrans-
mitter-based deep Q-learning model for emotional modeling
in virtual agents. According to the OCEAN model, a selfless
and selfish personality in virtual agents is established through
agreeableness and neuroticism personality traits. Believability
based on emotion regulation through dopamine and oxytocin
is introduced specifically to the personality of the agent. For the
solution of social dilemmas in survival scenario of multiagents,
cooperation is established among the agents using the proposed
neurotransmitter-based deep Q-learning model.

We have tested the proposed model through simulation
performed in a grid world environment developed in the
Unity3D platform. Experimentation is conducted by varying
the number of selfless and selfish agents, and agents learn to
keep their neurotransmitters in the desired range according
to their personality. +e agents achieve maximum reward by
performing the specific actions that best suit their person-
ality. When we increase the number of selfless agents with a
high agreeableness personality trait, they start cooperating
with others by regulating their positive emotions through
neurotransmitters according to their personality, resulting
in improved social dilemmas.

+e rest of the paper is structured as follows. Section 2
provides a detailed literature survey of the previous work
done in this domain. Section 3 presents the proposed so-
lution discussing the model’s architecture philosophy and
the working of emotional agent in the environment. Section
4 describes the experimentation for the evaluation of the
proposed solution. Sections 5 and 6 consist of Results and
Discussion. Section 7 concludes the paper.
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2. Related Studies

2.1. History of Emotional Models for Believable Agents.
+e field of emotion-based believable virtual agents
flourished after the research works of Bates [40] and his
students [41]. +ey built emotional agents for the Oz
project equipped with reactive capabilities and memory.
Moreover, they were also introduced with social rela-
tionships and emotions models based on Ortony, Clore,
and Collins’s (OCC) theory of emotions [42]. +e research
only focused on the agents from an artistic point of view
(i.e., appearance-based). +e impact of the believable
agent’s internal and external motivation on its emotions
and behavior was not considered. Sloman [43] tried to
remove the deficiencies in Bate’s Model by introducing a
“broad” emotion model. He presented a design-based
approach to develop intelligent and motivated agents.
While conducting further research to develop a more
flexible architecture for autonomous agents, Sloman de-
veloped a toolkit named SIM_AGENT [44] for agent de-
velopment. Many interactive mechanisms of agents, that is,
processing different motives, choosing a motive according
to the situation, and then acting on it, were included in that
toolkit.

For the simulation of dogs and other creatures, an au-
tonomous architecture for agents was proposed by Blum-
berg [45]. +e agents’ behavior was created as independent
objects, and a specific behavior was achieved by switching
between the agent’s goals. Hence, the agent would be in a
single emotional state at a time, but this architecture failed to
address Ekman’s complex, compelling, and comprehensive
behavioral model [46].

Cathexis is a computational emotional model for pro-
ducing emotions and their control on agents’ behavior
proposed by Velàsquez et al. [47]. Although, this model
integrated both cognitive and noncognitive promoters of
emotions, it did not consider the impact of personality on
the emotional changes. However, this model opened new
and versatile paths for implementing emotions in agents.

Loyall [48] recognized that personality and emotions
both are necessary for the creation of believable agents. He
suggested that extensive computations for introducing
emotions must also be believable. El-Nasr et al. [49] pro-
posed PETEEI (pet with evolving emotional intelligence).
+is architecture models the behavior of pet dog through
reinforcement learning. +is model provided the agent with
a feedback mechanism that allowed the agent to adapt its
behavior after learning from its experiences.

In the same way, El-Nasr et al. [34] also presented the
model FLAME (Fuzzy Logic Adaptive Model of Emotion).
+is model was also based on the Ortony, Clore, and
Collins’s (OCC) theory on emotions. An inductive
learning system was used to find the hidden patterns in
events and connections among objects. Emotions were
created based on the appraisal of events according to the
fuzzy rules. +is model was a significant step forward in
determining how emotions change the behavior of agents.
Both PETEEI and FLAME were designed for virtual pets;
therefore, personality was not included in these models.

Moreover, to improve military simulations, believability
in autonomous virtual human agents has also been explored.
For this, Silverman et al. [50] compiled human behavior
models (HBMs)/performance moderator functions (PMFs),
which filtered hundreds of human behavior models helpful
in the implementation of behavioral models for believable
virtual humans.

Silverman et al. [51] and Silverman, Johns, et al. [52]
presented a model that focused on the effects of cognition,
stress, perception, and social processes on emotions and
virtual decision-making agents. Moreover, they also ex-
plored various methods for implementing existing behav-
ioral models in game engines.

Recently, Yang et al. [53] extended the models proposed
by Silverman et al. [51] and Silverman, Johns, et al. [52] by
introducing the social learning component. +is extended
model facilitated learning the relationships between agents.
+us, the decision-making capabilities of virtual agents were
improved using this information. In the same way, You and
Katchabaw [54] presented a model that helped integrate the
different psycho-social models.

2.2. Introduction of Cooperation and Emotions through Re-
inforcement Learning. Diallo et al. [55] proposed that deep
reinforcement learning algorithms can be used to cooperate
between two agents to achieve a specific task. +e fully
observable ping-pong scenario tested different deep rein-
forcement learning algorithms by teaming up the two agents
to play against the hard-coded player. Results showed that
deep Q-network with double Q-learning gave the best results
in the ping-pong scenario by maximizing the total reward of
two agents. Cooperation was achieved to some extent, but
there was no communication between the agents.

Broekens et al. [56] proposed an emotional model of joy,
distress, hope, and fear using reinforcement learning for a
single agent in the maze scenario. +ey mapped the RL
primitives to these four emotions. Fear and hope were
mapped to the values of the states, whereas joy and distress
were mapped to the error function. +ey hypothesized that
for adaptive behavior learning, agents must have complex
emotional feedback from the environment. Experiments
were done on a maze scenario simulated in JAVA. +e
results showed that the function of emotion is useful for the
adaptive behavior of the agent.

Sequeira et al. [57] proposed an intrinsically motivated
reinforcement learning framework to overcome the agent’s
perceptual limitation by implicitly encoding the informa-
tion. Reward functions were evolved through the fitness
function of genetic programming, and the best-suited
functions were adopted to maximize the reward. Many
experiments were done on the grid world foraging envi-
ronment and Pacman scenarios. Results showed that
emotional appraisal signals improved the decision-making
capability of the agent.

2.3. Introduction of Cooperation forHandling Social Dilemma
in Agents. Introducing cooperative behaviors among mul-
tiagents has been a topic of interest among researchers for
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solving social dilemmas. Researchers have investigated the
introduction of emotions among two agents for establishing
cooperation in social dilemma scenarios [11, 58, 59].

Yu et al. [58] proposed a double-layered framework with
emotional multiagent reinforcement learning that provided
agents with emotional and cognition capabilities to induce
cooperation. Intrinsic rewards were used to learn the inner
layer of the framework, where one emotion emerges as a
dominant factor from the emotional processes of the agent.
In the outer layer of the framework, the emergent emotion
was used as biased reinforcement signals to learn the related
cognition and behavioral changes. Experimental results
showed that the agent’s heterogeneities and different net-
work topologies also had a noteworthy impact on the
learning behaviors of the agent.

Huang et al. [59] modeled a dynamic network whose
weights evolve with the game’s strategy for modeling the
effect of cooperation. +e hypothesis was that different
agents perceive the puzzle of social dilemmas differently.
Tests were conducted on two spatial games (prisoner’s di-
lemma and snowdrift game). According to the results, for a
small temptation to defect in the game, high network
evolution strength was needed for cooperation. +e vice
versa was also correct.

Leibo et al. [11] introduced sequential social dilemmas to
analyze the dynamics of agents’ learning policies using deep
Q-network. Previously, in Matrix games like the prisoner’s
dilemma choice to defect or cooperate was treated as a single
action. However, in social dilemmas of the real-world, co-
operation can be learned after devising the whole policy. For
this, the authors tested their hypothesis on two games (fruit
gathering and wolf pack hunting game). +e experimental
results showed that cooperative policies were easier to learn
in the fruit-gathering game than wolf pack hunting. As in the
wolf pack hunting game, a lot of coordination was needed
for learning the cooperative policy. In this research, the
personality and emotions of the agents were not taken into
account.

A research matrix for comparison of related works is
presented in Table 1, where we categorized the existing
works on the basis of reinforcement learning, social dilemma
in MAS, use of emotions in social dilemmas, and cooper-
ation of multiagents.

3. Proposed Methodology

3.1. Architecture Philosophy. +e proposed solution is based
on the philosophy shown in Figure 1.

In humans, neurotransmitters are called chemical
messengers in the brain. Different levels of these neuro-
chemicals control emotions. However, what emotion has to
be expressed depends on the specific personality of
humans. Similarly, by varying the levels of virtual neuro-
transmitters in agents, particular emotions can be acquired
according to the agents’ personalities. +ese personality-
specific emotions will lead to believability in virtual agents,
which is necessary to solve social dilemmas with limited
resources.

3.2. Working of Agent in Environment. +e model’s archi-
tecture diagram (Figure 2) is inspired by Barto et al. [29]
concept of extrinsic and intrinsic motivation of agents in
reinforcement learning.

According to the architecture diagram (Figure 2), the
emotional agent can observe the environment. After re-
ceiving the knowledge of the environment, the agent per-
forms specific actions in the environment and its state
changes. On performing these actions, the agent receives
some reward according to extrinsic and intrinsic motivation
based on the agent’s state. +e cumulative reward is cal-
culated by combining rewards based on extrinsic and in-
trinsic motivation.+is cumulated reward is also fed into the
agent’s brain, along with the state of the environment. +e
brain processes this information and decides the best action
for the agent to take in the environment. +is process
continues, and the agent tries to maximize its reward by
performing the best actions in the environment.

3.3. Emotional Agent

3.3.1. Emotional Agent. +e environment is a fully ob-
servable grid world consisting of certain virtual agents with
different personalities and food reservoirs to gather food.
Information about the environment is passed to the brain of
the agent in the form of state space. +e state-space consists
of the location of all food reservoirs, available food in these
reservoirs, the total number of alive agents in the envi-
ronment, the position of these agents, the food level of all
these agents, and time passed in the environment. Agent’s
internal information, that is, its food level and the levels of its
neurotransmitters, are also a part of state space.

3.3.2. AGENT Actions. Every agent is allowed certain spe-
cific actions that it can perform in the environment.With the
actions of up, down, right, and left, it can move in the
environment or stay in its position by not act. It can also eat
from the food reservoir and share food with the other agents.
In short, an agent can perform any one of the total 7 actions
available in the action list. +e action list is{No action, Up,
Down, Left, Right, Eat, and Share}.

3.3.3. Rewards System Based on Extrinsic Motivation. In
reinforcement learning, there are two types of rewards.

(i) Rewards based on extrinsic motivation
(ii) Rewards based on intrinsic motivation

Psychologists have distinguished between extrinsic and
intrinsic motivation. Extrinsic motivation is defined as
propelling us to do a task based on some particular re-
warding outcome. Whereas intrinsic motivation drives us to
do a job because it is inherently enjoyable. In short, behavior
driven by external reward is extrinsic motivation, whereas
the behavior driven by internal reward is intrinsic moti-
vation. Extrinsic motivation arises after observing the re-
wards present in the environment. Intrinsic motivation of
the human emerges from the person’s personality [60] and
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Table 1: Research matrix for comparison of related works.

Research work Reinforcement
learning

Social dilemma in
MAS Emotions in social dilemmas Cooperation

Bates [40, 41] ✘ ✘ ✘ ✘
Sloman [43, 44] ✘ ✘ ✘ ✘
Blumberg [45], El-Nasr et al.
[34, 49] ✘ ✘ ✘ (Emotional virtual pets) ✘

Silverman et al. [50–52] ✘ ✘ ✘ (Human behavioral models in game
engines) ✘

Huang et.al [59] ✔ ✔ (Only for two
agents) ✘ ✔

Diallo et al. [55] ✔ ✘ ✘ ✔

Leibo et al. [11] ✔ ✔ (Only for two
agents) ✘ ✔

Broekens et al. [56] ✔ ✘ ✘ ✘
Sequeira et al. [57] ✔ ✘ ✘ ✘
Our proposed model ✔ ✔ ✔ ✔

1

2

3

4

Social Dilemma Situation
Competing virtual agents over the limited food
resources

Believability
Solving social dilemma by introducing
believability in virtual agents

Personality
Introducing personality through OCEAN Model
in believable virtual agents

Neurotransmitters
Regulating emotions according to personality
of believable virtual agents through 
neurotransmitters

Figure 1: Solving social dilemma situation by introducing believability through personality and neurotransmitters in virtual agents.

Extrinsic
Motivation Motivation

Intrinsic

No. of Alive
Agents

States

Oxytocin
Dopamine

DQN Brain

Emotional
Agent

Actions

Reward

Reward
Calculation

Environment

Figure 2: Architecture diagram of the neurotransmitter-based deep Q-learning emotional model with reward calculation based on intrinsic
and extrinsic motivation of the emotional agent.
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neural networks and dopaminergic systems present in the
person’s brain [61]. Hence, for the intrinsic motivation in the
agent, it is necessary to introduce virtual personality and
emotions by controlling the neurotransmitters or brain
chemicals in the agent.

3.3.4. Rewards System Based on Intrinsic Motivation.
Intrinsic motivations of the agents are inspired by the drive
theory of Hull in psychology [62–64]. +e specific personality
of the agent has some particular emotions. +ese emotions are
achieved by balancing and controlling the neurotransmitters.
+is balancing of neurotransmitters drives the agent to perform
the specific actions related to the agent’s personality.

3.3.5. Personality. +e personality of the agents is based on
the OCEANmodel (Figure 3), also known as the Five-Factor
Model (FFM) developed by Robert McCrae and Paul Costa
[65]. +e OCEAN Model consists of big five personality
traits: Openness, Conscientiousness, Extraversion, Agree-
ableness, and Neuroticism.

Openness is an extensive realization of diversity of ex-
perience, exceptional ideas, and curiosity. Open to experi-
ence, people are willing to seek and strive for new things and
are curious intellectually.

Conscientiousness is the likelihood of a person to be
dutiful, self-disciplined, and goal-oriented against all mea-
sures. It can be associated with how people direct, regulate,
and control their stimulus responses.

Extraversion is related to extrovert, action-oriented, and
enthusiastic people interacting and engaging with external
people and the outside world. +e personality trait of
agreeableness is marked with kind, considerate, helpful,
trustworthy, and generous nature. Agreeable people have a
significant concern for social peace, and they have an op-
timistic perspective of humans. Selfless people fall under this
category. Neuroticism is marked with people having neg-
ative emotions such as depression, anger, and anxiety.
Ordinary situations and minor frustrations are threatening
and hopelessly tricky for them.+e occurrence of this trait is
most likely to make a person selfish.

3.3.6. THE Proposed Personality Model. Studies suggest that
people having a high level of Neuroticism and low level of
Agreeableness are usually selfish and self-centered [66].
However, people having a high level of Agreeableness and
low level of Neuroticism are generally selfless and empa-
thetic [67]. As this paper deals with the social dilemma
situation, only those personality traits are required that are
most likely to make the agents selfish or selfless. Hence, the
personality of Agreeableness and Neuroticism is considered
from the OCEAN Model for the emotional agents. +ese
personality trait values remain within the range of [0, 1].

3.3.7. Neurotransmitters. +e emotional chemicals involved
in the Limbic System [61] are used to determine the agents’
emotions. +e basic four emotional chemicals (Figure 4) are
dopamine, serotonin, oxytocin, and endorphin [68].

+e neurotransmitter that is related to motivation and
reward chemical is dopamine. It is released by a small
portion of the brain, hypothalamus, located at the base of the
brain. Drive, focus, memory, and attention are associated
with this chemical.

Serotonin is the neurotransmitter known as the happi-
ness hormone. Mood upliftment and relaxation are achieved
by the correct portion of the serotonin level in the body.
Hypothalamus also generates the bonding hormone known
as oxytocin. Social behavior and feelings of calmness and
contentment are related to this neurotransmitter. In pain,
stress, and fear, endorphins are the neurotransmitters re-
leased. +ese allow us to cope with the pain.

Openness

Conscientiousness

OCEAN
Model

Extraversion

Agreeableness

Neuroticism

Figure 3: Ocean model of personality.

Neurotransmitters

Endorphin

Oxytocin

Dopamine

Serotonin

Figure 4: Four types of neurotransmitters.
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In his book [69], Simon Sinek categorized dopamine and
endorphin as selfish chemicals, whereas oxytocin and se-
rotonin as selfless chemicals. For the situation of social
dilemma in virtual agents, dopamine and oxytocin from
each category are considered. Neurotransmitters are
maintained within [0,10], with 0 as the lowest level and 10 as
the highest level. +is paper shows that high level of virtual
oxytocin creates the emotion of love, empathy, and self-
lessness among agents. Low levels of oxytocin generate the
emotions of selfishness. Dopamine represents the motiva-
tion and goal achievement chemical.

3.3.8. Neurotransmitters to Agents Action’s Mapping. As
mentioned earlier, the agent can perform any action
available in the action list at a time step. While doing these
actions, the level of neurotransmitters within the agent
changes. For example, if the agent is hungry and takes those
movement actions that will reduce its distance from the
reservoir, its dopamine level increases. +is level of increase
depends on the distance between the agent and the food
reservoir. Dopamine level increases more speedily if the
specific action makes the agent closer to the reservoir. But
this level decreases if some action makes the agent move
away from the food reservoir. Since during the movement,
the agent does not interact and share food with the other
agents; therefore, its level of oxytocin decreases. When an

agent performs the eat action, the dopamine level increases
more swiftly as it has achieved its goal, but the level of
oxytocin remains the same at that time. When the agent
performs the share action, both the level of dopamine and
oxytocin increase. It is because the agent is performing a
selfless action.

3.3.9. Extrinsic Motivation. Every agent has a certain food
level, and the agent dies if the food level reaches 0. Since the
goal of this research is the collective survival of agents;
therefore, extrinsic motivation for the agents is the aliveness
of every agent. +us, extrinsic motivation drives the agent to
take actions for the survival of all the virtual agents.

3.3.10. Reward Calculation. According to the value of
agreeableness and neuroticism, the agent can have different
percentages of selflessness and selfishness in its personality
as shown in Table 2. In this model, the selfless agent has the
agreeableness of 0.8% and 0.2% of neuroticism. Vice versa is
correct for the selfish agent.

As already explained, a high level of virtual dopamine
and oxytocin creates the emotion of love, empathy, and
selflessness among agents. A low level of oxytocin generates
the emotions of selfishness.+e emotional state of the agents
is shown by the following two functions given below:

FSL(Dop,Oxy) � sgn
|((Dop/4) − 1)| +((Dop/4) − 1)

2
 ∗ sgn

|((Oxy/5) − 1)| +((Oxy/5) − 1)

2
 ,

FSF(Dop,Oxy) � sgn
|((Dop/2) − 1)| +((Dop/2) − 1)

2
 ∗ sgn

|(1 − (Oxy/4))| +(1 − (Oxy/4))

2
 ,

(1)

where subscript SL represents the Selfless and SF represents
the Selfish. Sgn is the signum function, and abs is the ab-
solute function. FSL(Dop,Oxy) only returns true when the
neurotransmitters have reached the specific level, that is,
dopamine> 4 and oxytocin> 5. FSF(Dop,Oxy) returns true
only when dopamine> 2 and oxytocin< 4.

Reward based on the intrinsic motivation RInt is given as
follows:

RInt � Value of agreeableness∗FSL(Dop,Oxy)

+ Value of neuroticism∗FSF(Dop,Oxy).
(2)

+is reward function gives a greater positive reward of
0.8 to both selfless and selfish agents if they satisfy their
nature by adjusting the levels of their neurotransmitters.

Reward based on extrinsic motivation RExt whenever any
agent dies, is given as follows:

RExt � − (Remaining time of the simulation∗ discount factor).

(3)

Here discount factor is set to 0.1, which ensures that the
reward stays within the range of [− 1, 0]. +is dynamic

reward function makes sure to give a greater negative reward
if an agent dies during the episode and less-negative reward
if the agent dies near the end of the episode. RExt is given to
every agent if an agent dies to motivate the agents for
collective survival. +e following equation gives the total
accumulative reward.

RTotal � RInt + RExt. (4)

3.3.11. Emotional Brain. Deep Q-network (DQN), which is
a method of deep reinforcement learning (DRL) [70], is used
to develop the brain of every emotional agent because it is a
continuous problem with no terminal state [71]. By inter-
acting with the environment at discrete time steps
(t � 0, 1, 2 . . .), emotional DRL agents learn different poli-
cies. Environment state space is denoted by S which consists
of all the available information consisting of all the internal
and external information of agents and the location of food
reservoirs. Action space A consists of the possible actions an
agent can perform, that is, A � No action,Up,Down,

Left,Right,Eat, Share}. R represents the reward state. At
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every time step t, every agent observes a state st ∈ S and
selects an action at ∈ A. In return, the agent gets a reward of
RTotal ∈ R and moves to a new state st+1 � S. +e agent’s goal
is to maximize the reward by finding the optimal policy
λ: S⟶ A, that is, the mapping of observed states and the
action taken by the agent in those states.

To address the task as mentioned earlier of DRL,
Q-learning is used. +e choice of Q-function, the quality of
state-action pair (st, at), is critical to the success of the
Q-learning technique. Deep Q-network (DQN) uses deep
neural network (DNN) to learn the Q-functions through
iterative updates based on the experience. Neural network
with one input layer, three hidden layers, and one output
layer is used to approximate the action values Q � (st, at, θ),
where θ represents the learning parameters of the neural
network.

+e network’s input is the agent’s state of the envi-
ronment containing the information about the location of
food reservoirs and other agents, food levels of agents, its
neurotransmitter levels, and the current simulation time.
+e output is the approximate Q-value of every possible
action that the agent can take as shown in Figure 5. +e
equation to calculate the Q-values is given as follows:

Q st, at, θ(  � RTotal + cmaxat+1
Q st+1, at+1, θ( , (5)

where RTotal is the immediate reward that the agent gets on
choosing the best action that gives the maximum Q-value of
the next state represented by maxat+1

Q(st+1, at+1, θ). c is the
discount factor.+e algorithm of temporal difference (TD) is
used [72]. It enables the agent to update its knowledge on
every timestep t. +e formula is given as follows:

TD at, st(  � RTotal + cmaxat+1
Q st+1, at+1, θ(  − Q st, at, θ( . (6)

Substituting equation (6) in equation (5) makes the
following equation:

Q st, at, θ(  � Q st, at, θ(  + αTD at, st( . (7)

DQN is to minimize the mean squared error of the
temporal difference, which is shown above. α represents the
learning rate.

4. Experimentation

+is section explains the experimentation based on the
proposed neurotransmitter-based deep Q-learning com-
putational model. +e simulation environment consists of
four food reservoirs and two types of agents.

(i) Selfless agents
(ii) Selfish agents

+e grid world environment is developed in the Unity3D
platform with the gird size of 10×10. Food reservoirs and
agents are placed randomly in the environment. Each epi-
sode runs for 9 minutes, and after the completion of an
episode, the environment resets.+e environment also resets
when all the agents die before the time of the episode runs
out. Each experiment is trained for 100 episodes. DQN
brain, implemented in python, is used for the training of the
agents. Two experiments are done with altering the number
of selfless and selfish agents and checking the effect on the
survival time of the agents.

4.1. Food Reservoir. Each food reservoir is initialized with
the available food level of 4 (Table 3), which is less than the
total food needed by all agents for their survival. It ensures
that the situation of social dilemma arises as depicted in
Game +eory [73]. Both selfish and selfless agents can
consume food from the reservoirs. It is done if the distance
between the agent and a particular reservoir is less than 1,
and the agent performs the action Eat. Otherwise, the action
Eat has no effect.

Whenever the agent takes food from the reservoir, the
food level of the agent is increased, and the reservoir storage
is decreased. After every minute, the food in every reservoir
is regenerated, and the available food is incremented by 0.5.
Once the food level is less than 1 in a reservoir, it will not
provide food to any agent.

4.2. Selfless and SelfishAgents. Agents are initialized with the
food level of five. Following are the seven actions that selfless
and selfish agents can perform {No Action, Up, Down, Left,
Right, Share, and Eat}. After every minute, the food level of
the agents gets decremented by 1. If the food level of any
agent is less than 3, it is pushed in an FIFO (First In First
Out) queue of needy agents.+ese are the agents whose food
level is less than 3, and they need food from other agents.
Both selfless and selfish agents transfer food to the first needy
agent in the queue only if its food is greater than 3, as
depicted by Maslow’s hierarchy of needs [41]. When an
agent performs the share action, its food level gets decre-
mented by 0.5, and the food of needy agent (with whom the
agent has shared) gets incremented by 0.5. +e agent dies if
the food level decreases to 0.

Table 2: Values of personality traits for both selfless and selfish
agents.

Sr. no. Personality of agent Agreeableness Neuroticism
1 Selfless 0.8 0.2
2 Selfish 0.2 0.8

Input Layer Output Layer3 Hidden Layers

No Action
Up
Down
Le�
Right
Eat
Share

67 Nodes 128 Nodes 128 Nodes 64 Nodes 7 Nodes

Figure 5: Neural Network used for Q-Learning.
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4.3. DQN Brain. +e learning rate of the neural network
used for the training of agents is set to 0.0001. Environ-
mental states are passed to the network in batches of 32. +e
number of nodes in the input layer is 67. First, second, and
third hidden layers contain 128, 128, and 64 nodes, re-
spectively. +e number of nodes in the output layer is 7. +e
memory size of each agent to remember the previous states
and corresponding actions taken in those states is 100,000.
+e value of discount factor c is 0.9.

4.4. Experiment 1. +e first experiment (Figure 6) was
conducted with eight virtual agents. All were initialized with
a selfish personality having agreeableness and neuroticism
value 0.2 and 0.8, respectively.

4.5. Experiment 2. +e second experiment (Figure 7) was
also conducted with eight virtual agents. Out of the eight
agents, three agents were initialized with a selfish personality
having agreeableness and neuroticism value 0.2 and 0.8,
respectively, the same as the first experiment. +e remaining
five agents were initialized with the selfless personality
having agreeableness and neuroticism 0.8 and 0.2,
respectively.

5. Results

Table 4 shows the survival time of the agents collectively as a
community for both the experiments.

Figures 8 and 9 show the Eat and Share actions per-
formed by all the selfish agents during Experiment 1. +e x-
axis shows the no. of episodes, whereas the y-axis shows the
total number of actions performed during a particular
episode.

Figures 10 and 11 show the Eat and Share actions
performed by all the selfless and selfish agents during Ex-
periment 2.+e x-axis shows the no. of episodes, whereas the
y-axis shows the total number of actions performed during a
particular episode.

Figures 12 and 13 show the Eat and Share actions
performed by one selfish and one selfless agent during the
53rd episode of Experiment 2. +e x-axis shows the time in
seconds on which the specific action was performed.
Whereas, y-axis and z-axis show the level of dopamine and
oxytocin, respectively, at the particular time the specific
action was performed.

6. Discussion

First research question addresses the concept of believability
in virtual agents. Believability in virtual agents is based on
the personality and emotions of the agents. Furthermore,
there are five personality traits, according to the OCEAN

Model. From those five traits, Agreeableness and Neuroti-
cism are best suited for the situations of social dilemmas in
virtual agents. +ese two personality traits made the agents
selfish and selfless thus contributing to the believability in
virtual agents. Moreover, the regulation of emotions
according to the personality depends on the neurotrans-
mitters. Dopamine and oxytocin are classified as selfish and
selfless neurochemicals, respectively. In this work, we in-
troduce two neurochemicals to introduce emotions and,
subsequently, believability.

We performed two experiments to evaluate whether the
proposed method introduces believability and how effective
it is to solve the social dilemma problems. In the first ex-
periment, all eight agents were selfish, whereas, in the second
experiment, five agents were selfless, and three were selfish.
Agents were given seven actions {No action, Up, Down, Left,
Right, Eat, and Share}. On performing any of those actions,
their neurochemicals change. It is evident from Figures 8
and 9 of the first experiment and Figures 10 and 11 of the
second experiment that selfish agents performed more eat

Table 3: +e initial levels of neurotransmitters and the food level of both types of agents at the beginning of the experiments.

Agents Food level Dopamine Oxytocin Agreeableness Neuroticism
Selfless 5 1 4 0.8 0.2
Selfish 5 1 2 0.2 0.8

Figure 6: Grid world Unity3D image taken during the training of
the first experiment. Plus signs in green show the food reservoirs
and red cubes show the selfish agents.

Figure 7: Grid world Unity3D image taken during the training of
the second experiment. Plus signs in green show the food reser-
voirs, red cubes show the selfish agents, and white cubes show the
selfless agents.
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actions and fewer share actions to keep their dopamine level
high and oxytocin level low (Figures 12 and 13). However,
selfless agents performed more share actions to keep their
oxytocin level high (Figure 13). Agents chose those actions
that maintained their neurotransmitters in the desired range
according to their personality. +erefore, it was concluded

that we can introduce believability in virtual agents by
regulating the emotions through neurotransmitters
according to the agents’ personality with the reinforcement
learning technique.

Second research question investigates the effect of
emotions on cooperation between agents. In the situation of

Table 4: Collective survival time of the agents for both experiments.

Sr. no. Time of collective survival (hh:mm:ss)
Experiment 1 (eight selfish agents) 00:06:10
Experiment 2 (five selfless and three selfish agents) 00:07:55
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Figure 8: Cumulative Eat actions of eight selfish agents during 100 episodes of first experiment.
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Figure 9: Cumulative Share actions of eight selfish agents during 100 episodes of first experiment.
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Figure 10: Cumulative Eat actions of five selfless and three selfish agents during 100 episodes of second experiment.
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social dilemmas with limited resources, the situation
worsens if people behave selfishly. When people keep their
benefits aside and cooperate selflessly, the situation becomes
relatively favorable. +erefore, we believed that if we in-
troduce agents with empathetic and selfless personality in
the virtual social dilemma situation, the cooperation be-
tween the agents can be increased. We also measured the

total time for which all the agents were alive (Table 4) while
food resources kept the same in both experiments. In Ex-
periment 1, selfish agents ate food for themselves and shared
less food with others. +erefore, they could survive collec-
tively for 6 minutes and 10 seconds only (Table 4). However,
in Experiment 2, selfless agents ate food from the reservoir
and shared food with the needy agents. +erefore, the
survival time was increased to 7 minutes and 55 seconds
(Table 4). All agents in Experiment 2 survived for 1minute
and 45 seconds more than the eight selfish agents in Ex-
periment 1 with the same food resources.

Hence, it proved that when we increase the number of
selfless agents with a high agreeableness personality trait,
they started cooperating with others by regulating their
positive emotions through neurotransmitters according to
their personality. +us, the situation of social dilemmas
improved.

+ird research question measures the effect of emotions
by controlling virtual neurotransmitters on the decision-
making capability of agents. Reinforcement learning is a
continuous learning process in which the problem is modeled
as Markov decision process (MDP). In our reinforcement
learning-based approach, an agent utilizes its previous ex-
perience (actions taken in the past) to improve the decisions
in the future. +e agent with the passage of time discovers
which actions give the maximum reward by exploiting and
exploring them. +us, the agent starts to take actions whom
Q-values are greater. In our experimentations about reward
maximization, selfish agents learnt not to share the food
whereas selfless agents learnt to share food with needy agents
(who were unable to eat from the reservoir due to limited
food) as the training episodes passed. +erefore, through
reinforcement learning, agents learnt to keep their neuro-
transmitters in the desired range according to their person-
ality. +us, agents were achieving the maximum reward by
performing the specific actions that best suited their per-
sonality without being explicitly told. +is shows that the
decision-making capability of agents was improved under
reinforcement learning.

In the experiments, we measured the total time for which
all the agents were alive (Table 4) while food resources kept
the same in both experiments. In Experiment 1, selfish
agents ate food for themselves, as shown in Figure 8. +e
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Figure 11: Cumulative Share actions of five selfless and three selfish agents during 100 episodes of second experiment.
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Figure 12: Changes in neurotransmitters of one Selfless and one
Selfish agent during the 53rd episode of the second experiment
while performing eat action.
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Figure 13: Changes in neurotransmitters of one Selfless and one
Selfish agent during the 53rd episode of the second experiment
while performing share action.
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number of eat actions performed collectively by selfish
agents are greater (Figure 8) than the number of share
actions (Figure 9). Due to limited food available in the
reservoirs, agents were able to survive collectively for 6
minutes and 10 seconds only (Table 4) after 100 episodes of
training. After 6minutes and 10 seconds, first agent died in
the environment. However, in Experiment 2, selfless agents
ate food from the reservoir as shown in Figure 10. After
eating the food, selfless agents also shared the food with the
needy agents. It is evident that the number of Share actions
in Experiment 2 (Figure 11) is greater than the Share actions
performed in Experiment 1 (Figure 9).+e survival time was
increased to 7minutes and 55 seconds (Table 4) in this case.
All agents in Experiment 2 were able to survive for 1 minute
and 45 seconds more than the eight selfish agents in Ex-
periment 1 with the same food resources. It proved that
when we increase the number of selfless agents with a high
agreeableness personality trait, they started to perform more
share actions thus cooperating with others agent. +is was
because, the selfless agents tried to maximize their reward by
regulating their positive emotions through neurotransmit-
ters according to their personality. In return, the situation of
social dilemma was improved.

+erefore, we hypothesized that we can introduce
emotions by controlling and regulating the virtual neuro-
transmitters in agents through the reinforcement learning
technique to increase the decision-making capability of the
agents according to their personality. Two experiments were
conducted with varying the number of selfless and selfish
agents to evaluate the solution. Both types of agents tried to
maximize their reward function by performing actions with
the highest Q-value (8). For selfish agents, dopamine level
greater than 2 and oxytocin level lower than 4 acquire
maximum reward. According to (8), Q-value for Eat action
was mostly greater than Share action. +erefore, selfish
agents performed more Eat actions for increasing their
dopamine level (Figure 12).

Moreover, they avoided sharing food, which resulted in
the oxytocin level having a small value (Figure 13). Similar to
selfish agents, selfless agents in the second experiment also
tried to maximize their reward function. But for selfless
agents, maximum reward requires higher dopamine, that is,
greater than 4 and higher oxytocin level, that is, greater than 5.
Selfless agents tried to keep their dopamine and oxytocin
levels high by consuming the food and then sharing it with the
needy agents. In each episode, the Q-value of the action Eat
was greater for the first 3minutes; therefore, both selfish and
selfless agents consumed food from the reservoir (Figure 12).
After 3 minutes, the Q-value of the action Share was greater
for the selfless agents only (Figure 13). Agents can share the
food only when their food level is greater than 3. To maximize
the reward, selfless agents shared foodwith needy agents (who
could not eat from the reservoir due to limited food).

+erefore, agents learned to keep their neurotransmit-
ters in the desired range through reinforcement learning
according to their personality. +us, achieving the maxi-
mum reward by performing the specific actions that best
suited their personality. Hence, their decision-making ca-
pability was improved.

7. Conclusion

To solve the situation of social dilemmas in virtual agents, we
proposed a neurotransmitter-based deep Q-learning model
for emotional modeling in agents. Agents maintained their
neurotransmitter levels by performing specific actions that
maximize intrinsic and extrinsic rewards according to their
personality. +is mapping of actions to neurotransmitters
improved the decision-making capability of the agents and
developed cooperation between the agents. Experiments
showed that selfless agents cooperated with one another, and
they survived the social dilemma situation for 1minute and
45 seconds more than selfish agents. We have concluded that
the agents’ personality and their emotion regulation through
neurotransmitters introduced believability in virtual agents,
and selfless agents, in the environment, helped to avoid
social dilemma problems that improved the overall survival
of the community.

+is work opens up a new dimension for emotion
modeling in virtual agents. We have chosen a complex social
dilemma scenario to see how agents behave in a compar-
atively large environment. For application point of view, this
work can be used for developing nonplayer characters
(NPCs) in games. Future directions for extending this re-
search can include extending the experiments using all the
four neurotransmitters. Second, we can devise methods that
will evolve the personalities of the agents according to the
environmental changes.
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Montréal Canada, August 1995.

[45] B. M. Blumberg, “Old tricks, new dogs: ethology and inter-
active creatures,” Massachusetts Institute of Technology,
Cambridge, MA, USA, 1997.

[46] P. E. Ekman and R. J. Davidson, Fe Nature of Emotion:
Fundamental Questions, Oxford University Press, Oxford,
UK, 1994.

[47] J. D. Velásquez and P. Maes, “Cathexis: a computational
model of emotions,” in Proceedings of the first international
conference on Autonomous agents, pp. 518-519, Marina del
Rey, CA, USA, February 1997.

[48] W. U. Khan, N. Imtiaz, and I. Ullah, “Joint optimization of
NOMA -enabled backscatter communications for beyond 5G
IoT networks,” Internet Technology Letters, vol. 4, no. 2,
p. 2020, 2021.

[49] M. S. El-Nasr, T. R. Ioerger, and J. Yen, “PETEEI: a PET with
evolving emotional intelligence,” in Proceedings of the third
annual conference on Autonomous Agents 1999, pp. 9–15,
Seattle, WA, USA, 1999.

[50] B. G. Silverman, R. Might, R. Dubois, H. Shin, M. Johns, and
R. Weaver, Toward a Human Behavior Models Anthology for
Synthetic Agent Development, https://repository.upenn.edu/
hms/84, 2001.

[51] B. G. Silverman, M. Johns, J. Cornwell, and K. O’Brien,
“Human behavior models for agents in simulators and games:
part I: enabling science with PMFserv,” Presence: Tele-
operators and Virtual Environments, vol. 15, no. 2, pp. 139–
162, 2006.

[52] B. G. Silverman, G. Bharathy, K. O’Brien, and J. Cornwell,
“Human behavior models for agents in simulators and games:
part II: gamebot engineering with PMFserv,” Presence: Tele-
operators and Virtual Environments, vol. 15, no. 2, pp. 163–
185, 2006.

[53] H. Yang, Z. Pan, M. Zhang, and C. Ju, “Modeling emotional
action for social characters,” Fe Knowledge Engineering
Review, vol. 23, no. 4, pp. 321–337, 2008.

[54] J. You and M. Katchabaw, “A flexible multi-model approach
to psychosocial integration in non-player characters in
modern video games,” in Proceedings of the International
Academic Conference on the Future of Game Design and
Technology, pp. 17–24, Vancouver, Canada, May 2010.

[55] E. A. O. Diallo and T. Sugawara, “Learning strategic group
formation for coordinated behavior in adversarial multi-agent
with double DQN,” Lecture Notes in Computer Science, in
Proceedings of the International Conference on Principles and
Practice of Multi-Agent Systems, pp. 458–466, Tokyo, Japan,
October 2018.

[56] J. Broekens, E. Jacobs, and C. M. Jonker, “A reinforcement
learning model of joy, distress, hope and fear,” Connection
Science, vol. 27, no. 3, pp. 215–233, 2015.

[57] P. Sequeira, F. S. Melo, and A. Paiva, “Emergence of emotional
appraisal signals in reinforcement learning agents,” Auton-
omous Agents and Multi-Agent Systems, vol. 29, no. 4,
pp. 537–568, 2015.

[58] C. Yu, M. Zhang, F. Ren, and G. Tan, “Emotional m rein-
forcement learning in spatial social dilemmas,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 26,
no. 12, pp. 3083–3096, 2015.

[59] K. Huang, Y. Liu, Y. Zhang, C. Yang, and Z. Wang, “Un-
derstanding cooperative behavior of agents with heteroge-
neous perceptions in dynamic networks,” Physica A:
Statistical Mechanics and Its Applications, vol. 509, pp. 234–
240, 2018.

[60] S. Watanabe and Y. Kanazawa, “A test of a personality-based
view of intrinsic motivation,” Japanese Journal of Adminis-
trative Science, vol. 22, no. 2, pp. 117–130, 2009.

[61] S. I. Di Domenico and R. M. Ryan, “+e emerging neuro-
science of intrinsic motivation: a new Frontier in self-de-
termination research,” Frontiers in Human Neuroscience,
vol. 11, p. 145, 2017.

[62] C. L. Hull, Principles of Behavior, Vol. 422, Appleton-Century-
Crofts, , New York, 1943.

[63] W. U. Khan, F. Jameel, N. Kumar, R. Jantti, and M. Guizani,
“Backscatter-Enabled efficient V2X communication with
non-orthogonal multiple access,” IEEE Transactions on Ve-
hicular Technology, vol. 70, no. 2, pp. 1724–1735, 2021, Feb.
2021.

[64] A. U. Rehman, R. A. Naqvi, A. Rehman, A. Paul, M. T. Sadiq,
and D. Hussain, “A trustworthy SIoT aware mechanism as an
enabler for citizen services in smart cities,” Electronics, vol. 9,
no. 6, p. 918, 2020.

[65] R. R. McCrae and O. P. John, “An introduction to the five-
factor model and its applications,” Journal of Personality,
vol. 60, no. 2, pp. 175–215, 1992.

[66] N. Sohail, J. Arshad, M. Zeeshan et al., “An empirical study on
diabetes depression over distress evaluation using diagnosis
statistical manual and chi-square method,” International
Journal of Environmental Research and Public Health
(IJERPH), vol. 18, no. 7, p. 3755, 2021.

[67] B. W. Haas, A. Ishak, L. Denison, I. Anderson, and
M. M. Filkowski, “Agreeableness and brain activity during
emotion attribution decisions,” Journal of Research in Per-
sonality, vol. 57, pp. 26–31, 2015.

[68] T. Nguyen, “Hacking into your happy chemicals: dopamine,
serotonin, endorphins and oxytocin,” Huffingt. Post, vol. 156,
2014.

14 Journal of Healthcare Engineering

https://repository.upenn.edu/hms/84
https://repository.upenn.edu/hms/84


[69] S. Sinek, Leaders Eat Last: Why Some Teams Pull Together and
Others Don’t, Penguin, London, UK, 2014.

[70] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau, “An introduction to deep reinforcement
learning,” Found. Trends®in Mach. Learn.vol. 11, no. 3-4,
pp. 219–354, 2018.

[71] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, +e MIT Press, Cambridge, MA, USA, 2011.

[72] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[73] R. Myerson, Game Feory: Analysis of Conflict, Harvard Univ
Press, Cambridge, MA, USA, 1991.

Journal of Healthcare Engineering 15


