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,e aim of the current work is to perform the numerical investigation of the infectious disease based on the nonlinear fractional
order prey-predator model using the Levenberg–Marquardt backpropagation (LMB) based on the artificial neuron networks
(ANNs), i.e., LMBNNs. ,e fractional prey-predator model is classified into three categories, the densities of the susceptible,
infected prey, and predator populations. ,e statistics proportions for solving three different variations of the infectious disease
based on the fractional prey-predator model are designated for training 80% and 10% for both validation and testing. ,e
numerical actions are performed using the LMBNNs to solve the infectious disease based on the fractional prey-predator model,
and comparison is performed using the database Adams–Bashforth–Moulton approach. ,e infectious disease based on the
fractional prey-predator model is solved using the LMBNNs to reduce the mean square error (M.S.E). In order to validate the
exactness, capability, consistency, and competence of the proposed LMBNNs, the numerical procedures using the correlation,
M.S.E, regression, and error histograms are drawn.

1. Introduction

Infectious diseases occur when some viruses, fungi, germs,
and parasites enter into the human body. ,ese forms are
diffused through infection from one to another human,
contaminated food, animals, or contact to any of the eco-
logical factors that are polluted with any type of these bodies.
Every infection-based disease has its own symptoms, types,
and severity. A few common symptoms of these infections in
the body include pain, flu, cough, and fever [1, 2]. Some of
the infections have minor symptoms that do not need any
cure or treatment. Alternatively, there are various serious
deathly cases that may disturb the population equilibrium of
numerous classes in the atmosphere. For the last few years,
mathematical systems are used to predict the species evo-
lution. It initiated from the Lotka and Volterra systems
[3, 4], where their expediency in evading several worst

situations for many species as death was evidenced. Cur-
rently, researchers apply this tool to reveal the consequence
of a certain policy used by some of the governments to
handle few species that can be measured as a significant
device to preserve each kind.

,e ecological systems are more complex for any type of
infection, which can affect the growth of few classes, as a
personification. In this study, a predator-prey collaboration
is considered. ,is contagion may distress the predator
strength and the hunting competence that takes few of the
predators in the position of death. In the previous studies,
numerous investigations have examined the predator-prey
interactions in the occurrence of transmittable viruses; see,
for instance, [5, 6] where predator-prey models are treated
with an analytical approach, while in [7–9], these models
have a numerical analysis. As an alternative, there are
various approaches, which reflect the predators to
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accomplish an effective hunt. ,e hunting collaboration is
one of the operating policies of the predator, where nu-
merous predators work to hunt some prey. ,is scheme is
valuable to reduce the rate of hunting, and a number of
hunters behave in this technique. ,e high rate of efficiency
is seen in hunting lions, wild dogs, and hyenas. ,e
mathematical system of this precise predator behavior was
modeled and presented for the first time in [10], in which a
simple model was applied to describe a cooperation. So far,
there have been a few studies of the predator-prey inter-
action behavior presented in these references: in [11], the
hunting effect is considered, in [12], the cooperation effect is
considered, in [13], hunting and cooperation effects are
considerd at the same time, and finally, in [14], hunting and
cooperation effects are considered jointly with the Alle effect.

,erefore, it has investigated the effects of a transmittable
virus in the predator-prey communication along with the
occurrence of the collaboration of predator hunting.

A three-species system is considered an infection in a
prey population, which is categorized into two classes, the
infected and susceptible prey. It is found that the derivative
forms of time fractional have widespread applications to
describe various forms of actual conditions that are rec-
ognized by the memory outcomes of a dynamical form. ,e
memory rate is known as the derivative order, and the
function of memory is called the fractional-order derivative.
,e time-fractional derivative is implemented to model the
phenomena of various real-world problems [15, 16]. ,e
nonlinear fractional-order prey-predator model has three
classes, mathematically written as follows [17]:

D
α
S(τ) � r(I(τ) + S(τ)) − (aP(τ) + λ)P(τ)S(τ) − δS(τ)I(τ) − μS(τ), S(0) � k1,

D
α
I(τ) � δI(τ)S(τ) − (aP(τ) + λ)P(τ)I(τ) − μI(τ), I(0) � k2,

D
α
P(τ) � e(aP(τ) + λ)P(τ)(I(τ) + S(τ)) − mP(τ), P(0) � k3,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where S(τ) and I(τ) are the densities of the susceptible and
infected prey, while P(τ) shows the densities of predator
populations. ,e term e signifies the rate of conversion of
prey into predator biomass (susceptible or infected). ,e
parameter r represents the prey population’s reproduction
number, and it is supposed that this infection does not
convey vertically. It can also be defined as mother-child,
where the predator is not diseased by this virus after a direct
interaction with the diseased prey. ,e rate of transmission
of the prey population, i.e., infection rate, is represented by δ.
,e functional form (aP(τ) + λ)P(τ)S(τ) and
(aP(τ) + λ)P(τ)I(τ) are the hunting cooperation values
[10]. ,e death rate of the population of the prey is μ, which
represents the natural mortality rate of the predator’s
population. ,e initial conditions are k1, k2, and k3,
respectively.

,e aim of the current work is to perform the numerical
investigation of the infectious disease based on the fractional
prey-predator model using the Levenberg–Marquardt
backpropagation (LMB) based on the artificial neuron
networks (ANNs), i.e., LMBNNs. ,e LMBNNs are applied
on three different variants of authentication, testing,
training, and sample information. ,e statistics proportions
for solving three different variations of the infectious disease
based on the fractional prey-predator model are designated
for training 80% and 10% for both validation and testing.
,e numerical results are performed using the LMBNNs to
solve the infectious disease based on the fractional prey-
predator model, and comparison is performed using the
database Adams–Bashforth–Moulton approach. Recently,
the stochastic computing solvers are applied based on the
heuristic and swarming techniques in frequently reported
articles of utmost significance [18–21]. However, the in-
fectious disease spread systems governed with the fractional
prey-predator model have never implemented to study its

solution dynamics by using the competency of LMBNNs’
computing paradigm. A few novel features and contribution
of the current investigations are provided in brief as follows:

(i) ,e design of stochastic computing solvers
LMBNNs is presented for the first time to solve the
infectious disease spread systems governed with the
fractional prey-predator model

(ii) ,e designed procedures of LMBNNs have been
implemented effectively to study the behavior of
different scenarios of the fractional prey-predator
model, and comparative studies are found in decent
resemblance with the state-of-the-art
Adams–Bashforth–Moulton numerical approach
for solving fractional differential equations

(iii) ,e convergence performances on iterative updated
of MSE, negligible absolute error (AE) from stan-
dard outcomes, correlation/regression index, and
error histograms (EHs) further authenticate the
efficacy of the designed LMBNN computing plat-
form for fractional prey-predator models

,e paper is organized as follows: Section 2 shows the
methodology based on LMBNNs. Section 3 presents the
numerical outcomes through LMBNNs to solve the frac-
tional-order nonlinear prey-predator model. ,e final
comments are reported in Section 4.

2. Methodology: LMBNNs

In this section, the proposed methodology of LMBNNs is
presented for the infectious disease based on the fractional-
order nonlinear prey-predator system. ,e methodology is
categorized in two steps. ,e necessary trials of the sto-
chastic-based LMBNNs are provided, and the execution
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Figure 1: Workflow illustration of the designed LMBNNs to solve the infectious disease based on the nonlinear fractional prey-predator
model.
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process of the stochastic computing scheme is given to solve
the infectious disease based on the nonlinear fractional-
order prey-predator model.

A suitable optimization procedure-based proposed
LMBNN is plotted in Figure 1 together with the outcomes
and analysis of the results, while for a single neuron, the
designed procedure is given in Figure 2. ,e stochastic
computing-based procedures are executed using the “nftool”
(MATLAB build-in command in the neural networks
toolbox). ,e dataset for the fractional-order nonlinear
prey-predator system is designated for training 80% and 10%
for both validation and testing in LMBNN operations.

3. Numerical Procedures of the Fractional-
Order Nonlinear Prey-Predator System

,e current section shows the numerical procedures of the
infectious disease based on the fractional-order nonlinear
prey-predator system by applying the proposed computing
stochastic LMBNNs. ,e literature parameter forms to solve
the infectious disease based on the nonlinear fractional-
order prey-predator model are r � 1.5, λ � 0.5, a � 0.5,
δ � 0.5, μ � 0.5, e � 0.5, m � 0.5, k1 � 0.2, k2 � 0.7, and
k3 � 0.6. ,ree cases using the variations of fractional-order
derivative, i.e., α � 0.5, 0.7, and 0.9, are provided to solve the
infectious disease based on the fractional-order nonlinear
prey-predator system. ,e inclusive results have been per-
formed for each category of the fractional-order nonlinear
prey-predator system which are in between [0, 1] with 0.01
step size. Ten numbers of neurons throughout this nu-
merical study have been taken, and the data are designated
for training 80% and 10% for both validation and testing.
,e achieved numerical values using the LMBNNs to solve
the infectious disease based on the fractional-order non-
linear prey-predator system are drawn in Figure 3. ,e
representations based on the LMBNNs to solve the infec-
tious disease based on the fractional prey-predator system
are given in Figures 4–8. ,e M.S.E measures and state
transitions (STs) to solve the infectious disease based on the

fractional prey-predator model are plotted in Figure 4. ,e
M.S.E based on the training, states of best curves, authen-
tication, and testing is drawn in Figures 4(a)–4(c)), whereas
the best ST values to solve the fractional prey-predator
model are derived in Figures 4(d)–4(f )) at epochs 325, 387,
and 127, respectively. ,e obtained performances exist
around 1.3399×10− 10, 1.4672×10− 10, and 5.2351× 10− 10,
respectively. ,e gradient performances of the LMBNNs to
solve the infectious disease based on the fractional prey-
predator model are found around 8.0331× 10− 06,
9.9161× 10− 08, and 9.8524×10− 08, respectively. ,ese cal-
culated performances plotted in the figures show the ac-
curacy, convergence, and precision of the proposed
stochastic procedures of the LMBNNs to solve the infectious
disease based on the fractional prey-predator model. ,e
plots of the fitting curves to solve the fractional prey-
predator model are given in Figures 5(a)–5(c)), which show
the comparative analysis of the obtained outcomes through
LMBNNs. Figure 5(d)–5(f )) show the values of the EHs that
exists around 6.63×10− 07, 8.31× 10− 06, and 3.19×10− 05 for
the 1st, 2nd, and 3rd case, respectively. ,e values of the
regression are drawn in Figures 6–8 to solve the infectious
disease based on the fractional prey-predator model. ,ese
illustrations of the correlations indicate regression sound-
ings found around 1 that authenticates the perfect model.
,e testing, verification, and training plots designate the
exactness of the LMBNNs to solve the infectious disease
based on the fractional prey-predator model. In addition, the
convergence performances through M.S.E based on the
epochs, training, complexity, testing, backpropagation
performances, and verification are provided in Table 1 to
solve the infectious disease based on the nonlinear fractional
prey-predator model.

,e comparative performances and the AE values are
illustrated in Figures 9 and 10 for the fractional prey-
predator model. ,e outcomes for each category of the
fractional prey-predator system presented using the sto-
chastic LMBNNs are given in Figures 9(a)–9(c)). ,e
matching of the obtained and reference solutions for each
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category of the infectious disease is perceived based on the
fractional-order nonlinear prey-predator model. ,ese
outcomes matching represent the accurateness of the sto-
chastic LMBNNs for each category of the infectious disease
based on the fractional order nonlinear prey-predator sys-
tem, ,e AE measures for each category of the infectious
disease based on the fractional-order nonlinear prey-

predator system are plotted in Figures 10(a)–10(c)). ,e AE
for S(τ) based on the fractional-order nonlinear prey-
predator system is calculated around 10− 04 to 10− 06 for case 1
and 3, while the AE is calculated 10− 05 to 10− 06 for case 3.,e
AE for I(τ) based on the fractional-order nonlinear prey-
predator model is calculated around 10− 04 to 10− 07 for case 1,
10− 05 to 10− 09 for case 2, and 10− 05 to 10− 07 for case 3.,e AE
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Figure 8: Regression measures of the fractional-order nonlinear prey-predator model of case 3.

Table 1: Statistical measures to solve the infectious disease based on the nonlinear fractional prey-predator model.

Case
M.S.E for samples in

Performance Gradient Mu Epoch Time
Training Validation Testing

1 3.21× 10− 09 1.33×10− 10 2.29×10− 09 2.63×10− 09 8.03×10− 06 1.00×10− 10 325 5
2 2.43×10− 10 1.46×10− 10 5.44×10− 10 2.43×10− 10 9.92×10− 08 1.00×10− 10 387 5
3 4.63×10− 10 5.23×10− 10 2.19×10− 08 4.63×10− 10 9.85×10− 08 1.00×10− 09 127 2
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Figure 9: Comparison illustrations to solve the infectious disease based on the nonlinear fractional prey-predator model. (a) Results for
S(τ). (b) Results for I(τ). (c) Results for P(τ).
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Figure 10: Continued.
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for P(τ) based on the fractional-order nonlinear prey-
predator model is calculated around 10− 05 to 10− 08 for case
each case of the nonlinear system.

4. Conclusions

In these investigations, the solutions of an infectious virus
based on the nonlinear fractional prey-predator system are
numerically presented by using the stochastic procedures
based on the Levenberg–Marquardt backpropagation along
with artificial neural networks. ,ese stochastic-based
procedures LMBNNs are provided to solve three cases by
taking different values of the fractional order. ,e numerical
solutions have been performed using the sample data,
testing, training, and authentication.,e data proportions to
solve the nonlinear fractional prey-predator model are
designated for training 80% and 10% for both validation and
testing. ,e numerical results of the infectious disease based
on the nonlinear fractional prey-predator model are
achieved using the LMBNNs, and comparison is performed
using the database Adams–Bashforth–Moulton approach.
,e solutions of the fractional-order nonlinear model are
obtained through the LMBNNs in order to reduce theM.S.E.
To indorse the exactness, capability, dependability, and
competence of the proposed LMBNNs, the numerical
procedures are provided using the M.S.E, correlation, EHS,
and regression. ,e matching of the results designates the
precision of the designed scheme, and the values of the AE in
good ranges for each case of the infectious disease based on
the nonlinear fractional prey-predator model show the ef-
fectiveness of the scheme.

In future, the procedures based on the LMBNNs are
applied to get the outcomes of the fractional-order systems
and Lonngren-wave systems [22–26]. Additionally, one may
exploit the Bayesian regularization method-based neural
networks for solving different scenarios of the fractional

prey-predator model for better outcomes in terms of ac-
curacy and efficiency.
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