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Age-related macular degeneration (AMD) is a chronic and progressive macular degeneration disease, which can also lead to
serious visual loss. In our research, we aim to efficiently identify biomarkers relevant for AMD diagnosis. We collected the gene
expression data of retinal segmented epithelium (RPE) and retina tissues of GSE29801 and GSE135092 and performed differential
expression analysis. +e differentially expressed genes (DEGs) related to the RPE and retina in the two sets of data were identified
and enriched by intersection analysis. A PPI network was constructed for intersection genes, and the top 20 genes with the largest
connectivity in the network were selected as candidate genes. +e LASSO model was used to identify key genes from candidate
genes, and the nomogram and ROC curve were used to evaluate the diagnostic ability of key genes. We identified 464 intersection
genes associated with RPE and 509 intersection genes associated with retina. +e TGF-beta signaling pathway was enriched by
RPE-related DEGs, while oxidative phosphorylation was enriched by retina-related DEGs. Among the candidate genes of RPE, the
LASSOmodel identified 7 key genes. MAPK1 and LUM can predict the clinical diagnosis of AMD. Among the candidate genes of
retina, the LASSOmodel identified four key genes. PTPN11 has the highest predictive diagnostic value.+e results suggest that the
imbalance mechanism of RPE in AMD may be related to the TGF-beta signaling pathway, and the imbalance mechanism of the
retina may be related to oxidative phosphorylation. MAPK1 and LUM are potential diagnostic markers of RPE, and PTPN11 is a
potential diagnostic marker of the retina. Also, our results provide a theoretical basis for better understanding the molecular
mechanisms of AMD onset and treatment in the future.

1. Introduction

Age-related macular degeneration (AMD) is a chronic and
progressive macular degenerative disease. Its pathogenesis is
mainly caused by the retention of disk membranes due to the
reduced phagocytic ability of the retinal pigment epithelium
[1]. It has been reported that AMD is the third most blinding
eye disease worldwide, and its incidence is second only to
cataract and refractive error [2–4]. According to the global
burden of disease study, the number of people with AMD
will increase substantially in the next decades as the global
population ages [5]. Experts have predicted that there will be
approximately 196 million patients with AMD worldwide in
2020, and by the end of 2040, the number of global patients

with ADM will increase to 288 million [6, 7]. +erefore,
there is an urgent need for relevant clinical markers to assist
clinicians to make an accurate early diagnosis of AMD and
predict clinical outcomes without individualized medical
treatment provision.

Fundus color illumination, optical coherence tomogra-
phy, vascular imaging with optical coherence tomography,
and fundus angiography are commonly used in the clinic to
identify and predict early, intermediate, and late AMD
progression, as well as to predict AMD recurrence and
prognosis. But, until now, there is still no consensus to
systematically identify and predict AMD biomarkers, so for
the research of AMD, further exploration is needed. +e
onset of AMD has a certain complexity and is triggered by a
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combination of genetic and environmental factors [8, 9].+e
study of AMD prediction from the genetic level may become
one of the important methods for AMD diagnosis and
treatment in the future.

+ere are currently many studies on the search for
biomarkers to assist in the early diagnosis of AMD patients.
Some studies propose that earlier relevant genetic testing of
populations is able to play an important role in AMD
prediction [10–13]. However, even though an increasing
number of AMD-related genes are currently being discov-
ered, the mechanism of their occurrence has failed to get a
clear explanation. Previous studies have also estimated risk
scores for AMD by building models based on different
factors [14, 15]. But, since the occurrence of AMD is a
complex process, many pathways including the complement
pathway, lipid metabolism, angiogenesis, and many related
genes may be involved [16–22]. +erefore, it is difficult to
establish a prediction model for AMD, and it still needs deep
research.

To efficiently identify biomarkers relevant for AMD
diagnosis, we proposed a systematic pipeline for identifying
relevant genes for AMD by collecting gene expression data
of the retinal pigment epithelium (RPE) and retina in
gse29801 and gse135092 and performing bioinformatics
analysis. +is method has high predictive value for early
clinical diagnosis of AMD and provides a theoretical basis
for better understanding themolecular mechanisms of AMD
onset and treatment in the future.

2. Materials and Methods

2.1. Methods. +e lesions of AMD show long-term pro-
gressive dynamic development, and according to the 2019
American Academy of ophthalmology clinical guidelines,
AMD is divided into no AMD, early AMD, intermediate
AMD, and advanced AMD [23]. Usually, early AMD pa-
tients are asymptomatic [24] and, thus, easily ignored, while
after that, AMD macular lesions can skip to progress into
map like atrophy or wet AMD, which leads to macular
atrophy and scarring and, finally, blindness. Although, in
recent years, the advent of antivascular endothelial growth
factor drugs, which have contributed to a delay in the de-
velopment of AMD, has not been able to solve the problem
fundamentally [25]. +erefore, the early screening of indi-
cators with predictive value using various methods and their
application in the initial screening, disease warning, and
clinical treatment guidance of AMD is beneficial for the early
diagnosis and precision treatment of AMD, which is of great
significance to prevent the occurrence of AMD and the
vision loss of patients.

Studies have shown that TGF-β mediated signaling
pathways play an important role in ocular diseases [26].
Radeke et al. [27] also found that targeted inhibition of
TGF-β signaling may be an effective way to delay the
progression and the production of large numbers of RPE
cells. In addition, we also found that oxidative phos-
phorylation (OXPHOS) was enriched by retina-associated
DEGs. +e retinal pigment epithelium is very active in
metabolism and consists of a large number of mitochondria

[28]. In the process of OXPHOS, the form of ATP and
reactive oxygen species was produced from these organelles
and considered cellular energy [29].

2.2. Data Processing. +e data used in this study were
downloaded from the Gene Expression Omnibus (GEO)
database. GSE29801 included gene expression profiles of
RPE and retina tissue samples from 31 controls and 26 AMD
patients. GSE135092 included gene expression profiles of
RPE and retina tissue samples from 99 controls and 23 AMD
patients. +e differential expression analysis between AMD
and controls for the RPE or retina in GSE29801 was per-
formed using limma package [30]. For GSE135092, the
differential expression analysis was performed using DESeq2
package [31]. Significantly differentially expressed genes
(DEGs) were screened with P< 0.05.

2.3. Enrichment Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of DEGs were carried out by the
clusterProfiler package [32]. Significantly enriched terms in
GO and KEGG pathways were screened by setting the
criterion of P< 0.05.

2.4. Protein-Protein Interaction (PPI) Network. +e PPI
network of DEGs was constructed based on the Search Tool for
the Retrieval of Interacting Genes (STRING) (http://string-db.
org/) database. +e top 20 genes with the most connectivity
were filtered out as candidate genes for subsequent analysis.+e
PPI network was visualized by Cytoscape software.

2.5. Logistic Regression Analysis. +e logistic regression
analysis was used to construct a forest plot for candidate
genes. +en, a binomial least absolute shrinkage and se-
lection operator regression (LASSO) model was built
based on candidate genes using the glmnet R package [33].
+e key genes were identified according to the optimal
lambda. A nomogram was used to display the results of the
logistic analysis including all key genes. +e R packages’
rms was used to construct the nomogram. +e receiver
operating characteristic (ROC) curve was plotted, and the
area under the ROC curve (AUC) was calculated with
“pROC” package [34].

3. Results

3.1. Differentially Expressed Genes in AMD. To identify ab-
errantly expressed genes in AMD patients, we performed
differential analysis between RPE, retina, and controls
separately. In GSE29801, we identified 2675 DEGs for the
RPE (Figure 1(a)) and 2415 DEGs for the retina
(Figure 1(b)). In GSE135092, we identified 4426 DEGs for
the RPE (Figure 1(c)) and 6900 DEGs for the retina
(Figure 1(d)). +rough intersection analysis, we identified
464 intersection genes and considered RPE-associated DEGs
(Figures 2(a) and 2(b)) and 509 intersection genes and
considered retina-associated DEGs (Figures 2(c) and 2(d)).
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3.2.BiologicalFunctionEnrichmentAnalysis. To identify the
molecular dysregulation mechanism of the RPE and
retina in AMD patients, we performed enrichment
analysis of intersection genes. For the biological pro-
cesses (BPs) in RPE, intersection genes were enriched in
negative regulation of cell differentiation, negative reg-
ulation of cell population proliferation, and regulation of
epithelial to mesenchymal transition (Figure 3(a)). +e
TGF-beta signaling pathway, Hippo signaling pathway,
and Wnt signaling pathway were found in KEGG path-
ways of RPE (Figure 3(b)). On the other hand, positive
regulation of the G protein-coupled receptor signaling

pathway, aerobic electron transport chain, and mito-
chondrial ATP synthesis coupled electron transport in
BPs were significantly enriched by intersection genes of
the retina (Figure 3(c)). KEGG signaling pathways in the
retina were mainly included oxidative phosphorylation,
pathways of neurodegeneration, and phagosome
(Figure 3(d)).

3.3. PPI Network Construction for the RPE and Retina. To
identify genes with significant influence in the RPE and
retina, we constructed a PPI network for the intersection
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Figure 1: Identification of DEGs in AMD. (a) Volcano plot of DEGs between AMD and controls in RPE of GSE29801. (b) Volcano plot of
DEGs between AMD and controls in the retina of GSE29801. (c) Volcano plot of DEGs between AMD and controls in the RPE of
GSE135092. (d) Volcano plot of DEGs between AMD and controls in retina of GSE135092. Red represents upregulation, and blue represents
downregulation.
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genes separately. By identifying the degree of connectivity
among the genes in the network, we obtained the top 20
genes with the largest degree of connectivity as candidate
genes. Finally, we identified PPARG, MAPK1, WNT2,
THBS2, LUM, BMP7, DKK1, FMOD, CHEK2, NCAN,
SREBF1, SCD, SFRP1, GATA2, CEBPA, PTPRZ1,
ADAMTS4, COL5A2, TGFB2, and SNAI1 in RPE
(Figure 4(a)). HSP90AA1, RPL4, MRPS7, HSPE1, CCT7,
RPL23A, CCT4, NDUFAB1, MRPL4, MRPS15, RPL15,
PA2G4, SOD1, TLR4, RPL29, CYC1, MRPL2, CARS,
PTPN11, and MRPS12 were identified in the retina
(Figure 4(b)). +e results of logistic regression analysis
showed that candidate genes may serve as protective or risk
factors contributing to AMD in the RPE (Figure 4(c)) and
retina (Figure 4(d)).

3.4. Identification of Key Genes for the RPE and Retina.
Furthermore, we performed LASSO regression analysis
for candidate genes in RPE and retina, respectively. +e
number of independent coefficients gradually decreases
with increasing lambda (Figure 5(a)). +erefore, we se-
lected the model with the best lambda of 0.01933388 as
the final model, containing a total of 7 signatures
(SREBF1, MAPK1, SFRP1, WNT2, PTPRZ1, LUM, and
THBS2) in the RPE (Figure 5(b)). For the retina, we
selected the model with the best lambda of 0.02094517 as

the final model, which contained a total of 4 signatures
(HSP90AA1, HSPE1, SOD1, and PTPN11) in the retina
(Figures 5(c) and 5(d)). +ese signatures were then
considered as key genes of the RPE or retina.

To further evaluate the diagnostic role of the key genes, a
nomogram was constructed using logistic repression anal-
ysis. Of which, RPE, MAPK1, and LUM contributed the
most to the risk of AMD (Figure 6(a)). PTPN11 contributed
the most to the risk of the retina in AMD (Figure 6(b)). +e
AUC values of MAPK1 and LUM were 0.675 and 0.787
(Figure 6(c)), and the AUC value of PTPN11 was 0.684
(Figure 6(d)). +ese data suggested that key genes may
predict AMD diagnosis, especially MAPK1 and LUM for
RPE and PTPN11 for the retina.

4. Discussion

We collected and analyzed gene expression data from RPE and
retina tissues, leading to the identification of aberrantly
expressed genes in AMD patients. +e analysis results sug-
gested that the TGF-β signaling pathway was enriched by RPE-
associated DEGs. TGF-β is synthesized and secreted in various
tissues of the posterior segment of the eye, such as the cornea,
iris, lens epithelial cells, trabecular meshwork cells, ciliary body
epithelial cells, and retinal pigment epithelial cells, and it plays
important roles in cell growth and differentiation [35]. Reactive
oxygen species may damage mitochondrial DNA, and then,
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Figure 2: Intersection analysis of DEGs. (a) Intersection of DEGs in RPE of GSE29801 and GSE135092. (b) Expression heatmap of
intersection genes in RPE. Red represents upregulation, and blue represents downregulation in AMD. (c) Intersection of DEGs in the retina
of GSE29801 and GSE135092. (d) Expression heatmap of intersection genes in the retina. Red is upregulated, and blue is downregulated in
AMD. AMD, age-related macular degeneration.
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damaged mitochondrial DNA leads to mitochondrial dys-
function and increased ROS production, which initiates a
vicious cycle [36]. +e retinal pigment epithelium is particu-
larly vulnerable tomitochondrial dysfunction and ROS damage
and does not regenerate [37, 38]. +e high prevalence of AMD
in the elderly may be related to this.

Among the candidate genes of RPE, MAPK1 and LUM
were predictive for the clinical diagnosis of AMD, and their
AUC values reached 0.675 and 0.787. Mitogen-activated

protein kinase 1 (MAPK1) is an important protein in MAPK
signaling, which acts as a negative regulator of MAPK
signaling and regulates cell proliferation and growth [39].
Kyosseva [40], through investigation studies, considered an
association betweenMAPK signal transduction and AMD in
humans and animals and suggested that the use of specific
MAPK inhibitors may be a potential treatment for AMD. In
contrast, the lumican (LUM) gene has been studied by
Chinese scholars in the field of high myopia or pathological
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Figure 3: Enrichment analysis of intersection genes in the RPE and retina. (a) +e main GO terms enriched by intersection genes of RPE.
(b) +e main KEGG pathways enriched by intersection genes of RPE. (c) +e main GO terms enriched by intersection genes of the retina.
(d) +e main KEGG pathways enriched by intersection genes of the retina.
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Figure 4: Identification and evaluation of candidate genes in the RPE and retina. (a) +e top 20 genes with most connectivity in the PPI
network of the RPE. (b)+e top 20 genes withmost connectivity in the PPI network of the retina. (c)+e forest plot of candidate genes of the
RPE. (d) +e forest plot of candidate genes of the retina.
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Figure 5: Identification of key diagnostic genes for AMD. (a) LASSO coefficient profiles of candidate genes in the RPE. (b) Selection of
optimal parameter (λ) in the LASSO model of the RPE. (c) LASSO coefficient profiles of candidate genes in the retina. (d) Selection of
optimal parameter (λ) in the LASSO model of the retina.
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myopia [41–43] and is an important factor in maintaining
the biomechanical properties of the sclera [44]. Among the
retina’s candidate genes, protein tyrosine phosphatase non-
receptor type 11 (PTPN11) had the highest diagnostic
predictive value, reaching an AUC value of 0.684. +e
PTPN11 gene is a mutation-prone gene with a large number
of mutations and genetic variations associated with human
diseases. Reports on PTPN11 have focused on the devel-
opment and prognosis of diseases such as promyelocytic
leukemia [45, 46], myelodysplastic syndrome in children
[46], ulcerative colitis [47], and gastric cancer [48]. At
present, we have not retrieved any conclusion from the study
that PTPN11 and LUM have a significant association with
AMD, so they may be new markers for AMD. Although
investigation studies investigating the association between
AMD are currently missing for the abovementioned genes,
MAPK1 and LUM, in addition to PTPN11, all play a role in
different ocular diseases.

5. Conclusions

In conclusion, our study efficiently identified biomarkers
relevant for AMD diagnosis. Furthermore, we proposed a
systematic pipeline for identifying relevant genes for AMD
and performed bioinformatics analysis. Our finding has high
predictive value for early clinical diagnosis of AMD in the
future. However, there are still some shortcomings in our
research. +is study did not carry out specific investigation
for the population and did not consider the influence of
environmental factors in the occurrence and development of
AMD, and the expression of key genes in AMD was not
experimentally verified, but the findings also provide a new
idea for future clinical AMD early diagnosis and prevention
research. To clarify the association between the above-
mentioned genes and AMD, follow-up can be clarified
through population-based epidemiological and gene level
investigations.
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