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Kidney tumor (KT) is one of the diseases that have afected our society and is the seventh most common tumor in both men and
women worldwide. Te early detection of KT has signifcant benefts in reducing death rates, producing preventive measures that
reduce efects, and overcoming the tumor. Compared to the tedious and time-consuming traditional diagnosis, automatic
detection algorithms of deep learning (DL) can save diagnosis time, improve test accuracy, reduce costs, and reduce the ra-
diologist’s workload. In this paper, we present detectionmodels for diagnosing the presence of KTs in computed tomography (CT)
scans. Toward detecting and classifying KT, we proposed 2D-CNNmodels; three models are concerning KTdetection such as a 2D
convolutional neural network with six layers (CNN-6), a ResNet50 with 50 layers, and a VGG16 with 16 layers. Te last model is
for KT classifcation as a 2D convolutional neural network with four layers (CNN-4). In addition, a novel dataset from the King
Abdullah University Hospital (KAUH) has been collected that consists of 8,400 images of 120 adult patients who have performed
CT scans for suspected kidney masses. Te dataset was divided into 80% for the training set and 20% for the testing set. Te
accuracy results for the detection models of 2D CNN-6 and ResNet50 reached 97%, 96%, and 60%, respectively. At the same time,
the accuracy results for the classifcation model of the 2D CNN-4 reached 92%. Our novel models achieved promising results; they
enhance the diagnosis of patient conditions with high accuracy, reducing radiologist’s workload and providing them with a tool
that can automatically assess the condition of the kidneys, reducing the risk of misdiagnosis. Furthermore, increasing the quality
of healthcare service and early detection can change the disease’s track and preserve the patient’s life.
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1. Introduction

Te kidneys in the human body cleanse waste products and
pollutants from the blood [1, 2]. Te abnormal growth of
cells causes tumors (cancers), afects people diferently, and
causes diferent symptoms.

Terefore, the early detection of kidney tumors (KT) is
an essential step to reduce the risk of further disease
progression. Consequently, this leads to the patient’s life
preservation [2, 3]. Although around a third of KT cases
are discovered after being spread to other areas, most
conditions do not induce symptoms. Tey are often found
when the patients are being treated for other diseases.
Kidney tumors can be observed accidentally on radiog-
raphy and may appear as masses, kidney cysts, or ab-
dominal pain in patients. Te signs likely have nothing to
do with the kidneys [4, 5]. However, low hemoglobin,
weakness, vomiting, stomach pain, blood pee, or high
blood sugar are among the most subtle symptoms or
infections KT causes. Also, anemia occurs in about 30
percent of patients with KT [6, 7]. Unfortunately, tumors
and solid masses that can arise inside the kidneys are often
cancerous. Te value of determining the presence of the
tumor is to choose the appropriate method for treatment;
hence, the rate of recovery from the disease may depend
on the early detection of the tumor. One of the necessary
tests to determine the tumor is computed tomography
(CT) scans of the abdomen and pelvis to the patients,
which have characteristics studied to judge whether the
kidney has a tumor. Figure 1 shows a case of KT, a renal
mass lesion in the left kidney measuring about 4 cm be-
sides 3D volume rendering of the kidneys (kidney in pink
and renal cancer in blue). A tumor threatens a person’s
life, so many procedures resolve this obstacle through
accurate tumor diagnosis [8, 9].

Deep learning (DL) is one of the most powerful machine
learning technologies that can automatically learn multiple
features and patterns without human intervention [10–12].
DL enabled the building of predictive models for the early
diagnosis of tumor disease, and scientists used proven
pattern analysis methods. DL algorithms outperformed
traditional machine learning due to their highly accurate
results [13–15]. Also, it often matches or surpasses human
performance. Tat is why they are recommended as the best
method for dealing with images [16, 17]. It has gained at-
tention in image processing, especially in the medical feld,
because radiology is primarily concerned with extracting
useful information from images.

Object detection is the method of identifying the class
instance to which the object belongs. Tere are several types of
detection, such as single-class object detection and multiclass
object detection [18]. Object detection has been applied in a
wide feld of medical images because of its precise efect on
discovering diseases of all kinds. Te convolutional neural
network (CNN) is widely used to extract image characteristics
and detect diferent objects. It is a neural network that operates
on the principle of weight sharing. Te convolution is an
integral part of a function that explains how one function

interferes with another.Te size and the number of images, the
number of working layers, and the form of activation functions
used in CNNs vary [19]. Variables of CNNs are selected ex-
perimentally and on a trial-and-error basis. Besides, every
CNN consists of several layers, themost important of which are
the convolutional and subsampling (pooling) layers [20].
Figure 2 shows an illustration of CNN architecture.

Over the years, many variants of CNN structures were
developed to solve difcult real-world problems and
obtain sufcient accuracy. In our study, we have applied
VGG16 and ResNet50, besides two modifed CNNs.
Qassim et al. developed a CNN-based network model,
VGG16, that achieved 92.7% top-5 test accuracy in
ImageNet. ImageNet-2014 is a competition with ap-
proximately 15 million high-resolution images that have
been classifed into roughly 22,000 categories. Te VGG16
network consists of 16 layers that have weights, 13 con-
volutions (cov) and 3 fully connected (FC) layers besides
its learning time of 16.55ms. Te image entered into the
cov1 layer has a fxed size, which is 224 × 224. Te image is
scrolled through a set of layers, where flters 3 × 3 were
used and also 1 × 1 convolution flters. Te convolution
step is fxed at 1 pixel so that accuracy is maintained after
torsion. Max-pooling is performed via a 2 × 2-pixel win-
dow. Also, three fully connected (FC) layers follow a stack
of convolutional layers. Te fnal layer is the softmax layer.
Te composition of fully connected layers is the same in all
networks. All hidden layers are equipped with a calendar
ReLU [21]. Figure 3 shows the architecture of the VGG16
model. In addition, the ResNet50s is an improved version
of convolutional neural network developed in 2015. Tis
network consists of 50 layers, 49 convolutions and one
fully connected layer. Each convolution block has three
convolution layers besides its learning rate of 12.83ms.
Te image entered into the cov1 layer has a fxed size,
which is 224 × 224 [22]. Figure 4 shows the architecture of
the ResNet50 model.

Moreover, this paper has collected a novel dataset, renal
CT scans, consisting of 8,400 frames. As a preliminary study
on the new dataset, a convolutional neural network (CNN)
framework with six layers has been proposed to diagnose
tumors. Ten, a CNN framework with four layers has been
proposed for classifying the tumor type. We have confned
CNN’s training process and directed the CNNs to generate
anatomically more viable predictions, mainly when the input
picture data are not clear enough (e.g., missing object edges
and boundaries). In addition to our proposed model’s ar-
chitecture, we have used state-of-the-art networks in the
study, which are the ResNet50 with 50 layers and VGG16
with 16 layers [21]. Finally, we evaluate and test our model
on the new renal CT for 2020 and 2021.

Te remainder of this paper is organized as follows.
Section 2 presents the related work to detecting CT images.
Section 3 describes the materials, including data set collection
and description. Section 4 describes the methods, including
data preprocessing, augmentation, and network architectures.
Also, Section 5 shows the experiments and results. Lastly,
Section 6 presents the discussion and conclusions.
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Figure 2: Architecture of a traditional CNN.
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Figure 3: VGG16 architecture.

Figure 1: Sample renal CT taken from the dataset.
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2. Related Studies

Tis section begins with a discussion of works of literature,
each of which addresses the issue of early KT detection and
classifcation using various machine learning and deep
learning techniques based on CT scans.

Ghalib et al. [23] conducted a study for renal tumor
detection using deep learning approaches on CT scans. Te
authors developed an efcient algorithm to detect and
further analyze renal cancer tumors using CT for patients.
Te preprocessing technique involved identifying the
noises of a CT scan and removing them with a proper
fltering technique. Image enhancement is also performed
using contrast-limited adaptive histogram. Te classifca-
tion process is determined based on the patterns of visual
appearance that include contrast, size, location, surface
area, color, volume, risk, specialization, density, and risk.
Based on their experimental results, the proposed model
obtained high performance in classifying tumors into

normal and abnormal, achieving 0.85 sec of average exe-
cution time.

On the other hand, Liu et al. [24] conducted a study for
exophytic renal tumor detection through machine learning
techniques on CT scans. Tey used 167 CT scans and de-
veloped a framework for kidney segmentation on non-
contract CT images using efcient belief propagation. Based
on their experimental results, the proposed model obtained
high performance with 95% and 80% rates of sensitivity of
exophytic lesion and endophytic lesion detection,
respectively.

Furthermore, Mredhula and Dorairangaswamy [25]
conducted a study for KT detection and classifcation using
deep learning approaches and traditional machine learning
techniques on CT scans. Tey used 28 CT scans for diferent
categories of kidney tumors, where the used dataset was
acquired from their database. Tey focused on imple-
menting a semiautomatic segmentation method, defning
that the segmentation of the gray-level images provides
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Figure 4: ResNet50 architecture.
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information such as the anatomical structure and the
identifcation of the region of interest to locate tumors.
Besides, they proposed an associative neural network
(ASNN) model that combined the k-nearest neighbor
(KNN) technique with an ensemble feedforward neural
network.

Lately, Zhou et al. conducted a study about diferenti-
ating renal tumors based on deep learning [26]. To inves-
tigate the efect of transfer learning on CT, they used 192 CT
scans for patients to diferentiate between benign and ma-
lignant tumors and attempted to improve the accuracy by
building patient-level models. Te CNN architecture used
was cross-trained InceptionV3 to perform the classifcation
task. Five image-level models were established for each of the
slices. Te performance evaluation of the model was per-
formed using the receiver operating characteristic metric on
fve-fold cross-validation. Te results showed high accuracy
with a 97% rate. Te researchers concluded that deep
learning approaches are useful for renal tumor classifcation
based on CT scans and recommended benefting from 3D
CT scans to achieve more accurate results.

More recently, Zabihollahy et al. [27] conducted a study
about the detection of solid renal masses using deep
learning approaches on CT scans. Tey used semi-
automated majority voting 2D-CNN, fully automated 2D-
CNN, and 3D-CNN to classify RCC from benign solid renal
masses on contrast-enhanced computed tomography
(CECT) images. Tey used CT scans for 315 patients, in
which the dataset included 77 scans for patients with be-
nign solid renal masses and 238 scans for patients with
malignant renal masses. Tey generated slices of scans
manually and utilized the CNN model to extract features
from each slice. Ten, the classifcation was performed
using the aggregation of CNN predictions and evaluated by
the majority voting technique. Based on their experimental
results, the proposed model obtained high performance
with 83.75%, 89.05%, and 91.73% rates of accuracy, pre-
cision, and recall for the classifcation between RCC and
benign tumors, respectively.

Also, Schieda et al. [28] conducted a study about the
classifcation of solid renal masses using machine learning
techniques on CT scans. Tey have used CT scans for 177
patients with solid renal. Te features were extracted
through manual segmentation with radiologists from three
phases of scans: nephrographic phase contrast-enhanced,
corticomedullary, and non-contrast-enhanced. Te pro-
posed method utilized the XGBoost machine learning
technique. It was used to generate classifers and, simulta-
neously, to search for the collection(s) of texture features
that accurately discriminated between outcomes. Te pro-
posed model obtained high performance with 0.70 rates of
AUC in classifying renal cell carcinoma from benign tumors
and 0.77 rates of AUC in classifying clear cells of RCC from
the other types.

Finally, Yap et al. [29] conducted a study about the
classifcation of renal masses using machine learning tech-
nique CT scans. Tey used CT scans for 735 patients with
renal masses, in which the dataset included 196 scans of
benign masses and 539 scans of malignant cases. Tey

segmented scans manually by utilizing the 3D Synapse 3D
tool by cooperating with two expert radiologists, where the
features were extracted based on shape and texture matrices.
Te proposed methods used two machine learning tech-
niques, which are AdaBoost and Random Forest. Based on
their experimental results, Random forest obtained high
performance on both features with 0.68 to 0.75 rates of AUC
for the classifcation of renal masses.

3. Dataset

Tis section focuses on the data collection process and data
analysis.

3.1. Data Acquisition and Preparation. Tis work presents
new data consisting of images and text “ metadata” obtained
from KAUH hospital in Jordan. In this paper, we worked on
the image data. Te current study has collected scan data for
renal masses cases from the hospital’s database, performed
by the interventions computed tomography (CT) scan
service. Although the image set provides more than one
picture from diferent dimensions for each patient, the di-
versity of images helps us get an accurate diagnosis. Besides,
clinical text data support our fndings and help us under-
stand the collected images. From these miscellaneous data,
diferent studies can be conducted. Te collected dataset
consists of 8400 images of 120 adult patients who have
performed a CT scan for suspected kidney masses. Te
images are provided in (DICOM) format, considered the
most standard for the interchange and transmission of
medical images used worldwide. Te data collected included
a CT scan with contrast material and without contrast.
Figure 5 shows a sample CT with contrast and without
contrast taken from the dataset.

For comparing the current dataset with the available public
dataset, Table 1 summarizes the public datasets of renal CT
scans for diagnosing kidney tumors by showing their sizes and
sources. For example, the G037-RCP dataset exported by the
Royal College of Pathologists (RCPath) located in London
combines multihealth data, such as texture, images, tests, and
educational information. Te C4K-KiTs19 dataset is an ab-
breviation for Climb 4 Kidney Cancer collected from the
University of Minnesota Medical Centre [31]. Te TCGA
dataset is an abbreviation for the Cancer Genome Atlas, which
is a cancer program that has data samples spanning 33 cancer
types [37]. Besides, the CPTAC-CCRCC program investigated
110 tumors regarding the TCIA dataset. Te current study’s
dataset exceeds the other datasets regarding size, number of
patients, and diversity of images. It is considered the frst
collected data from Jordan’s King Abdullah University Hos-
pital (KAUH). Te CT scan images and metadata were col-
lected manually and supervised by a specialist team. Tere are
70 CT scans for each patient. It is strongly believed that this
dataset can be the basis for subsequent studies to diagnose
tumors and stones, cysts, and any kidney problems, such as
infation, infection, and hydronephrosis. Te proposed dataset
will be publicly available for researchers up to their request
(https://github.com/DaliaAlzubi/KidneyTumor).

Journal of Healthcare Engineering 5



3.2. Data Set Annotation and Visualization. Data were
collected for adult patients between the ages of 30± 80, 55
females, and 65 males, who underwent CT images of the
abdomen and pelvis. Of 120 patients, 60 tumors were
classifed as benign or malignant and 60 cases were diag-
nosed as normal cases without tumors. Still, half of the
normal cases sufer from cysts, hydronephrosis, and stones.
Also, some of them sufer from cancers in neighboring
organs such as the colon, liver, breast, lung, stomach, and
their condition for follow-up.

Terefore, they must perform a CT scan periodically to
ensure that cancer in other organs has not spread to the
kidneys. Besides, some cases are sufering from a ne-
phrectomy or part of it due to RCC, and their condition
must be monitored to ensure the safety of kidney function
and that the tumor does not spread. Table 2 and Figure 6
show an analysis of the gender situation for all cases in the
dataset.

Te clinical observations include ID, age, gender, date of
the scan, patient history, symptoms, diagnosis, type of right
kidney injury, type of left kidney injury, both kidney disease
segmentation, tumor stage, patients situation if they have a
tumor or it is a normal case completely healthy or normal
case with a cyst or stone. Also, they include the tumor type:
Benign or Malignant, the Subtypes of the tumor, and the
Test.

All patients had a CTmultidimensionally examined for
the pelvic and abdominal area that outlined various slices of
the renal, ureter, and bladder region. Tese metadata were
constructed and labeled manually based on the clinical
reports. Te data were reviewed by radiologists and the
medical staf of the kidneys and urinary tract. In cooperation
with them, the correctness of the data structure was checked

and validated. Te dataset contains (20) attributes and
numerical and categorical data that describe all dataset
characteristics, as shown in Table 3. In addition, the patient’s
data are divided into categories.

Te “Situation” attribute illustrates the patient condition
as three labels: Normal case “healthy” (1), Normal case with
cyst (2), and Tumor (3), as shown in Table 4.

Te “Tumor Type” attribute illustrates the tumor type as
two labels: Malignant (1) and Benign (2), as shown in
Table 5.

Te “Taking Contrast” attribute illustrates if the patient
has taken Contrast material as two labels: Yes (1) and No (2),
as shown in Table 6.

Te “Tumor Class” attribute illustrates the tumor class as
fve labels: Adenoma (1), Angiomyolipomas (2), Lipomas
(3), RCC (4), and Secondary (5), as shown in Table 7.

Te “Stage” attribute illustrates the grade of the tumor as
four labels: I (1), II (2), III (3), and IV (4), as shown in
Table 8.

Te “Segmentation Injury in Right Kidney” and “Seg-
mentation Injury in Left Kidney” attributes illustrate the
location of the tumor: upper, middle, lower, healthy, and
undefned, as shown in Table 9.

Regarding the statistical analysis of the collected data for
kidney patients, 83 cases were taken in 2020 and 37 cases
were taken in 2021. Figure 7 shows the age of normal and

With contrast Without contrast

Figure 5: Sample CT scans taken from the dataset.

Table 1: Current public CT datasets for kidney tumors.

Ref. Dataset Year Type Size #Patient
[30] G037-RCP: London 2017 CT 5,339 5,339
[31] C4KC-KiTs19 2019 CT 210 210
[32] TCGA-KICH 2020 CT 439 267
[33] TCGA-KICH 2020 CT 15 15
[34] TCGA-KIRP 2020 CT 47 33
[35] CPTAC-CCRCC 2020 CT 670 63
[36] KAUH: Jordan 2021 CT 8,400 120

Table 2: Statistical analysis of all patients’ situations.

Gender Normal “healthy” Normal with cyst Tumor
Male 15 12 38
Female 17 16 22
Total 32 28 60
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tumor cases; for normal cases, there are 3 cases for patients
between 30 and 40 years old. For 40–50 years old, there are 9
cases, 25 cases for 50–60 years old, 12 cases for 60–70 years
old, and for 70+ years old, there are 11 cases. And for tumor
cases, between 30 and 40, there are 5 cases; between 40 and
50, there are 6 cases; between 50 and 60, there are 19 cases;
between 60 and 70, there are 14 cases, and 70+ there are 16
cases.

Contrast material is given to the person to be examined
by X-ray imaging to enhance the quality of the image. Tus,
that is easy for the doctor to distinguish between healthy
injured tissues, facilitate the distinction of blood vessels, and
determine the extent of their injury [38]. Figure 8 shows the
patients who had taken contrast material before the CT test
for normal cases, where 35 had taken contrast and 25 had
not. And for tumor cases, 38 had taken contrast and 22 had

not. Based on the above analysis, a patient who was not given
a contrast had allergies, diabetes, impaired kidney function,
and kidney dialysis. In addition, it is considered a risk factor
because of its harmful efects such as nausea, vomiting, high
or low blood pressure, caused itching, sensitivity or short-
ness of breath, or problems with breathing or heart failure.

Figures 9 and 10 show the classifcation of tumor type
and subtype for all tumor cases. Of the 60 tumors cases 38
are divided into benign and 22 malignant. For benign cases,
there are 28 cases considered adenoma that can be excised
and treated; nine angiomyolipoma cases must be removed
because they are considered a hemorrhagic cyst, and one
case is considered lipomas. Besides, for malignant cases, 11
are considered RCC and 11 cases are considered metastasis
due to the transfer of the tumor from neighboring organs. In
adenomas cases, most of them sufered from pressure, di-
abetes, and liver problems such as cysts and tumors. Also,
secondary cases sufered from cancers in other organs such
as breast, colon, and right kidney nephrectomy because of
RCC, ureter, and uterus.

Te incidence of diferent tumor types is linked to gender
diferences, and it is also related to the treatment method
because it does not have the same response. Figure 11 shows
the gender and the tumor classifcation. It is clear that most
cases of kidney tumors are in men. Te percentage of males
having tumors is higher than that of females. In addition,
males reach a later stage of the tumor than females because
the rate of smoking in men is higher than that of women.
Also, the tumor spreads in men more quickly than it spreads
in females.

According to the statistical analysis of the gender afected
by the tumor that is shown in Figure 11, the results prove the
truth of the information in the National Cancer Institute
(NCI) since men are more likely than women to develop
tumors. Te institute reports that one out of every two men
and one out of every woman will develop cancer during their
lifetime [39].

Figure 12 shows a statistical analysis of the location of
the tumor. For the left kidney, there are 21 cases in the

Table 3: Dataset attributes’ description.
# Attribute Description
1 Patient ID ID
2 Patient num Count
3 Age Age
4 Gender Sex
5 Test area (Chest/abdomen/pelvis)
6 Date Year
7 Taking contrast Contrast material
8 Clinical data Historical data
9 Symptoms Symptoms before test
10 Diagnosing test Full diagnosing
11 Diagnosing right kidney Diagnosing RK
12 Injury range right kidney Injury range in details
13 Segmentation injury in right kidney Location injury in RK
14 Diagnosing left kidney Diagnosing LK
15 Injury range left kidney Injury range in details
16 Segmentation injury in left kidney Location injury in LK
17 Stage Out of IV
18 Situation Kidney status
19 Tumor type If malignant or benign
20 Tumor class Tumor subtype

38 22

12 16

15

Tumor

Normal with cyst

Normal “healthy”

0 10 20 30 40 50 60

Male
Female

17

Figure 6: An analysis of gender and situation for all cases in the dataset.
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upper, 17 cases are healthy, 11 cases in the lower, and 9
cases in the middle. While on the other hand, for the right
kidney, there are 24 cases of healthy, 18 cases in the upper,
8 cases undefned, 7 cases in the lower, and one case in the
middle. Based on these analyzes, we found that most of the
tumors in the right kidney are located in the upper part,
and the lower part and most of the tumors in the left
kidney are located in the upper, middle, and lower parts.
Te healthy label means that there is no tumor in this
kidney. It is possible that the tumor is in one kidney and
the other is healthy. Te undefned label means that this
kidney may have been partially or completely nephrec-
tomy, or it may be that the expert is unable to diagnose the
location of the tumor, or it may be that the scan is not clear
enough to determine the exact location of the tumor due
to not taking the contrast material or because the patient
moved during the CT test.

Figure 13 shows the tumor stage for all tumor patients,
where there are 55 cases in the frst stage, two cases in the
second stage, two cases in the third stage, and one case in the
fourth stage. Tus, most tumors are in the I stage, meaning
that they can be treated, and there are some cases in the late
stage, which is a threat to the patient.

4. Methodology

Tis section describes our proposed methodology for KT
detection and classifcation using CT scans. It includes a
detailed explanation of our preprocessing steps and the
used data augmentation techniques and an illustration of
the architecture of the four models we built for KT diag-
nosis. We examine the patient’s situation and defne tumor
presence to reduce the harmful efects of the injury and
reduce the number of deaths and defne the tumor type.
Terefore, we have collected the new dataset from (KAUH)
that contains images and metadata. We have also used the
OpenRefne tool and tableau for preprocessing step to have
a cleaned dataset. Furthermore, we used a DICOM con-
verter to change the image format, and we have chosen 70
images of the kidneys from diferent dimensions for each
patient. Figure 14 shows the workfow of the proposed
framework.

We built prediction networks, three models to make
multidiagnosis for the classifcation of diferent 4 labels
revolving around two phases. In the frst phase, we classify
the case as normal case or tumor case, while in the second
phase, we classify the tumor detected as benign tumor or
malignant tumor where artifcial neural network modeling is
used where neurons correspond to receptive felds similar to
neurons in the visual cortex of a human brain. Tese net-
works are very efective for tasks of detection, categorization
of objects, image classifcation, and segmentation. Te goal
of CNNs is to learn higher-order characteristics using the
convolution operation. Since convolutional neural networks
learn input-output relationships (where the input is an
image), the output is a feature map (image class label).

In this study, we examine the patient’s situation and
defne tumor presence to reduce the harmful efects of the
injury and reduce the number of deaths. Terefore, we have
collected a new dataset from (KAUH) that contains images
and metadata. We have also used the OpenRefne tool and
tableau to make some preprocesses steps to have a cleaned
dataset. Furthermore, we used a DICOM converter to
change the image form, and we have chosen 70 images of the
kidneys from diferent dimensions for each patient.Ten, we
started by implementing a convolutional neural network for
binary classifcation with the labels (Normal/Tumor).

Artifcial neural network modeling is very efective for
detecting tasks, categorization of objects, image classifca-
tion, and segmentation. Te goal of CNNs is to learn higher-
order characteristics using the convolution operation. Since
CNN’s learns input-output relationships (where the input is
an image), in convolution, each output pixel is a linear
combination of the input pixels [40].

Table 4: Situation labels description.

Label Description
Normal case “healthy” Te kidneys are healthy
Normal case with cyst Other problems than tumor
Tumor Kidney tumor injury

Table 5: Tumor type labels description.

Label Description
Benign Non-cancerous tumor
Malignant Cancerous tumor

Table 6: Contrast label description.

Label Description
Yes Given contrast material before the test
No Not given contrast material before the test

Table 7: Tumor classifcation labels description.

Label Description
Adenoma Benign
Angiolipoma Growth made of fat and blood vessels
Lipomas Fatty tumor
RCC Renal cell carcinoma
Secondary Metastasis from other organs

Table 8: Stage labels description.

Label Description
I 7 cm or less, only afects the kidney, has not spread
II Greater than 7 cm, only afect the kidney, has not spread
III Grown to blood vessels, may spread in around
IV Tumors spread into the adrenal gland or to other organs

Table 9: Segmentation of the injury in the right and left kidney
labels description.

Label Description
Upper Tumor in the upper part of the kidney
Middle Tumor in the middle part of the kidney
Lower Tumor in the lower part of the kidney
Healthy Tere is no tumor
Undefned Partial, nephrectomy, blurred kidney, undiagnosed
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We aim to implement a binary classifcation solution
for the detection of kidney tumors. Te use of CNN in such
a case helps to identify the feature map for each image
engaged in the tanning process for the adopted CNN
model. Hence, the use of the pooling layer helps to de-
termine the size of the feature segment that we are looking
for to extract a featured image, which will be the primary
feed data into the fully connected neural network in the
CNN model. As represented in Figure 15, we have two
classes to be trained on it.

Te study aims to implement a binary classifcation
solution for the detection and classifcation of kidney tu-
mors. Artifcial neural network modeling efectively detects
tasks and categorizes objects, image classifcation, and
segmentation. Te use of CNN in such a case helps to
identify the feature map for each image engaged in the

tanning process for the adopted CNNmodel. As represented
in Figures 15 and 16, two categories are used to be trained for
each phase. In the frst phase, we classify the case as; Normal
case, or Tumor case, while in the second phase, we classify
the detected tumor as Benign tumor or Malignant tumor.

Te attribute of our interest in the frst phase is the
“situation,” which is shown in Table 4. It comprises diferent
values that are merged to balance the number of labels in the
frst case of detection of the tumor. We have merged the
situation for the normal cae “healthy” and normal case with
the cyst, as “Normal” of the tumor (Normal� 0) label and
the situation of tumors as “tumor” (Tumor� 1) label. Finally,
the attribute comprised new binary labels (0 and 1). Table 10
shows the new labels.

Te attribute of our interest in the second phase is the
“tumor type,” which is shown in Table 5, we present the
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Figure 7: An analysis of age for healthy and tumor patients.
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contrast.

0 5 10 15 20 25 30 35 40

Benign

Malignant

Figure 9: An analysis of the classifcation of kidney tumor type.
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Figure 11: An analysis of gender and classifcation of kidney
tumors type.
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benign tumor as (benign� 0) label and the malignant of
tumors as (malignant� 1) label. Finally, the attribute became
composed of new binary labels (0 and 1). Table 11 shows the
new labels.

4.1. Data Preprocessing and Augmentation

4.1.1. Preprocesses. Each patient had a fle containing a video
of a CT scan, where the number of pictures in the videos for
patients varied, from 200± 900 images. As an initial step, the
video was divided manually into frames. In addition, clinical
imaging data were stored and transmitted in the DICOM
format. We converted images from the complex DICOM
format to JPEG format, much smaller and easier to use [41].
After converting the image format, 70 images were chosen
for each patient that showed the kidneys from diferent
dimensions. Besides, for metadata, we have used the
OpenRefne tool and tableau to make some preprocesses
steps, having a cleaned text dataset to make visualization for
data. See Figure 14.

4.1.2. Image Normalization. We normalize the images by
resizing the layers from 3 to 1 channel (converting RGB
image into a grayscale). We also normalize the image size;
the CT window level and breadth were set to emphasize the
renal area while suppressing information from other organs
and tissue.

Tis step of normalization is Figure 17 by reshaping the
images to the preferred size of 224× 224; this allows the
network to acquire adequate renal context information from
CT volumes. Reducing the image size is important because
sometimes the image contains a lot of information; we can
remove this kind of redundant important information.

4.1.3. Feature Extraction. We have used OpenCV for image
scans, which is a large open-source toolkit that supports
Python language. It can detect objects from images and
videos. In addition, OpenCVhas an algorithm named
Canny, which provides the ability to extract image edge
features [42]; see Figure 18.

Figure 18 shows an example of output for the Canny edge
detector on one of the dataset images. We can notice that it
provides a deep level of information, especially between the
separations of the kidney. From this view, we can see that
before training models, we have to use data augmentation to
increase our dataset series of images per epoch in the training
model, to enhance the model’s generalization capability. In
this way, the CNNwill be able to distinguish this feature by its
deep layers epoch by the epoch of learning; by this analysis, we
discover that we need to use data augmentation.

4.1.4. Image Augmentation. Preprocess improves the ac-
curacy of the proposed methodology by normalizing and
augmenting data. Image data augmentation is used to boost
the model’s learning capabilities and generalize its
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Figure 12: Statistical analysis for tumor segmentation in both kidneys.
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Figure 13: An analysis of tumor type and stage.
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performance. Augmentation is a technique for artifcially
increasing a training dataset’s size by producing updated
images in the dataset. Te data augmentation class can be
specifed once the data I/O interface has been initialized [43].
Data augmentation is a powerful technique to minimize
model error rate (overftting) by expanding training data.
Te used metrics in augmentation are

(i) Re-scale: it is used with the aim to scale the 255
values to the static range (224× 224).

(ii) Shear range: the image will be distorted along an
axis, mostly to create or rectify the perception an-
gles. We used 0.2 on the original image.

(iii) Zoom range: the amount of zoom is 0.2 on the
original image.

(iv) Horizontal fip: we fipped the images horizontally.

Figure 19 shows an example of generating four new
images based on the original CT. Tese valuable techniques
are commonly used to create synthetic data, train large neural
networks, and make our proposed models more robust to
avoid overftting when training the deep learning model.
Also, when we face data scarcity, if the number of patients in

the data set is minimal, it can be adjusted by rotation, re-
fection, etc. As a result, we get entirely new and manufac-
tured images using diferent technologies. Figure 20 shows an
example of applying augmentation operations in Renal CT.

Image data augmentation is supported in the Keras deep
learning library via the ImageDataGenerator class. Usually,
image data augmentation is applied only to the training data
set, not to the validation or test data set. In addition, it may
be useful to try data augmentation methods separately to see
if they lead to a measurable improvement in model per-
formance, perhaps using a small sample data set and a model
and a training run. Finally, following the process of aug-
menting the dataset, an augmented dataset was acquired.
Te data size of the tumor detection task before applying the
augmentationmethod was 8400, and it was increased by four
times, after the increase it became 33,600. Also, the data size
of the tumor type classifcation task before applying the
augmentation method was 4200 and it was increased by four
times, after the increase it became 16,800. Tus, this data
increases the performance of our models, especially when
the available dataset is unbalanced. Also, augmentation
reduces the training time, the model error rate, and the
accuracy of classifcation tasks.
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Figure 14: Methodology diagram.
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4.2. Building Models. Tis section describes the detection
and classifcation models architecture used to predict four
outputs; frst, the normal case and the tumor case, then, the
benign tumor and the malignant tumor. We have built four
models; VGG16, ResNet50, and two modifed CNN.

4.2.1. VGG16 Detection Model. Te network architecture
consists of 16 layers deep: 13 convolutions 4 max-pooling
and 3 fully connected layers. Te convolutional input layer
has a shape of 224× 224× 3; this layer determines the input
dimensions and shape. Max-pooling minimizes the di-
mensionality of images by reducing the number of pixels

from the previous convolutional layer. In addition, a fully
connected ANN has an input layer that refects the size of
max-pooling output data and a hidden layer with the Relu
activation function, also an output layer with a softmax
output classifer that performs the prediction percentages for
each class. Figure 21 shows the network structure of the
VGG16 architecture.

4.2.2. ResNet50 Detection Model. Te network architecture
consists of 50 layers deep, 49 convolutions and one fully
connected layer. Te convolutional input layer also has a
shape of 224× 224× 3, which is the maxpooling layer of

Normal

Tumor

Te diferences
between the patterns

Figure 15: Detection labels.

Benign

Malignant

The differences
between the patterns

Figure 16: Classifcation labels.

Table 10: Situation attribute labels merged description.

Label Description
0 Normal
1 Tumor

Table 11: Tumor type labels merged description.

Label Description
0 Benign
1 Malignant
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images. Te fully connected network, which has an input
layer that refects the size of the max-pooling output data
and a hidden layer with the Relu activation function, also has
an output layer with a Softmax output classifer that per-
forms the prediction percentages for each class. Figure 22
shows the network structure of the ResNet50 architecture.

4.2.3. CNN-6 Detection Model. Te proposed model for the
detection of the tumor consists of 6 deep CNN layers with
fully connected ANN. First is the batch normalization layer,
which standardizes the inputs to a layer for each minibatch.
By this, the model can reduce overftting and enhance
classifcation accuracy. Ten, the convolution 2D input layer,
represented as an input layer in 2D, creates a convolution
kernel that works with layers input to produce a tensor of
outputs.TeKernel is a convolutionmask that can be used for
blurring, sharpening, embossing, edge detection, and so on as
a features extractor from the original image with the help of
other layers. It is important to note that there is no diference
between 1D, 2D, or 3D except in the number of dimensions.

Conv2D took several parameters that specifed its
working process. As an example, modelName.add (Conv2D
(32, (3, 3), input shape� (224, 224, 3), activation� “Relu”)),
which means that the Conv2D will learn a total of 32 flters
after that the use of use max-pooling layer is to reduce the
spatial dimensions of the output features data volume. Tis
value is usually used as a value of power. Te other pa-
rameter is the kernel size (3× 3), where we defne the kernel
dimensions. Te dimension must be a two-dimensional
array of an odd number to specify the height and width of
the 2D convolution frame applied to the original image to
extract the features from it. While the activation�Relu
(rectifed linear activation function) defnes the activation
function that we want to apply on this input layer defned as
y�max (0, x). It also might be softmax, which is more
suitable for output activation in binary classifcation and low
target classes such as 2 or 4. Te softmax function is a
function that turns a vector ofK real values into a vector of K
real values that sum to 1.

Te input values can be positive, negative, zero, or
greater than one, but the softmax transforms them into

Figure 17: An overview of the normalization step.
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Edge Image

Figure 18: Original input CT images and edge detector output images.
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values between 0 and 1 to be interpreted as probabilities. If
one of the inputs is small or negative, the softmax turns it
into a small probability, and if the input is large, it turns it
into a signifcant probability. Still, it will always remain
between 0 and 1.

Te input shape is the primary parameter for this layer
where it defnes the structure for the input image formulated
as Image Width × Image Height × Image Channels in this
example (224× 224× 3). Ten is the Max-Pooling2D layer
2× 2; this max-pooling is a type of operation that is typically
added to CNN’s following individual convolutional layers.
When added to a model, max-pooling reduces the dimen-
sionality of images by reducing the number of pixels in the
output from the previous convolutional layer.

Ten, the dropout layer randomly sets input units to a
value with a rated frequency at each step during training
time. Tus, it helps to reduce model overftting. Ten, a
fattened layer fattens its input into a fatted output such as

2D into 1D of values (2× 2) input becomes four as output.
Ten, the dense layer, which defnes the hidden layer or the
output layer, takes the number of neurons and the activation
function. In the output layer, the number of neurons
matches the number of training classes. Figure 23 shows the
network structure of the modifed CNN architecture.

Te proposedmodel for detecting the tumor consists of 6
deep CNN layers with fully connected ANN: frst, the batch
normalization layer, which standardizes the inputs to a layer
for each minibatch and then the convolution 2D input layer.
Te Kernel is a convolution mask that can be used for
blurring, sharpening, embossing, edge detection, and so on.
Conv2D took several parameters that are specifc to its
working process. Max-pooling layer is to reduce the spatial
dimensions of the output features data volume. Next, the
dropout layer helps to reduce model overftting. Ten, the
fattening layer fattens its input into a fatted result. Ten,
the dense layer defnes the feedforward network. In the

Input

Image

Re-scale Shear range Zoom range Horizontal

Figure 19: Te augmentation techniques used.

Figure 20: An example of applying augmentation operations.
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output layer, the number of neurons much matches the
number of training classes. Figure 23 shows the network
structure of the modifed CNN architecture.

4.2.4. CNN-4 Classifcation Model. Te proposed model for
the classifcation of the tumor type consists of 4 deep CNN
layers with fully connected ANN: frst, the convolution 2D
input layer; then, Max-Pooling2D layer 2× 2; after that, the
fattening layer; and then, the dense layer. In the output
layer, the number of neurons matches the number of
training classes. Figure 24 shows the network structure of the
CNN architecture.

5. Experimental and Results

Tis section presents the experiments of four diferent
models, VGG16, ResNet50, and two modifed CNN. Te
four models were run with often the same hyperparameters,
though all had diferent network architectures. Results are
shown in the following subsections.

5.1. Experiments Setup. Te proposed models have been
implemented on Colab using Python Programming language
libraries: Tensorfow, Keras, SKlearn, Optimizer, and
Backend. Additionally, we have used several Python pack-
ages like OpenCV2 for image processing and image aug-
mentation. All experiments have been performed on a
workstation with Python 3 Google Compute Engine backend
(GPU), (0.80GB/12.69GB of RAM), and (38.73GB/
68.35GB of Disk). Table 12 shows the parameter setting for
our experiment details.

Te parameters were selected based on the experiments,
which gave us the best results for the parameters mentioned
in Table 12. Tey were described in detail as the following:

(i) Stepper epoch: it defnes the number of learning
steps that will be done in each epoch. We need a
high number of training steps in each epoch since
our data are large, and in our data augmentation,
we declare it based on the batch size, so we have to
make the steps larger than the batch size.

(ii) Epochs: it is the number of times the dataset is
being completed to the network, which can help in
reusing the same dataset for training again. An
epoch means training the neural network with all
the training data for one cycle.

(iii) Validation steps: same as steps per epoch but in
this case, it defnes the number of validation
samples applied to the model in each epoch to
reduce loss and increase the accuracy of
classifcation.

(iv) Loss: it is the value that is calculated after each
iteration to defne the error, which is calculated by
the loss function.

(v) Optimizer: it helps reduce the output error of the
loss function by changing the weights and bias
values in the model and computes the adaptive
learning rates for each parameter in the training
phases. In our adopted CNN tools, we have used
Adam optimizer. We experimented with Adam
and other optimizers and found that the use of
Adam is more accurate, as it also proves that Adam
is the best in image classifcation problems.

(vi) Activation function: it is a function used to choose
whether the neuron should fre the data or not by
obtaining the value received from the neuron and
reevaluating it.

(vii) Learning rate: it is a factor that is used along with
the optimizer in changing the weights of the
function, to end up with high accuracy.

(viii) Batch size: it is the number of samples processed
before the model is updated. It must meet the data
sample but we reduce this number since our
feature vector represents the image itself without a
region of interest information so there is no need
to take a high number of batches.

(ix) Input neuron: it receives the image binary data as a
feature vector. According to the image size
224× 224, we found that 32 is the best number for
our model training.

(x) Hidden neuron: it is trained on the input images to
build the training model. We took the number of
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Figure 21: Schematic representation of the VGG16 architecture of detection kidney tumor.
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Figure 22: Schematic representation of the ResNet50 architecture of detection kidney tumor.
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Figure 24: Schematic representation of the CNN architecture of classifcation kidney tumor type.
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neurons in the input layer and multiply it by the
number of image channels and increased the value
to 128 to enhance the processing time.

(xi) Output neuron: it defnes the output classes that we
have.

5.2. Adopted Experiment Dataset. For the detection task, the
collected data were divided into 80% for the training set and
20% for the testing set. Te training dataset was also divided
into training and validation, which consisted of 5376 images
for train and 1344 for validation. At the same time, the total
number of images for testing is 1680. On the other hand, the
training dataset used in the classifcation model for the
kidney tumor type consists of 2688 images. Terefore, the
total number of images for validation is 672. At the same
time, the total number of images for testing is 840.

For the detection task, the collected data were randomly
divided into 80% for the training set and 20% for the testing
set. Te training dataset was also divided into training and
validation, which consisted of 5376 images for train and
1344 for validation. At the same time, the total number of
images for testing is 1680. Table 13 represents the values with
the dataset splitting percentages.

Te training dataset used in the classifcation model for
the kidney tumor type consists of 2688 images. Te total
number of images for validation is 672. At the same time, the
total number of images for testing is 840. Table 14 represents
the values with the dataset splitting percentages.

5.3. Evaluation Metrics. Based on the preprocessed dataset,
we have used the confusion matrix [44] to evaluate our
networks. We have used F-score metrics, which being cal-
culated from the precision and recall of the test phase. More
details about evaluation metrics are as follows:

(i) True Positive (TP): it represents the correctly
predicted positive values, which means that the
value of the actual class is yes, and the value of the
predicted class is also yes.

(ii) True Negative (TN): it represents the correctly
predicted negative values, which means that the
actual class’s value is no, and the value of the
predicted class is also no.

(iii) False Positive (FP): it is when the actual class is no,
and the predicted class is yes.

(iv) False Negative (FN): it is when the actual class is
yes but the predicted class is no.

(v) Accuracy: this is a performance measure, which is
the number of correct predictions
(Accuracy�TP+TN/TP+ FP+ FN+TN).

(vi) Precision: it is the ratio of correctly predicted
positive observations to the total predicted positive
observations (Precision�TP/TP+ FP).

(vii) Recall (sensitivity): it is the ratio of correctly
predicted positive observations to all observations
in actual class (Recall�TP/TP+ FN).

(viii) F1 score: it is a measure that provides a single
score that balances both the concerns of pre-
cision and recall in one number (F1
Score� 2× (RecallxPrecision)/(Recall + Precision)).

5.4. VGG16 Detection Model Training and Testing.
Training the VGG16model on the data produced a loss value
of 0.3506 and a test accuracy of 0.5938. Figure 25 represents
the loss and accuracy for both training and validation during
the training process through each epoch. Te values show
how stable the model is.

Te model was tested on 848 samples from the normal
class and 832 samples from the tumor class. For normal
cases, the model was able to classify 764 samples correctly,
while it failed in 84 samples. However, for tumor cases, it
classifed 585 samples correctly while it failed in 247 samples.
Table 15 shows F-score diagnostic testing.

Te training accuracy of ResNet50 reached 0.60, while
the test accuracy reached 0.5938. Loss value implies how well
or poorly a certain model behaves after each iteration of
optimization. Te value of the test loss in the VGG16 model
is 0.3506, and the training time is 3 s 68ms/step. From the
previous results, we can conclude that the VGG16 model is
weakly trained, and it behavior was poor in the testing
process.

5.5. ResNet50 Detection Model Training and Testing.
Training the ResNet50 model on the data produced a loss
value of 0.0806 and a test accuracy of 0.9747. Figure 26
represents the loss and accuracy for both training and
validation during the training process through each epoch.
Te values show how stable the model is.

Te model was tested on 848 samples from the normal
class and 832 samples from the tumor class. For normal
cases, the model was able to classify 806 samples correctly,
while it failed in 42 samples. However, for tumor cases, it
classifed 813 samples correctly while it failed in 19 samples.
Table 16 shows F-score diagnostic testing.

Te training accuracy of ResNet50 reached 0.96, while
the test accuracy reached 0.9747. Loss value implies how well
or poorly a certain model behaves after each iteration of
optimization. Te value of the test loss in the ResNet50
model is 0.0806, and the training time is 3 s 70ms/step. From

Table 12: Models parameter.

Parameter Value
Step_Per_Epoch Training images/batch size
Epochs VGG16: 44, ResNet50: 25, CNN’s: 50
Validation steps Validation images/batch size
Loss Binary cross entropy
Optimizer Adam, SGD
Activation function ReLu, Sigmoid, Softmax
Learning rate 0.001
Batch size 32
Input neuron 32 shape of 224× 224
Hidden neuron 128
Output neuron 2
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the previous results, we can conclude that the ResNet50
model is well-trained, and it behavior was good in the testing
process.

5.6.CNNModelDetectionTrainingandTesting. Applying the
CNN model, the loss reached 0.1480, which is the distance
between the actual values of the problem and the values
predicted by the model.Te test accuracy is 0.9531. Figure 27
shows the loss and accuracy for both training and validation
during the training process for each epoch.

Te test was performed on 848 samples from the normal
class and 832 samples from the tumor class. Te model was
able to classify 823 samples correctly while it failed in 25
samples. On the other hand, tumor classifes 801 samples
correctly while it fails in 31 samples. Table 17 shows F-score
diagnostic testing.

Te training accuracy, which is the accuracy of the CNN
model, reached 0.97. Te test accuracy reached 0.9531.
Moreover, the loss value implies how well or poorly a certain
model behaves after each optimization iteration.Te value of
the test loss in the CNN detection model is 0.1480. At the
same time, the training time is 3 s 62ms/step. From the
previous results, we can conclude that the CNN model is
well-trained, and it performed exemplary in the testing
process.

5.7. CNN Model Classifcation Training and Testing. After
performing a CNN model training based on the previous
data mentioned above, we got a loss of 0.0643 and an ac-
curacy of 0.9777. We also got the following graph repre-
senting the loss and accuracy for both training and
validation during the training process through epochs. Te
values show how stable the model is in Figure 28.

Te test was performed upon 531 samples from the
malignant class and 234 samples from the benign class. For
the malignant class, the model was able to classify 229
samples correctly while it failed in 5 samples. On the other
hand, for benign, it correctly classifes 474 samples while it
fails in 57 samples. Table 18 shows F-score diagnostic testing.

Te training accuracy for this model reached 0.9777.Te
test accuracy reached 0.92. At the same time, the training
time is 1 s 64ms/step.

Table 19 shows the accuracy, training loss, number of
epochs, and training time, for all proposed deep learning
models where three models were used for tumor detection
and one model for tumor classifcation. Based on the models
that we built, we can say that they are promising in diagnosing
kidney tumors because of their high accuracy in diagnosis.

6. Comparison with Other Related Studies

In comparison with the previous works, the proposed
methodology and the 2D-CNNs have achieved fruitful results
by using CTscans for kidney patients.Tis is the frst research
for the detection and classifcation of kidney tumors based on
the new data, which can help doctors and radiologists fnd the
appropriate treatment plan for kidney tumor patients.
According to the data in Table 20, which represents a
comparison between our proposed work and the previous
work, our research is considered the frst research that utilized
bigger data of CT scans. Moreover, it has outperformed the
previous works in accuracy reaching a 97% score for tumor
detection and a 92% score for tumor classifcation.

Te results of previous studies proved the power of using
deep learning approaches in renal tumor detection and
classifcation tasks. Researchers in the other studies have
operated practical methodologies for a fair comparison and
achieved satisfactory results. One of the challenges that
researchers faced was the availability of data. Usually, the
data on medical images are few in terms of numbers, which
leads to high risks of overtraining and subsequently reduced
performance. Some solutions that can help mitigate this
problem are using smaller models and augmenting the data.
Also, there is more than one study on the same dataset,

Table 13: First phase values with the dataset splitting percentages
of totally 8400 images.

Dataset Number Splitting factor
Training 5376 Training 80%
Validation 1344 —
Testing 1680 Testing 20%
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Figure 25: Evaluation results for the VGG16 detection model.

Table 14: Second phase values with the dataset splitting percentage
of totally 4200 images.

Dataset Number Splitting factor
Training 2688 Training 80%
Validation 672 —
Testing 840 Testing 20%

Table 15: Accuracy results achieved by the VGG16 model.

ResNet50 Precision Recall F1 Accuracy
Normal 0.57 0.90 0.7 0.60
Tumor 0.75 0.30 0.42
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Figure 26: Evaluation results for the ResNet50 detection model.

Table 16: Accuracy results achieved by ResNet50 model.

ResNet50 Precision Recall F1 Accuracy
Normal 0.98 0.95 0.96 0.96
Tumor 0.95 0.98 0.96
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Figure 27: Evaluation results for the CNN detection model.

Table 17: Accuracy results achieved by CNN detection model.

CNN Precision Recall F1 Accuracy
Normal 0.96 0.97 0.97 0.97
Tumor 0.97 0.96 0.97
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which afects the limitations of the studies. Because of the
challenges of collecting and building data, it takes time and
efort, especially pulling the data. In addition, it must be
ensured that the data are properly structured in continuous
cooperation with specialists. Although obtaining new data is
difcult, there is a need for a new expanding dataset to
perform a complete diagnosis that covers the limitations of
the diagnosis to cover all aspects of diagnosis, not only

tumor detection and classifcation of tumor type but also for
classifcation of tumor subtypes, stage, and segmentation in
one operation.

7. Discussion and Conclusion

Tis paper uses four methods, VGG16, ResNet50, and two
diferent modifed 2D-CNN models, to study the patient’s
situation with kidney tumor injury and defne the kidney
tumor type. Based on renal CT scans, the features extracted
helped recognize the image class (Normal/Tumor and Be-
nign/Malignant) by training and testing methods. For our
novel dataset, the results proved the efectiveness of our
proposed 2D-CNN models, where the accuracy for the
detection models VGG16, ResNet50, and 2D-CNN reached
60%, 96%, and 97%, respectively. On the other hand, the
classifcation 2D-CNN model got 92%.

For revealing the specifc characteristics of a kidney
tumor, the data of patients need to be collected. After all, the
process of labeling, building data, and converting the image
format takes time. In addition, the images are drawn
manually for each patient and need to cooperate with ra-
diologists to validate the data. Several of the previous studies
did not take more than one image of the patient. As a result,
there are limitations in the diagnosis and studies; ideally, the
data set should be more extensive. Tus, the precise com-
position of our data set is impressive since it does not
contain missing data and carries valuable information from
the metadata. Besides, the images cover multiple aspects of
diagnosis. Tere are 70 images for each patient in which
kidney problems can be predicted, including tumors and
stones, cysts, and other tumors in the nearby organs.

Some challenges were encountered in this study, sum-
marized in several points; a process of manually data col-
lection, segmenting video and converting the image from
DICOM to JPEG, image selection, text data building, data
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Figure 28: Evaluation results for the CNN classifcation model for tumor type.

Table 18: Accuracy results achieved by CNN classifcation model.

CNN Precision Recall F1 Accuracy
Benign 0.99 0.89 0.94 0.92
Malignant 0.80 0.98 0.88

Table 19: An overview of training and testing of accuracy, loss,
epochs, and time for all models.

Model Testing Training Loss Epoch Time
VGG16 0.593 0.60 0.3506 44 3 s 68ms/step
ResNet50 0.974 0.96 0.0806 25 3 s 70ms/step
CNN-6 0.953 0.97 0.1480 50 3 s 62ms/step
CNN-4 0.977 0.92 0.0643 50 1 s 64ms/step

Table 20: Overview of the related studies about kidney tumor
detection and classifcation based on CT scans.

Ref. Year Source Size Methods Result
[23] 2014 India SOM, ANN 85%
[24] 2014 US 167 HOG, MMD, SURF 95%
[25] 2015 India 28 ASNN, KNN
[27] 2020 US 315 CNN 83%
[26] 2019 China 192 ROC, InceptionV3 97%
[28] 2020 Canada 177 XGBoost 70%, 77%
[29] 2020 US 735 AdaBoost, RF 68–75%
[36] 2021 Jordan 8400 2D-CNN 92%, 97%
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labeling, and missing data, where we encountered technical
problems and re-collected data for some patients, overftting
problems, and the need for high-performance servers.

Te main contributions of this paper can be summarized
as follows: originating new datasets from a Jordanian hos-
pital consisting of text data of clinical reports and sequences
images of CT scans, a case study, and statistical analysis of
kidney tumor cases in one of the most important hospitals in
northern Jordan, exploring the performance of the modifed
2D-CNN models for the tumor detection and classifcation
task, enhancing the diagnosis of patient conditions with high
accuracy, reducing the doctor’s and radiologist’s workload,
and providing them with a tool that can automatically assess
the condition of the kidneys, support a better understanding
of the evaluation results, and predict the presence of tumors
in any patient. Besides, the results of the models can reduce
the risk of misdiagnosis. Furthermore, increasing the quality
of healthcare service and early detection can change the
disease’s track and preserve the patient’s life.

Our future work includes further optimizing the de-
tection performance and accurate extraction of renal tumors
from CT scans and additionally making classifcation tasks
for the tumor subtypes that we have identifed and other
multiple diagnostic studies such as classifying tumor stage
and segmenting the tumor in both kidneys. We look forward
to having a full diagnosis of this new data toward having a
robust standard for intelligent diagnosis of kidney tumors.
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