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Brain Computer Interface (BCI) technology commonly used to enable communication for the person with movement disability. It
allows the person to communicate and control assistive robots by the use of electroencephalogram (EEG) or other brain signals.
*ough several approaches have been available in the literature for learning EEG signal feature, the deep learning (DL) models
need to further explore for generating novel representation of EEG features and accomplish enhanced outcomes for MI
classification. With this motivation, this study designs an arithmetic optimization with RetinaNet based deep learning model for
MI classification (AORNDL-MIC) technique on BCIs. *e proposed AORNDL-MIC technique initially exploits Multiscale
Principal Component Analysis (MSPCA) approach for the EEG signal denoising and Continuous Wavelet Transform (CWT) is
exploited for the transformation of 1D-EEG signal into 2D time-frequency amplitude representation, which enables to utilize the
DL model via transfer learning approach. In addition, the DL based RetinaNet is applied for extracting of feature vectors from the
EEG signal which are then classified with the help of ID3 classifier. In order to optimize the classification efficiency of the
AORNDL-MIC technique, arithmetical optimization algorithm (AOA) is employed for hyperparameter tuning of the RetinaNet.
*e experimental analysis of the AORNDL-MIC algorithm on the benchmark data sets reported its promising performance over
the recent state of art methodologies.

1. Introduction

Brain-computer interface (BCI) is a technology that permits
us to communicate with the computer, whereby the device
forecasts the abstract aspect of cognitive states with brain
signals, namely, electroencephalography (EEG). Also, it is
named as Brain-computer interface (BCI) that is commonly
associated with AI-enabled approach which permits the user

to harness brain, etc [1]. It is a noninvasive approach that
gathers brain oscillatory activation patterns from the scalp.
*e human brain produces electrical signal that is identified
by using EEG. *erefore, it is highly reliable and applicable
method for receiving the control command for BCI [2].
Studies involving EEG signals when imagining limb or finger
movement, widely called motor imagery (MI), to function
artificial intelligence (AI) technique has been witnessed in
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this study [3]. An effective BCI scheme has two fundamental
needs that consist of effective machine learning (ML)
method for the classification of feature extraction and an
efficient set of EEG feature must be capable of differentiating
task induced brain activities. *e study aims to identify the
MI-task induced EEG patterns [4, 5].

Mostly, BCI system involves filtering or preprocessing to
remove this undesirable component that is embedded with
the EEG signals which leads to wrong conclusions and bias
the analysis of the EEG [6]. Appropriate preprocessing
within the BCI scheme results in cleaner EEG signal, thus
enhancing the classification outcomes. *e study focuses on
the quantummechanics inspired preprocessing phase within
the BCI scheme, for extracting further data from the attained
noisy EEG signal, and leads to increased classification
performance although categorized by using multiple clas-
sification methods [7]. Especially, SVM is widely employed
for MI classification in BMI. Imagery signal classification is
performed by LR method. KNN is utilized in seizure de-
tection, where NB is utilized for detecting the lower limb
movement by analyzing EEG signals [8]. At the same time,
DT is primarily utilized for hand amplitude modulation and
movement interpretation spatial activity. Deep Learning
(DL) method could considerably simplify processing
channel, allow automated end-to-end training of retrieval,
preprocessing, and classification models [9], while guaran-
teeing better performance in target. Deep neural network
(DNN) stimulated by previous methods like multilayer
perceptron (MLP).

*is study designs an arithmetic optimization with
RetinaNet based deep learning model for MI classification
(AORNDL-MIC) technique on BCIs. *e proposed
AORNDL-MIC technique undergoes two stages of
reprocessing namely Multiscale Principal Component
Analysis (MSPCA) based denoising and Continuous
Wavelet Transform (CWT) based decomposition. Besides,
the arithmetic optimization algorithm (AOA) based Reti-
naNet model is as feature extractor which are then classified
by the use of ID3 classifier. To ensure the better results of the
AORNDL-MIC approach, a number of experiments were
carried out and the result is inspected under different
aspects.

*e rest of the paper is organized as follows. Section 2
offers related works, Section 3 provides proposed model,
Section 4 discusses performance validation, and Section 5
draws conclusion.

2. Related Works

Zhang et al. [10] validate and developed a DL-based algo-
rithm for automatically recognizing two distinct MI states by
choosing the related EEG channel. It employs an automated
channel selection (ACS) approach. Furthermore, we pro-
posed a CNNmethod for fully exploiting the time-frequency
feature, therefore outperforming conventional classification
method interms of robustness and accuracy. Kant et al. [11]
present an integration of DL-based TL and CWTfor solving
the problems. CWT transforms 1D-EEG signal into 2D
time-frequency-amplitude representation enables users to

make use of deep network via TL method. Corsi et al. [12]
adapted a fusion technique that integrates features from
instantaneously recorded MEG and EEG signals to enhance
classification performance in MI-based BCI. *omas et al.
[13] introduce a discriminatory filter bank (FB) common
spatial pattern model for extracting FB for the classification
of MI. *e presented model improves the classifier per-
formance in BCI datasets.

Dong et al. [14], proposed a hierarchical SVM approach
for addressing an EEG-based 4-class MI classification
process. Wavelet packet transform is applied for decom-
posing original EEG signal. EEG feature vector is extracted
and a a two-layer HSVM approach is developed for clas-
sifying this EEG feature vector, whereas “OVO” classifier is
utilized in the initial layer as well as “OVR” in the next layer.
Zhang et al. [15], proposed a “brain-ID” architecture based
hybrid DNN using TL method for handling single difference
of 4-class MI tasks. A dedicated HDNN is designed for
learning the common feature of MI signals. *e suggested
algorithm comprises LSTM and CNN models that are
employed for decoding the spatiotemporal features of theMI
signal. Zhang et al. [16] introduce 5 systems for adoptation of
a DCNN based EEG-BCI scheme for decoding hand MI. All
the systems are widely trained, pretrained method and adapt
it to improve the efficiency.

3. The Proposed Model

In our study, an AORNDL-MIC approach was introduced to
classify the MI on BCIs. *e proposed AORNDL-MIC
technique encompasses a series of operations namely
MSPCA based denoising, CWT based decomposition,
RetinaNet based feature extraction, AOA based hyper-
parameter tuning, as well as ID3 based classification.

3.1. Data Preprocessing. Initially, the data preprocessing
takes place in two stages namely MSPCA based noise re-
moval and CWT based decomposition. Consider a mea-
surement data set with m sensor exists, namely xeRm. All the
sensors in the measurement samples have n sampling data,
that is integrated into a data matrix of size mxn. *e pro-
cedure has been shown as follows [2]:

X � x1, x2, x3, . . . , xn􏼂 􏼃. (1)

All the columns represent a measurement variable, and
all the rows of X denote a sample. *e PCAmodels initiated
by normalizing all the samples of X by calculating the co-
variance matrix of X.

cov(x)≂
X

T
.X

n − 1
. (2)

*e method of decomposition X in its PCA, in which
PeRm×A has initial A feature vector of cov (x). Once the
feature decomposition of X is made, the size of feature value
is arranged from larger to smaller. A indicates the amount of
PCA, and it is equivalent to the amount of columns in T.

T ∈ Rm×A denotes a matrix, in which all the columns are
called as the principal element variable.
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X � 􏽢X + Er � T.P
T

+ Er,

T � X.P.

⎧⎨

⎩ (3)

In which λ1, λ2, . . . , λn represent the initial A large eigen
values of covariance matrix of X, equation (4) is utilized for
determining the principal component covariance,

Λ �
X

T
.X

n − 1
�

λ1 . . . . . . . . .

. . . λ2 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . λn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In the study, the wavelet transform is integrated into the
PCA model for creating MSPCA to the incoming signal
denoising purpose. In MSPCA, the PCA ability for
extracting covariance among parameters is integrated to
orthonormal wavelets’ capability. *e capability of PCA is
improved by integrating the multi-scale analysis. Simulta-
neously, it leads to the MSPCA [17]. It finds linearly cor-
related wavelet coefficient at multilevel sub-bands, attained
using wavelet transform. It represents every subband with
less features when eliminating the autocorrelated coefficient.
*e signal is recreated by utilizing the wavelet syntheses. It
reduces unnecessary noises from the received signals and
generated noise-free and simple signal versions. Also, it can
be utilized as a scalogram that is signified by exact value of
CWT of the signals. MI signal is gradually changing event
peppered by abrupt transient with feature taking place at
distinct scales, so lower frequency event, offering maximum
time localization to higher frequency, shorter duration
event, and higher frequency localization to extended du-
ration, is attained utilizing scalogram.

3.2. RetinaNet Based Feature Extraction. Next to the data
preprocessing phase, the AORNDL-MIC technique involves
the RetinaNet model as a feature extractor. RetinaNet
comprises of two fully convolution networks (FCN), a
feature pyramid network (FPN), and residual network
(ResNet). ResNet uses distinct network layers. *e impor-
tant role of ResNet is the concept of RL that enables raw
input data to be transferred directly to the succeeding layers.
*e widely employed type of network layer consists of 101-

layer, 152-layer, and 50-layer. *e study chooses 101-layers
with the optimal training efficiency [18]. *en, extracted the
feature of the echocardiography with ResNet and later
transmitted to the following subnetworks. FPN is an ap-
proach to effectively extract the feature of all the dimensions
in a picture with a traditional CNN. Figure 1 illustrates the
overview of CNN. Firstly, use single-dimension images as
input to ResNet. Next, start from another layer of the
convolution network, the feature of each layer was chosen
using the FPN and later integrated to generate the last
output. *e class subnetwork in the FCN implemented the
classifier process. Focal loss: it is an amended form of binary
cross-entropy expression, as well as the cross-entropy loss:

CE(p, y) �
−log(p), if y � 1,

−log(1 − p), otherwise,
􏼨 (5)

whereas y ∈ [ ± , 1] characterizes the ground truth category
and p ∈ [0, 1] signifies the predicted likelihood of algorithm
for y � 1.

pt �
p, if y � 1,

1 − p, otherwise.
􏼨 (6)

*e abovementioned equation is abbreviated as

CE(p, y) � CE pt( 􏼁 � −log pt( 􏼁. (7)

To resolve the problems of the data imbalance among the
negative and positive instances, the novel version is changed
into the subsequent form:

CE pt( 􏼁 � −αtlog pt( 􏼁, (8)

and amongst them,

αt �
α, if y � 1,

l − α, otherwise,
􏼨 (9)

whereas, α ∈ [0, 1] characterizes the weight factor. To resolve
the problems of complex samples, the variable C is presented
for obtaining the last form of focal loss [19]. Figure 2 il-
lustrates the structure of RetinaNet.

FL pt( 􏼁 � −αt 1 − pt( 􏼁
clog pt( 􏼁. (10)

Since the hyperparameters of the RetinaNet model in-
fluence the overall classifier results of the AORNDL-MIC

Input Image Conv Layer-1 Pooling Layer-1 Conv Layer-2

Feature Extraction

Conv Layer-3 FCL Output

Class 1

Class 2

Class n

Classification

Pooling Layer-2

Figure 1: Overview of CNN.
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technique, the AOA is utilized. In general, as other MH
approaches, the AOA consists of, exploration, and exploi-
tation phases, stimulated by mathematical operations, like

−, +, ∗, and /. Firstly, the AOA generates a set of N solutions
[20]. *erefore, solution or agent represents X population,
as:

X � xN−1,1xN,1x2,1x1,1xN−1,jxN,jx2,jx1,jxN,n−1x1,n−1xN−1,nxN,nx2,nx1,n􏽨 􏽩,

X �

x1,1 · · · x1,j x1,n−1 x1,n

x2,1 · · · x2,j · · · x2,n

· · · · · · · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮

xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(11)

3.3. AOA Based Hyperparameter Tuning. *en, the fitness
function of solution is calculated for detecting optimal one
Xb. According to the Math Optimizer Accelerated (MOA)

values, AOA implements exploitation or exploration
methods. Subsequently, MOA is upgraded by

MOA(t) � Min + t ×
MaxMOA − MinMOA

Mt

􏼠 􏼡, (12)

where Mt characterizes the overall amount of iterations.
MinMOA and MaxOA signify the minimal and maximal
values of the accelerated function, correspondingly, the
division (D) and multiplication (M) are applied in the ex-
ploration stage of the AOA, as follows:

Xi,j(t + 1) �
Xbj÷ MOP + ∈( 􏼁 × UBj − LBj􏼐 􏼑 × μ + LBj􏼐 􏼑, r2 < 0.5,

Xbj × MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏼐 􏼑, otherwise.

⎧⎪⎨

⎪⎩

(13)

Next e signifies smaller integer value, LBj and UBj

shows upper and lower limits of the searching space at jth

parameter. μ � 0.5 denotes the control function. Further-
more, Math Optimizer (MOP) is determined by

MOP(t) � 1 −
t
1/α

M
1/α
t

. (14)

α � 5 characterizes the dynamic variable which defines the
accuracy of the exploitation stage.

Additionally, subtraction (D) and addition operator (A)
operators are employed for executing the AOA exploitation
phase, as follows.

xi,j(t + 1) �
Xbj − MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏼐 􏼑, r3 < 0.5,

Xbj + MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏼐 􏼑, otherwise.

⎧⎪⎨

⎪⎩

(15)

Now r3 characterizes an arbitrary value in [0, 1]. Next,
the agent updating procedure is executed by the AOA op-
erator [21]. In summary, Algorithm 1 demonstrates the steps
included in AOA.

3.4. ID3 Based Classification. Lastly, the ID3 architecture
receives the feature vector as input and carries out the
classification process. *e ID3 technique selects test ele-
ments with computing and relating its information gains
(IG). Assume S be the group of data instances. Supposing the
class element C has m distinct values that signify m various
class labels Ci(i � 1, 2, . . . , m). Assume that Si be the
amount of instances from class Ci(i � 1, 2, . . . , m). *e
predictable data amount needed for classifying S was pro-
vided in equation (15):

I S1, S2, . . . , Sm( 􏼁 � − 􏽘
m

i�1
pilog2pi, (16)

where pi signifies the probability of samples from S ap-
propriate to class Ci. I(S1, S2, . . . , Sm) refers to the average
data amount needed for identifying the class label to every
instance from S.

Let the element A has v distinct values a1, a2, . . . , a]􏼈 􏼉

from the trained data set S. When A is a nominal element,
Afterward, the element separates S as to v subset such that
S1, S2, . . . , S]􏼈 􏼉, in that Sj represents the subset of S where
sample from Sj has the similar element value aj on A. But,
instance from Sj can have various class labels [22]. Assume
Sij be the group of instances that class label is Ci from the
subset of Sj|A � aj,􏽮 j ∈ 1, 2, . . . , ], Sj ∈ S} in which element
A � aj. *e needed data amount (i.e., entropy) of element A

for splitting the trained data set S was measured by (16):

E(A) � 􏽘
]

j�1

s1j + s2j + . . . + smj􏼐 􏼑

s
× I s1j, s2j, . . . , smj􏼐 􏼑⎛⎝ ⎞⎠.

(17)

*e minimum data amount needed, a further purity of
sub-dataset is.

I s1j, s2j, . . . , smj􏼐 􏼑 � − 􏽘
m

i�1
pijlog2 pij􏼐 􏼑, (18)

where pij implies the probability of instances from Sj based
on class Ci. I(s1j, s2j, . . . , smj) signifies the average data
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amount needed for identifying the class labels to every in-
stance from Sj. *e IG of A has determined as:

InfoGain (A) � I S1, S2, . . . , Sm( 􏼁 − E(A). (19)

Specifically, the count of novel data requirement (only
dependent upon class) minus the count of novel data re-
quirements (based the split on element A). Selecting the
element with maximal InfoGain (A) as test element that is
allocated to internal node from DT. During this process, the
required data amount to classify samples is minimal.

4. Results and Discussion

*e performance validation of the AORNDL-MIC tech-
nique has been validated under two dataset includes BCI
competition 2003 dataset III and BCI competition IV data
set 2b.*e BCI competition 2003, dataset III [23], comprises
3-channel EEG data in healthy females, for the imagination
of the right, and left -hand movements. *e data from the
analysis has of recording in the motor cortex area of brain

utilizing 3 electrodes (C3, Cz, and C4) under the motor
imagery of combined right-or-left-hand movement. All
individual trail last to 9-second duration of data to all
channels C3, Cz, and C4 per trial with every label obtainable.
It holds 280 out of which 140 trials were accessible with its
labels, and other 140 instances were employed for validation
method. *e BCI competition IV data set 2b comprises nine
subjects all with 5 sessions of motor imagery experimentally,
amongst that the initial 2 sessions are verified with no
feedback and the remaining 3 sessions are combined online
feedback [24].

4.1. Result Analysis on BCI Competition 2003 III Dataset.
Figure 3 illustrates the confusion matrices generated by the
AORNDL-MIC algorithm under five iterations. At iteration-
1, the AORNDL-MIC technique has identified 67 instances
in left class and 68 instances in right class. Moreover, at
iteration-3, the AORNDL-MIC method has identified 69
instances into left class and 68 instances into right class.

Class+Box
Subnets

Class
Subnet

Box
Subnet

(d) Box Subnet (bottom)(c) Class Subnet (top)(b) Feature Pyramid Net(a) ResNet

x4

x4
WxH
x256

WxH
x256

WxH
x256

WxH
x256

WxH
x256

WxH
x256

Class+Box
Subnets

Class+Box
Subnets

Figure 2: RetinaNet network architecture.

Input: the parameter of AOA includes overall quantity of iterations Mt, dynamic exploitation variable (α), and number of agent (N).
Generate the primary value for the agent Xii � 1,, . . . N/. while (t<Mt) do
Calculate the fitness function for all the agents.
Define the optimal agent Xb.

Upgrade the MOA and MOP using equations (11) and (13),
for i � 1 to N do

for j � 1 to Di m do
Upgrade the values of r1, r2, and r3.

if r1 >MOA then
Exploration stage
Employ equation (12) to upgrade the Xi.

else
Exploitation stage
Employ equations (14) to upgrade the Xi.

end if
end for

end for
t � t + 1

end while
Display the optimal agent (Xb).

ALGORITHM 1: Pseudocode of AOA.
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Furthermore, at iteration-5, the AORNDL-MIC ap-
proach has identified 67 samples into left class and 66
samples into right class.

Table 1 and Figures 4, 5 provides a classifier results of the
AORNDL-MIC algorithm on BCI competition 2003 III
dataset. *e experimental result indicates the better out-
comes of the AORNDL-MIC technique under each iteration.
For example, with iteration-1, the AORNDL-MIC algorithm
has gained precision of 97.10%, recall of 95.71%, accuracy of
94.43%, F − score of 96.40%, and kappa of 95.26%. Mean-
while, with iteration-3, the AORNDL-MIC method has
reached precision of 97.18%, recall of 98.57%, accuracy of
97.86%, F − score of 97.87%, and kappa of 97.13%. Even-
tually, with iteration-5, the AORNDL-MIC system has
obtained precision of 94.37%, recall of 95.71%, accuracy of
95%, F − score of 95.04%, and kappa of 93.30%.

A comparative analysis of the AORNDL-MIC approach
with current methodologies on the test BCI competition

2003, dataset III showed in Figure 6 and Table 2. *e result
exhibits that the SqueezeNet, ResNet50, GoogleNet, Den-
seNet201, ResNet18, and ResNet101 techniques have
resulted to lower kappa values of 57%, 41%, 44%, 36%, 29%,
and 30% correspondingly. Next, the VGG19, AlexNet, and
VGG16 models have resulted in slightly increased kappa
values of 91%, 87%, and 90%, respectively. However, the
proposed AORNDL-MIC technique has accomplished
higher kappa value of 94.84%.

A comparative study of the AORNDL-MICmethod with
recent algorithms on the test BCI competition 2003, dataset
III is illustrated in Table 3 and Figure 7. *e outcome
demonstrates that the CSP-SVM, STFT-KNN, Optimized
GA FKNN-LDA, Hybrid KNN, andWTSE-SVM techniques
have resulted in minimum accuracy values of 82.86%,
83.57%, 84%, 84.29%, and 86.40%, respectively. *en, the
Adaptive PP-Bayesian, STFT-DL, and CWTFB-TL methods
have resulted in slightly maximal accuracy values of 90%,
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Figure 3: Confusion matrix of AORNDL-MIC technique under five iterations.
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90%, and 95.71% correspondingly. Lastly, the proposed
AORNDL-MICmethod has accomplished superior accuracy
value of 96.14%.

4.2. Result Analysis on BCI Competition IV Data Set 2b
Dataset. A classification results of the AORNDL-MIC
method on BCI competition IV data set 2b under several
subjects and runs is shown in Table 4 and Figure 8. *e
experimental value indicates that the AORNDL-MIC

algorithm has demonstrated better performance with an
average accuracy of 85.33%, 84.22%, 90.11%, 87.11%, and
85.89% under runs 1–5, respectively.

An average classification results of the AORNDL-
MIC method under several subjects are portrayed in
Figure 9. *e results showed that the AORNDL-MIC
system has the ability of accomplishing improved out-
comes with the maximum average accuracy of 81.20%
under S-1, 87.20% under S-2, 84.60% under S3, 91.60%
under S-4, and so on.
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Figure 4: Result analysis AORNDL-MIC technique on BCI competition 2003 III datasets.
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Figure 5: Average analysis AORNDL-MIC technique on BCI competition 2003 III dataset.

Table 1: Classification outcomes of AORNDL-MIC approach on BCI competition 2003 III datasets.

No. of iterations Precision Recall Accuracy F-score Kappa
Iteration-1 97.10 95.71 96.43 96.40 95.26
Iteration-2 97.10 95.71 96.43 96.40 95.26
Iteration-3 97.18 98.57 97.86 97.87 97.13
Iteration-4 93.15 97.14 95.00 95.10 93.24
Iteration-5 94.37 95.71 95.00 95.04 93.30
Average 95.78 96.57 96.14 96.16 94.84

Journal of Healthcare Engineering 7



Table 5 and Figure 10 provide a comparative study of the
AORNDL-MIC system with current methodologies interms of
accuracy. *e experimental results indicated that the
AORNDL-MIC technique has resulted in better results over the
other methodologies under all subjects. For instance, with S-1,
the AORNDL-MIC algorithm has accomplished higher per-
formance of 81.20% whereas the CSP, FBCSP MIBIF, FBCSP

MIRSR, and FDBN techniques have attained lower accuracy of
66%, 68%, 70%, and 81% respectively. Moreover, with S-5, the
AORNDL-MIC approach has reached superior accuracy of
85.80% whereas the CSP, FBCSP MIBIF, FBCSP MIRSR, and
FDBN methods have attained lesser accuracy of 77%, 93%,
93%, and 93%, respectively. Furthermore, with S-9, the
AORNDL-MIC approach has gained superior accuracy of
87.60% whereas the CSP, FBCSP MIBIF, FBCSP MIRSR, and
FDBN methods have achieved minimum accuracy of 83%,
88%, 87%, and 91% correspondingly.
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Figure 6: Kappa analysis of AORNDL-MIC technique with current approaches.

Table 2: Kappa analysis of AORNDL-MIC technique with existing
approaches on test BCI competition 2003, dataset III.

Methods Kappa
AORNDL-MIC 94.84
VGG19 91.00
AlexNet 87.00
VGG16 90.00
SqueezeNet 57.00
ResNet50 41.00
GoogleNet 44.00
DenseNet201 36.00
ResNet18 29.00
ResNet101 30.00
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Figure 7: Accuracy analysis of AORNDL-MIC approach with
current methodologies.

Table 3: Accuracy analysis of AORNDL-MIC technique with
existing approaches on test BCI competition 2003, dataset III.

Methods Accuracy
Hybrid KNN 84.29
CSP-SVM 82.86
Adaptive PP-Bayesian 90.00
STFT-KNN 83.57
STFT-DL 90.00
Optimized GA FKNN-LDA 84.00
WTSE-SVM 86.40
CWTFB-TL 95.71
AORNDL-MIC 96.14
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For ensuring the improvement of AORNDL-MIC
model, an average accuracy analysis is also made in
Figure 11. From the figure, it is apparent that the CSP and
FBCSP MIBIF techniques have reached lower perfor-
mance with an average accuracy of 76.33% and 79.56%
respectively. In line with, the FBCSP MIRSR and FDBN

systems have resulted in moderately increased average
accuracy of 80.22% and 84.22% respectively. However, the
AORNDL-MIC approach has gained effective perfor-
mance over the other methodologies with the maximal
average accuracy of 86.53%. By observing the experi-
mental results and discussion, it is confirmed that the
AORNDL-MIC approach has shown better results over
the other methodologies.
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technique.

Table 4: Classification results of the AORNDL-MIC approach under several subjects and runs.

No. of runs S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 Avg.
R-1 87.00 85.00 88.00 86.00 84.00 76.00 83.00 96.00 83.00 85.33
R-2 71.00 83.00 80.00 94.00 85.00 79.00 91.00 83.00 92.00 84.22
R-3 84.00 96.00 94.00 98.00 88.00 90.00 85.00 89.00 87.00 90.11
R-4 82.00 91.00 75.00 89.00 91.00 92.00 81.00 88.00 95.00 87.11
R-5 82.00 81.00 86.00 91.00 81.00 87.00 95.00 89.00 81.00 85.89
Avg. 81.20 87.20 84.60 91.60 85.80 84.80 87.00 89.00 87.60 86.53
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Figure 10: Accuracy analysis of AORNDL-MIC technique with
recent methods.

Table 5: Comparative study of AORNDL-MIC technique with
recent methodologies interms of accuracy.

Subject CSP FBCSP
MIBIF

FBCSP
MIRSR FDBN AORNDL-

MIC
S-1 66.00 68.00 70.00 81.00 81.20
S-2 62.00 59.00 61.00 65.00 87.20
S-3 57.00 59.00 61.00 66.00 84.60
S-4 97.00 98.00 98.00 98.00 91.60
S-5 77.00 93.00 93.00 93.00 85.80
S-6 75.00 80.00 81.00 88.00 84.80
S-7 77.00 78.00 78.00 82.00 87.00
S-8 93.00 93.00 93.00 94.00 89.00
S-9 83.00 88.00 87.00 91.00 87.60
Average 76.33 79.56 80.22 84.22 86.53
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5. Conclusion

In this study, an AORNDL-MIC system was developed to
categorize MI on BCIs. *e proposed AORNDL-MIC tech-
nique encompasses a series of operations namely MSPCA
based denoising, CWT based decomposition, RetinaNet based
feature extraction, AOA based hyperparameter, and ID3 based
classification. *e AOA is employed to tune the hyper-
parameter of RetinaNet and improves the classification per-
formance of the AORNDL-MIC technique. For ensuring the
outcome of the AORNDL-MIC method, a number of exper-
iments were performed and the outcome is examined under
different aspects.*e experiment results of the AORNDL-MIC
algorithm on the benchmark datasets reported its promising
outcome over the current state of art approaches. In the future,
hybrid DLmodel can be utilized for boosting the efficacy of the
MI classification process.
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