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Diabetic retinopathy (DR) is currently one of the severe complications leading to blindness, and computer-aided, diagnosis
technology-assisted DR grading has become a popular research trend especially for the development of deep learning methods.
However, most deep learning-based DR grading models require a large number of annotations to provide data guidance, and it is
laborious for experts to find subtle lesion areas from fundus images, making accurate annotationmore expensive than other vision
tasks. In contrast, large-scale unlabeled data are easily accessible, becoming a potential solution to reduce the annotating workload
in DR grading.-us, this paper explores the internal correlations from unknown fundus images assisted by limited labeled fundus
images to solve the semisupervised DR grading problem and proposes an augmentation-consistent clustering network (ACCN) to
address the above-mentioned challenges. Specifically, the augmentation provides an efficient cue for the similarity information of
unlabeled fundus images, assisting the supervision from the labeled data. By mining the consistent correlations from aug-
mentation and raw images, the ACCN can discover subtle lesion features by clustering with fewer annotations. Experiments on
Messidor and APTOS 2019 datasets show that the ACCN surpasses many state-of-the-art methods in a semisupervised manner.

1. Introduction

Diabetic retinopathy (DR) is one of the most prevalent
complications caused by diabetes, which may cause inter-
mittent or even permanent blindness [1–3]. Ophthalmolo-
gists often judge the severity of DR based on the features of
the disease and the number of lesions, such as observing the
characteristics of microaneurysms, hemorrhages, soft exu-
dates, and hard exudates [4, 5]. Recognized by international
authorities [6, 7], the severity of DR can be categorized into
the following five levels: normal, mild, moderate, severe
nonproliferative, and proliferative; these can be summarized
into two main categories: normal and abnormal or

nonreferable and referable symptoms [7–9]. If the retina is in
the pathological state of DR for a long time, the blood vessels
in the eye will eventually become blocked, eventually leading
to decreased vision and even blindness. -erefore, it is es-
sential to detect DR early and grade the DR severity in
patients because early correct and timely treatment can
largely avoid the deterioration of the disease.

In clinical diagnosis, DR detection mainly relies on the
careful comparison of colorful fundus images by ophthal-
mologists. Recently, as the number of diabetic patients has
increased yearly, the number of subjects to be tested has
become vast, bringing a significant burden on ophthal-
mologists and DR experts who waste much time observing
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fundus images. -erefore, it is necessary to develop com-
puter-aided diagnosing models to efficiently reduce the
workload and inspection time for ophthalmologists and
experts, achieving real-time DR diagnosis for patients.

To solve the automatic DR grading, early attempts
[10–13] are inclined toward exploiting traditional machine
learning methods on manual features, limited by specific
feature extraction skills and experience. Aiming at this
weakness, deep learning has become a popular solution for
DR grading with many successful applications [14, 15] be-
cause it can automatically learn critical features from fundus
images, supervised by accurate annotations. However, these
models often depend on a large number of labeled fundus
images, whose discriminant information only occurs in
subtle blood vessels.-eDR grading annotators must master
the professional medical knowledge to support them,
manually finding key features to decide on actual DR se-
verity, which is a highly time-consuming workload. -us,
high-quality labeled data are scarce, making the supervised
DR grading model hard to accomplish.

To save the expensive annotating work in real applications,
this paper attempts to solve automatic DR grading in a
semisupervised manner to integrate unlabeled data into the
training stage because clinical inspection can produce many
unlabeled fundus images containing important potential in-
formation.-us, the most crucial task of this paper is to train a
robust DR-gradingmodel frommassive unlabeled data assisted
by fewer annotations, as shown in Figure 1. Extracting more
identical information from unlabeled fundus images becomes a
top priority, and the data consistency of unlabeled data is vital
for feature learning in our work [16–19]. Inspired by previous
works, we make more efforts to mine consistent correlations
between raw fundus images and their augmentations, which
preserve the consistent discriminative information but suffer
from image transformations, such as geometric transforma-
tion, color space augmentation, random erasing, generative
adversarial networks, and neural style transfer.

In this paper, we propose an augmentation-consistent
clustering network (ACCN) to alleviate the laborious an-
notating workload in clinical application, which straight-
forwardly mines the consistent inner correlations among
fundus image augmentations and dynamically conducts
weight clustering to utilize the sufficient unlabeled data,
absorbing fewer annotated fundus images. As the dis-
criminant cues indicating DR grades are subtle in fundus
images, the augmentations from raw images can help the
ACCN spread the information from annotated data to
unlabeled images. Besides, an online memory unit is in-
troduced to dynamically update the clustering centroids,
guaranteeing the global consistency between labeled and
unlabeled fundus images in exploring critical information.

-e main contributions of this article are summarized as
follows:

(1) We propose a brand-new, highly robust semi-
supervised framework (ACCN) to solve the DR
grading problem, inspired by the consistent discrimi-
native correlations between labeled and unlabeled
fundus images with different augmentations.

(2) We design a reasonable weight-clustering algorithm
that benefits from an online memory unit to dy-
namically update the clustering centroids with global
consistency, generating high-quality pseudolabels
for unlabeled images and integrating annotated
fundus images to explore discriminative information
for DR grading.

(3) We conducted experiments on the public data sets
Messidor and APTOS 2019, and the results show that
the ACCN is superior to many state-of-the-art DR
grading methods.

2. Related Work

-is section summarizes recent works on the diabetic ret-
inopathy grading problem and introduces the successful
computer-aided diagnosing applications of semisupervised
learning.

2.1. Diabetic Retinopathy Grading. With the continuous
development of deep learning, its application to retinal
images has also achieved great success. Recently, some new
research has been proposed [20–23]. For example, Sambyal
et al. [20] proposed an aggregated residual transformation-
based model for automatic multistage classification of dia-
betic retinopathy. Bhardwaj et al. [21] developed a hierar-
chical severity-level grading system to detect and classify DR
ailments. Bodapati et al. [22] presented a hybrid deep neural
network architecture with a gated attention mechanism for
automated diagnosis of diabetic retinopathy. Math et al. [23]
designed a segment-based learning approach for diabetic
retinopathy detection, which mutually learns classifiers and
features from the data and achieves significant development
in diabetic retinopathy recognition.

However, the methods mentioned above require a large
amount of labeling information. Medical labeling is well
known to be expensive and time-consuming, which many
institutions cannot afford. -is significantly constrains the
transferability of these developed DR grading systems.

2.2. Semisupervised Learning inMedical Image Classification.
In recent years, medical imaging technology has been fully
developed for clinical applications [24–26]. In medical
image analysis, annotation is often difficult to obtain because
it is expensive and labor-intensive. Semisupervised learning
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Figure 1: Analysis diagram of our semisupervised DR-grading
solution.
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to relieve the pressure of labeling has provided great help to a
certain extent. In recent years, some studies have successfully
applied the semisupervised framework to medical image
analysis [27–31]. Wang et al. [27] incorporated virtual
adversarial training on both labeled and unlabeled data into
the course of training, self-training, and consistency regu-
larization to effectively exploit useful information from
unlabeled data. Calderon et al. [28] explored the impact of
using unlabeled data through the implementation of a recent
approach known as MixMatch for mammogram images.
Pang et al. [29] developed a radionics model based on a
semisupervised GANmethod to perform data augmentation
in breast ultrasound images. Liu et al. [30] proposed a self-
supervised mean teacher for chest X-ray classification that
combines self-supervised mean-teacher pretraining with
semisupervised fine-tuning. Bakalo et al. [31] designed a
deep learning architecture for multiclass classification and
localization of abnormalities in medical imaging illustrated
through experiments on mammograms.

In this paper, we propose a novel augmentation-con-
sistent clustering network (ACCN) for semisupervised di-
abetic retinopathy grading on fundus images, exploring the
discriminative information learned from plentiful unlabeled
data and fewer annotated fundus images.

3. Method

Aiming to explore the discriminant information from
massive unlabeled fundus images, we design a novel sem-
isupervised DR grading approach, the augmentation-con-
sistent clustering network (ACCN), to assist the supervised
model trained by fewer annotated data. -e ACCN utilizes
consistent learning and weight clustering on easily accessible
unlabeled data with the help of fewer annotations to achieve
the semisupervised diabetic retinopathy grading task. In
detail, the ACCN first considers the category correlations
among unlabeled fundus images, maintaining consistency
with different augmentations. -en the trained model from
annotated fundus images is utilized as the baseline network,
and the ACCN deploys a clustering algorithm to weight their
CNN features to calculate the pseudolabels for unlabeled
images. Finally, we utilize the real annotations and pseu-
doannotations to train the network parameters. -e whole
workflow for the ACCN is illustrated in Figure 2, and the
symbols are summarized in Table 1.

3.1. Augmentation-Consistent Learning. In semisupervised
DR grading work, the most crucial task is the exploration of
unlabeled retinal images. At the same time, the augmen-
tation in deep learning is a popular and easily conducted
process to produce various transformations for unlabeled
raw fundus images, containing consistent identity infor-
mation but close to realistic scenarios [19, 32]. -us, the
ACCN first conducts reasonable augmentations for raw
retinal images to generate diverse data with the same cat-
egory and then employs a convolutional neural network to
learn appearance feature representations for the augmented
images.

In the ACCN, we adopt augmentation anchoring
technology [19, 32] that utilizes the pseudolabels that come
from weakly augmented samples as the “anchor” and align
the strongly augmented samples to the “anchor.” Notably,
the weak augmentation Aweak in our method contains a
random cropping followed by a random horizontal flip, and
the strong augmentation sequence Astrong � A1

strong,A
2
strong,

· · · ,Ak
strong} is achieved by RandAugment and a fixed aug-

mentation strategy that contains a sequence of image
transformations.

Because the labeled images contain sufficient grading
information to find samples in the same category, with no
need to generate much more augmented images, we only
process the annotated retinal image xl

i by weak augmen-
tation to produce an “anchor” xl

i,

x
l
i � Aweak x

l
i , (1)

while the unlabeled fundus image xl
u should be transformed

into an image sequence by strong augmentations to produce
more strongly augmented samples to form sufficient training
data in the same category. -us, we utilize the strong
augmentation series to generate their augmentations:

X
u

j � A
k
strong x

u
j  

K

k�1
, (2)

where xu denotes K strongly augmented unlabeled fundus
images from Astrong.

-rough the above-mentioned augmentations, we can
obtain the weak augmented annotated image xl

i and strong
augmented unlabeled fundus images Xu

j , which are intended
to supervise the model training to analyze the images from
multiple angles and extract more critical features.

As for feature learning, the ACCN employs the ResNet-
50 architecture [33] as the feature extractor for fundus
images and their augmentations due to its excellent per-
formance in medical imaging. Particularly, the feature ex-
tractor is defined by G for annotated and unlabeled retinal
images, and the feature vector G(·) is transformed into a
probability vector by a classifier F. Taking a retinal image x

as an example, its prediction can be mathematically rep-
resented by

P(x) � F(G(x)). (3)

Essentially, the weak augmented images enlarge the scale
of labeled data to compose a labeled set
Xl � xl

1, xl
2, · · · , xl

Nl
 ∪ xl

1, xl
2, · · · , xl

Nl
 , training the fea-

ture extractor and classifier by labeled cross-entropy (lce)
loss:

Llce � − 

xi∈Xl

y
l
ilog F G xi; WG( ; WF( ,

(4)

where WG and WF represent the network parameters of the
feature extractor and the classifier, respectively.

Similarly, the strong augmentations for unlabeled im-
ages produce the transformed samples with the same cat-
egory as raw images. -us, we also introduce an
augmentation-consistent (ac) loss to enforce that the
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classifier predicts the consistent probability vectors for the
correlated augmentation and raw fundus images:

Lac � 

xj∈Xu,xj∈X
u

j

P xj  − P xj 
�����

�����,
(5)

where Xu � xu
1 , xu

2 , · · · , xu
Nu

  denotes the set of unlabeled
retinal images.

Benefiting from the labeled cross-entropy loss Llce and
augmentation-consistent loss Lac, the feature extractor G
and classifier F can learn a lot from the discriminative
consistency between augmentations and raw images, espe-
cially from the unlabeled retinal images. Hence, the back-
bone network in the ACCN possesses quite an inferential
capability for unknown retinal images.

3.2. Weight Clustering Unit. Even though the consistency
information has been extracted from unlabeled images,
accurate diabetic retinopathy grading cues are implied in the

annotations. In recent years, pseudolabels have become an
essential research topic in unlabeled image analysis [34–36].
However, simply introducing a pretrained fully connected
classifier F by the limited labeled data does not contain
robust identification ability; thus, it cannot effectively extract
the internal association between the unlabeled feature
representations because the augmentation consistent loss is
short of the annotations. To address this weakness, the
ACCN designs a weight clustering unit to mine the mutual
relationships between unknown samples and their
pseudolabels.

Specifically, we calculate the estimated centroid ck for
each class according to the primary outputs from the trained
classifier F:

ck �
xu

i
∈Xuδk F G x

u
i( ( ( G x

u
i( 

xu
i
∈Xuδk F G x

u
i( ( ( 

, (6)

where δk corresponds to the k-th element output by softmax.
-en, we calculate the distance between each unlabeled
feature and each centroid to generate pseudolabels
according to the nearest neighbor principle:

y
u
j � argmin

k
d G x

u
j , ck , (7)

where d(·, ·) denotes the Euclidean distance measure. In this
way, we induce the prediction model focus on some samples
around the decision boundary and explore more discrimi-
native information by the weight clustering unit.

It should be noted that weight clustering is supported by
iterative epochs to update the centroids. -is means that
multiple clustering is required in each batch, producing
different local centroids. -is may cause much more cen-
troid deviation with wrong pseudolabeled annotations. To
avoid this problem in our ACCN model, we design a dy-
namic centroid memory Mk 

Nc

k�1 to store the temporary
global centroids in each batch, where Mk is the k-th class
center and Nc represents the number of image categories.
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Figure 2: Scheme of the augmentation-consistent clustering network. First, different augmentations for annotated and unlabeled fundus
images are generated in a weak and a strong manner, respectively, and consistent feature learning is conducted to train a robust feature
extractor.-en, the unlabeled feature representations are fed into a weight-clustering unit to assign pseudolabels with dynamically updating
memory in model training. Finally, the pseudolabels and corresponding unlabeled retinal images are utilized to optimize the whole network
for solving the DR grading task with fewer annotations.

Table 1: -e symbol summary.

Symbol Meaning
xl

i -e i-th annotated retinal image
xu

j -e j-th unlabeled retinal image
Aweak -e weak augmentation
Astrong -e collection of strong augmentations
xl

i -e weak augmented image for xl
i

X
u

j -e collection of strong augmentations for xu
j

G -e feature extractor
F -e classifier
Xl -e labeled raw images and their augmentations
Xu -e set of unlabeled raw images
Xu -e unlabeled raw images and their augmentations
ck -e local centroid for k-th class
yu

j -e generated pseudolabel
Mk -e global centroid
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Besides, the updated strategy for the global centroid is as
follows:

Mk � 1 − ηtk
 Mk + ηtk

ck, (8)

where ηtk
� e− tk represents the updating rate of grade k and

tk denotes the number of categories k that appeared in the
previous batch.

Finally, we minimize the distance between the local and
global centroids in each batch by a global consistent (gc) loss:

Lgc �
1

Nc



Nc

k�1
Mk − ck

����
����2. (9)

By advancing the above-mentioned relationship, we can
alleviate the problem that wrong pseudolabeled samples
cannot be correctly distinguished, which also improves the
effect of diabetic retinopathy grading.

By the weight clustering unit, we can obtain reasonable
pseudoannotation for the unlabeled retinal images. -is
supports us to conduct the annotation level supervised
training from unlabeled fundus data and their strong aug-
mentations Xu � xu

1 , xu
2 , · · · , xu

Nu
 ∪ X

u

1 , X
u

2 , · · · , X
u

Nu
 

corresponding to their pseudolabels yu
1 , yu

2 , · · · , yu
Nu

 ,
according to a pseudo-cross-entropy (pce) loss:

Lpce � − 
xj∈Xu

y
u
j log F G xj; WG ; WF .

(10)

3.3. Final Loss for ACCN Model. As described above, our
semisupervised diabetic retinopathy grading approach
ACCN is composed of two crucial modules, namely, an
augmentation-consistent learning and a weight clustering
unit, attached with labeled cross-entropy loss Llce, aug-
mentation-consistent loss Lac, global-consistent loss Lgc, and
pseudo-cross-entropy loss Lpce.

To update all trainable parameters in the ACCN, we
integrate the final loss into the network with balance
parameters:

min
WG,WF

L � Llce + c1Lac + c2Lgc + c3Lpce, (11)

where c1, c2, and c3 are parameters to balance different loss
functions.

4. Experiments

4.1. Database Description. In this section, we evaluate the
proposed augmentation-consistent clustering network by
training on the publicly available dataset Messidor [37]. In
detail, Messidor [37] contains approximately 1200 digital
fundus images obtained by using a Topcon TRC NW6
nonmydriatic camera. -e sizes of fundus images are
440× 960, 2240×1488, or 2304×1536 in, and ophthal-
mologists labeled each image. According to the DR severity,
Messidor classifies the fundus images into one of the four
grades, namely, normal and no lesion (R0), mild (R1), severe
nonproliferative (R2), and proliferative (R3) retinal images.

-e data distribution of Messidor in each grade is described
in Table 2, and the popular DR grading task of normal/
abnormal classification is summarized in Table 3. -e dis-
tribution shows that the common challenging problem is the
data imbalance, which may influence the model training.

4.2. Experimental Settings. -is paper conducts normal/
abnormal DR grading experiments, dividing the dataset into
600 training images and 600 testing samples. In detail, la-
beled retinal images in the training data contain 400 labeled
fundus images, including 200 positive cases and 200 negative
images. As for the unlabeled training data, they contain 46
positive cases and 154 negative images. In addition, we chose
the left 600 retinal images as testing data, which contain 300
positive and 300 negative cases. -e entire experimental
process is completed using the PyTorch framework under
GeForce 2080TI GPU. Precisely, each retinal image is ad-
justed to 512 ∗ 512 pixels before inputting it to the network,
and the batch size is set to 8. Besides, we use ResNet-50 as the
backbone, and the classifier is composed of linear layers. For
parameter settings, the learning rate is set to 0.001, and
balance parameters [λ1, λ2, and λ3] are [0.6, 0.3, and 0.8,
respectively] to perform the best DR grading results. In
addition, the training process spends around 2.5minutes per
epoch, and the evaluation for testing images takes 5 milli-
seconds per fundus image.

To measure the experimental performance, we adopt the
popular indicators to compare and evaluate our models:
specificity (SPE), sensitivity (SEN), accuracy (ACC), and the
area under the ROC curve (AUC).

4.3. Comparison with Other Methods

4.3.1. Performance on Messidor. In order to demonstrate the
performance of the ACCN on DR grading, we compare with
different baseline methods for the normal/abnormal DR
grading task. As to the compared methods, we choose the
manual grading results from two experts [38] and introduce
two experimental methods used in [39], which emphasize
the role of multiple filter sizes in learning fine-grained
discriminant features and proposes two deep convolutional
neural networks, combining kernels with a multiple loss
network and a Vgg network. -e normal/abnormal fundus
image classification results on Messidor are reported in
Table 4, and our ACCN framework achieves the highest
accuracy of 89.8%, sensitivity of 93.0%, specificity of 86.7%,
and AUC of 93.6%, outperforming the supervised DR
grading model and experts. What needs to be emphasized is
that our ACCN model only utilizes 400 annotated retinal
images and other training data is unlabeled while the
compared models require fully annotated retinal images and
experts require long-term professional training. -erefore,
the excellent performance of our ACCN in a semisupervised
manner proves that it can save us from depending on ex-
pensive annotating networks in significant applications for
DR grading.

Besides, we choose two existing semisupervised medical
image classification methods [30, 41] to compare with our
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ACCN model. S2MTS2 [30] combines self-supervised mean-
teacher pretraining with a semisupervised fine-tuning method
to solve the multilabel chest X-ray classification; SRC-MT [41]
proposes a sample relation data consistency paradigm to ef-
fectively extract unlabeled data by modeling the relationship
information among different medical image samples. To
compare the ACCN with them, we implement their public
available code on the Messidor dataset with the same settings.
-e results are summarized in Table 4, proving that our ACCN
approach is superior to those semisupervised medical image
classification methods, with considerable improvements in
each metric. Although our method outperforms some super-
vised methods, there is still a gap with advanced supervised
methods, and the ACCN still has the potential to be explored to
reach the supervised performance.

4.4. Visual Analysis for ACCN. -is article outlines two
popular visualizations for the ACCN to make it generally
available for the diabetic retinopathy grading task. First, the
ROC curve is shown in Figure 3, and our approach achieves
an AUC of 0.96 on the Messidor dataset. Besides, we utilize
600 testing fundus images and illustrate the classification
results in the confusion matrix (Figure 4). -e confusion
matrix can quickly visualize the proportion of various
misclassified categories into other classes. From the results,
the ACCN model correctly classifies the 279 abnormal and
261 normal fundus images, with 89.9% accuracy. Summa-
rizing the above-mentioned visualization results, we can see
that our ACCN model effectively utilizes a large amount of
unlabeled data with fewer annotations to solve the semi-
supervised DR grading task well.

At the same time, we calculate the loss reduction during
model training, illustrated in Figure 5. -e overall loss re-
veals a downward trend, and the regeneration of pseudo-
labels causes the ups and downs in the first half by clustering
within the batch. After adding the global-consistent loss, the
clustering centroids are dynamically updated more rea-
sonably, with stable loss convergence. -is demonstrates
that our ACCN can rapidly train a semisupervised DR
grading model and the global-consistent loss significantly
improves the convergence.

4.5. Performance on Other DR Grading Datasets. -is article
also chooses another publicly available DR grading dataset,

Table 2: -e class distribution of datasets.

Label Messidor
DR 0 546
DR 1 153
DR 2 247
DR 3 254

Table 3: -e popular classification task on DR grades.

Label Description
DR grading DR 0/DR 1/DR 2/DR 3
Normal/abnormal DR DR 0/DR 1, DR 2, DR 3

Table 4: Compared performance on Messidor.

Methods Accuracy Sensitivity Specificity AUC
Expert A [38] 87.8 — — 92.2
Expert B [38] 76.4 — — 86.5
Holly et al. [39] 87.1 88.2 85.7 87.0
Holly et al. [39] 85.8 91.6 80.3 86.2
Odena et al. [40] 94.7 95.4 95.1 96.7
S2MTS2 [30] 86.7 88.7 84.8 86.3
SRC-MT [41] 85.8 86.4 85.2 84.8
ACCN 89.8 93.0 86.7 96.0
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Figure 3: ROC curve of the proposed ACCN model for normal/
abnormal DR grading on the Messidor dataset.
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Figure 4: Normal/abnormal DR classification on the Messidor
dataset.
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APTOS 2019, in the normal/abnormal DR experiments to
provide the transferability of the proposed ACCN ap-
proach. APTOS 2019 [42] was proposed in the APTOS 2019
diabetic retinopathy classification contest, which was or-
ganized by the Asia Pacific Tele-Ophthalmology Society. It
comprises 3662 retinal images from fundus photography
with available annotations captured from multiclinics with
different imaging conditions at Aravind Eye Hospital in
India. Concretely, this dataset contains five classes for
training the ACCN, and the data are highly imbalanced, as
summarized in Table 5. Compared to Messidor, APTOS
2019 is more challenging because it contains five grades on
DR and it can prove the effectiveness of our ACCN model
more sufficiently on normal and abnormal DR classifica-
tion, and the detailed division of different DR grades can be
found in Table 4.

From Table 6, it can be found that the ACCN has
reached a high accuracy of 93.4%, sensitivity of 91.0%,
specificity of 95.7, and AUC of 0.984. -ese results mean
that the ACCN can effectively extract the internal con-
nections among unlabeled retinal images in different
datasets and it can successfully solve the DR grading
problem with fewer annotations when transferred to other
application scenarios.

5. Further Analysis

-is section further discusses the impacts of major com-
ponents and parameters on the ACCN approach to the
semisupervised DR grading task, including the labeled data,
augmentation-consistent learning, and the weight clustering
unit.

5.1.  e Impact of Labeled Fundus Images. -is paper at-
tempts to solve the DR-grading task with fewer annotations.
-us there are very few high-quality samples with accurate
labels for DR diagnosis. To measure the impacts of labeled
data, we use accuracy to test how the number of labeled
retinal images influences the ACCN performance on the

Messidor dataset. From the results in Figure 6, it can be
observed that the DR grading accuracy rapidly increases
from 68.7% to 75.2% as the number of labeled fundus images
increases from 50 to 100 and it mildly increases from 75.2%
to 89.8% when the number of labeled data is between 100
and 400. Finally, the ACCN model achieves an accuracy of
93.4% when it is fully supervised.

-e above-mentioned experimental results show that
the proposed semisupervised model can work well using a
relatively small number of labeled samples, with fewer
annotating costs than existing supervised DR grading
models. However, using the proposed ACCN approach still
requires a certain amount of labeled samples to obtain a
higher classification accuracy. A similar trend and con-
clusion can also be observed from sensitivity, specificity,
and AUC.
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Figure 5: Loss curve of the ACCN for model training on the
Messidor dataset.

Table 5: -e class distribution of APTOS 2019.

Label APTOS Division
DR 0 1805 Normal
DR 1 370 Abnormal
DR 2 999 Abnormal
DR 3 193 Abnormal
DR 4 295 Abnormal

Table 6: Experimental results on APTOS 2019.

Methods Accuracy Sensitivity Specificity AUC
ACCN 93.4 91.0 95.7 98.4
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Figure 6: DR classification performance with different numbers of
labeled data.
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5.2.  e Impact of Augmentation-Consistent Learning.
-e first dominating method in the ACCN is the aug-
mentation-consistent learning module, which generates
weak and strong augmentations for annotated and unlabeled
training images, respectively, and conducts consistent fea-
ture learning for the raw images and their augmentations. To
weigh the impact of this module, we only employ raw images
to conduct the weight clustering network and assign
pseudolabels. -e results are reported in Table 7 (ACL).
Concretely, the ACL module improves the DR grading
performance with an accuracy of +13.5%, sensitivity of
+14.7%, specificity of +12.4%, and AUC of +14.6%. -is
further certifies that the novelties of our proposed aug-
mentation-consistent learning mechanism are beneficial to
the semisupervised DR grading task.

5.3.  e Impact of Weight Clustering. We then analyze the
influence of the weight clustering module. We remove the
entire clustering module and directly use the prediction
vector of the high-confidence sample after the softmax
output as the pseudolabel for training. -e effect of normal/
abnormal DR classification on the Messidor dataset is that
the accuracy has dropped by 8.1%, which demonstrates that
the ACCN employing a weight clustering unit to explore the
internal relationship between unknown samples is effective
in semisupervised DR grading task. Compared to the su-
pervised models in the study by Holly et al. [39], our model
achieves a competitive AUC of 86.2% when removing the
WLU. It benefits from the proposed augmentation-consis-
tent learning module and further proves the effectiveness of
our semisupervised learning approach.

5.4.  e Impact of Positive Cases in Unlabeled Data. -e
positive proportion of unlabeled data is an important factor
affecting the final performance for the semisupervised di-
abetic retinopathy grading problem. We finally discuss the
influence of the positive proportion of unlabeled training
data by changing the proportion of positive cases in unla-
beled data. -e results on the Messidor dataset are sum-
marized in Figure 7, revealing that the accuracy of
performance decreases with increasing positive proportion
in unlabeled training. -is demonstrates that the positive
cases in labeled training data provide more discriminative
information than the ones in unlabeled data. -us, the
balanced distribution of negative and positive cases both in
labeled and unlabeled data is important for the semi-
supervised diabetic retinopathy grading task. In addition,
under the premise that the number of labeled samples re-
mains unchanged, we record experimental results employ-
ing different proportions of positive samples (unlabeled).
-e result is shown in Figure 8.

6. Discussion and Conclusion

For the real application of diabetic retinopathy grading, the
lack of labeled data is the main challenge that limits the
application of deep learning. -is is probably due to the
following reasons. First, the lesion indicating DR is always
subtle in digital fundus images, so labeling retinal images
require expertise in long-term training, and hiring experts to
annotate is very expensive and time-consuming. Second,
medical data, especially images for human diseases, become
difficult to collect due to rigorous privacy issues. Finally, the
diseases that require the aid of computer vision are often
complex, and the model training must use sufficient data,
making the fundus image annotation more complicated.

To address the above-mentioned challenges, we propose
an augmentation-consistent clustering network (ACCN)
approach for semisupervised diabetic retinopathy grading,
which can mine internal correlations among unknown
samples assisted by fewer annotations. -e proposed model
can compensate for the lack of labeled data in the following

Table 7: -e contributions of the major steps in ACCN (%).

Target Accuracy Sensitivity Specificity AUC
ACL +13.5 +14.7 +12.4 +14.6
WLU +8.1 +9.3 +7 +9.8
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Figure 7: -e accuracy results of different positive proportions in
unlabeled training data.
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Figure 8: -e accuracy results with different ratios of positive
samples in unlabeled data.
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ways. (1) -e augmentation-consistent learning generates
weak and strong augmentations for annotated and unlabeled
fundus images and provides inherent consistent information
by labeled cross-entropy and augmentation-consistent los-
ses. (2) A weight clustering unit is designed to calculate the
pseudolabels for unknown retinal images with a dynamically
clustering algorithm, which utilizes weight centroids to
cluster in a global-consistent manner. (3) -e DR classifi-
cation model is further trained by combining annotated and
pseudolabeled retinal images to achieve the semisupervised
diabetic retinopathy grading task. Adequate experiments on
the Messidor dataset prove that the ACCN can perform
effective DR classification with limited labeled data, and the
extensive experiments on APTOS 2019 demonstrate the
scalability of our ACCN network to different domains.

In future, we will work on the unsupervised learning
approach to conduct fundus image classification without any
annotations. Besides, we will focus on diabetic retinopathy
grading in multiple stages to provide a more accurate di-
agnosis for ophthalmologists.
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