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�e use of high-speed video-endoscopy (HSV) in the study of phonatory processes linked to speech needs the precise iden-
ti�cation of vocal fold boundaries at the time of vibration. �e HSV is a unique laryngeal imaging technology that captures
intracycle vocal fold vibrations at a higher frame rate without the need for auditory inputs. �e HSV is also e�ective in identifying
the vibrational characteristics of the vocal folds with an increased temporal resolution during retained phonation and �owing
speech. Clinically signi�cant vocal fold vibratory characteristics in running speech can be retrieved by creating automated
algorithms for extracting HSV-based vocal fold vibration data. �e best deep learning-based diagnosis and categorization of vocal
fold abnormalities is due to the usage of HSV (ODL-VFDDC). �e suggested ODL-VFDDC technique starts with temporal
segmentation and motion correction to identify vocalized regions from the HSV recording and gathers the position of movable
vocal folds across frames.�e attributes gathered are fed into the deep belief network (DBN) model. Furthermore, the agricultural
fertility algorithm (AFA) is used to optimize the hyperparameter tuning of the DBN model, which improves classi�cation results.
In terms of vocal fold disorder classi�cation, the testing results demonstrated that the ODL-VFDDC technique beats the other
existing methodologies. �e farmland fertility algorithm (FFA) is then used to accurately determine the glottal limits of vibrating
vocal folds. �e suggested method has successfully tracked the speech fold boundaries across frames with minimum processing
cost and high resilience to picture noise. �is method gives a way to look at how the vocal folds move during a connected speech
that is completely done by itself.

1. Introduction

In recent years, higher-speed video endoscopy (HSV) has
been used to objectively analyze the vibratory properties of
the vocal folds during both continuous phonation and
�owing speech [1]. Unlike the visual stroboscope, HSV is a
powerful tool for understanding the complicated physio-
logical and phonological factors that govern sound output.
HSV records vocal cord movements and has become a
prominent method for detecting voice issues [1]. An ex-
amination of the vocal cords is a part of the medical eval-
uation of the voice. However, in medical situations, acoustic
analysis has remained the most useful tool for studying

glottal aerodynamics and providing information on speaker
voice function. �e acoustic parameter is devoid of bias and
gives a quantitative evaluation of perceived voice quality [2].
In order to gather meaningful data on the supra-glottal
glottis and glottal source, visual data of the vocal fold must
be included. HSV o�ers some bene�ts over alternative ap-
proaches.�e vocal waveformmay be collected and analyzed
to get high-quality data on vocal fold motion and glottal
air�ow variations over time [3].

HSV is especially bene�cial for quantifying and visual-
izing disorders that in�uence the dynamics of vocal folds [4].
Voice computation is a valuable technique for evaluating
intracycle and cycle-to-cycle vibratory properties, as well as
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nonstationary phonation activities [5]. However, without
the assistance of computerized research tools, sifting
through the huge amount of data acquired by employing
HSV is impossible in medical practice. Because of ad-
vancements in automated algorithms for extracting HSV-
enabled measurements of vocal fold vibration [6], users may
now get medically appropriate vocal fold vibratory features
while running speech. Machine learning (ML) methods are
required for mining large HSV data sets. Using this ML
method and at a lower processing cost, we could classify and
identify hidden patterns or similar and dissimilar structures
in the data more efficiently. Several of the methods used in
the study could also be used to find and categorize diseases
[7].

)e disease diagnosis in this method is based on an
automatic categorization judgment, but there is no apparent
sign of the presence of a voice problem. An automated
system user could diagnose the sickness more accurately and
precisely if supported by visual signs. )e bulk of today’s
advanced devices is designed to detect vocal fold problems
[8]. Some approaches rely on calculating F0, which is a
difficult issue in and of itself due to the nonperiodic nature of
disordered speech signals [9]. Each artificial neural network
(ANN) contains a vast number of layers that aid in the
processing of data, and each hidden layer may have a
particular activation function.)e hidden layer tries to reach
more goals, but it is not the product’s final “image” [10]. In
addition to scientifically documenting therapeutic out-
comes, HSV has the potential to supplement and replace
clinical diagnosis of voice disorders and vocal fold vibratory
dysfunction. However, normative data must be established
for HSV parameters to increase the therapeutic utility and
clinical significance of this powerful imaging technique. One
of the initial elements to establish is the effect of HSV re-
cording frame rate on HSV parameters. To our knowledge,
no research has examined the effect of HSV recording frame
rate on computed quantitative HSV parameters. Never-
theless, as previously said, it is vital to study the behavior and
stability of HSV parameters when HSV recording rates
change. Consequently, this was the focus of the present
endeavor, which aimed to raise awareness of the issue and
advocate for the standardization of HSV parameter
computation.

)is study presents the best deep learning-based vocal
fold disorder detection and classification (ODL-VFDDC)
method using HSV. )e suggested ODL-VFDDC technique
employs preprocessing, feature extraction, and feature se-
lection procedures. Furthermore, the obtained characteris-
tics are fed into the deep belief network (DBN) model.
Furthermore, the agricultural fertility algorithm (AFA) is
employed to optimize the DBN model’s hyperparameter
tuning, which improves classification results. )e farmland
fertility algorithm (FFA) is used to gather accurate glottal
margins during vocal fold vibrations.)e study’s goals are to
(1) establish a theoretical framework for the proposed model
and (2) demonstrate its applicability in practice. (iii) It shows
how vocal fold boundaries are represented in HSV data
during the linked speech, as well as the tensile strength of
demanding colored HSV pictures. As a result, the

recommended plan was executed. HSV data was collected
from a vocally normal adult using a color high-speed
camera. )e performance of the ODL-VFDDC model is
evaluated using a benchmark dataset, and the findings are
examined in a variety of ways.

)e remaining section of this paper is structured as
follows. Section 2 contains works that are related. Section 3
then provides a proposed system description. )en, in
Section 4, the detailed performance of the suggested system
is shown, and in Section 5, the research work is concluded.

2. Related Works

Yousef et al. [11]. )e proposed automatic spatial seg-
mentation is a critical step in ushering in a new era of
precision laryngeal imaging measurements. )is work is
required for the automatic extraction and measurement of
vocal fold vibratory characteristics. For the whole “Rainbow
Passage,” temporal segmentation and motion compensation
were able to distinguish the vocalized portions and locate the
vibrating vocal folds. )e created automated spatial seg-
mentation system successfully captured the vocal fold
boundaries across frames for each vocalization, allowing for
correct GAW computation at each frame.

Fehling et al. [12] presented a method for autonomously
segmenting the time-varying glottal region and vocal fold
tissue from laryngeal HSV using the DCNN methodology.
)e segmentation quality of a higher-performing CNN that
considers the temporal environment using LSTM cells.

Using pathological speech recognition and artificial
intelligence, Hu et al. [13] discovered novel vocal fold dis-
orders. )e method was trained with a CNN model, and the
results were compared to those of human experts. )is
artificial intelligence-based technology might be utilized in
medical contexts to detect abnormalities in the vocal folds by
simply listening to the person’s voice.

Koc et al. [14] proposed an automated approach for
segmenting the glottis in images of HSV vocal folds. In HSV
photographs, a mask is initially built based on the ROI’s
overall variation standard.)e planar lighting system is then
evaluated using consecutive HSV and reflectance images.
)e masked HSV is used to make an image of the distri-
bution of reflectance in a vertical slice.

Kist and Döllinger [8] performed a complete exami-
nation of the U-Net structure in terms of computing load
and inference speed by lowering the number of parameters
and computations in the approach. At first, the U-Net
structure was looked at to see if it could simplify processing,
speed up run time, and always keep a higher level of
accuracy.

Ali et al. [15] suggested an approach that is based on
human hearing and can diagnose and classify a wide range of
vocal fold problems. In the current method, important
bandwidth phenomena are explored using bandpass filters
dispersed over the Bark scale. Kist et al. [16] provided a
thorough examination of a method that identifies the glottal
midline completely automatically. )en, they created a
biophysical system to generate a variety of vocal fold os-
cillations. Before using these two simulations and the
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annotated endoscopic images to train DNN at different
stages of the study and compare it to the CV method, they
also manually annotated the publicly available BAGLS data
set.

In contrast to several current spatial segmentation
methods, which are more vulnerable to picture noise and
intensity uniformity, the suggested ODL-VFDDC approach
is noise-resistant. To capture the glottal boundaries in each
kymogram, we divided HSV kymograms at various vocal
fold cross-sections in individual vocalization using our
suggested technique. )e kymogram edges were recognized
and registered to the HSV frames [17].

3. The Proposed Model

In this study, a unique ODL-VFDDC system is developed for
categorizing and detecting vocal fold diseases. Preprocess-
ing, feature extraction, feature selection, DBN-based clas-
sification, and FFA-based hyperparameter optimization are
the steps involved in the proposed ODL-VFDDC approach.
)e overall process of the ODL-VFDDC technique is
depicted in Figure 1.

3.1. Preprocessing. )e timing of the vibration starts and the
offset of vocalized segmentation is automatically recovered
from the HSV using temporal segmentation [18]. After noise
reduction and motion compensation, the video frame of all
vocalizations is used to figure out where the vocal folds are
present in the window.

3.2. Feature Extraction and Selection. Accurate feature se-
lection is required for the ML technique to be used effec-
tively. In image feature extraction, the texture and intensity
of the pixels are the most important factors [19]. )e matrix
cells (pixels) are composed of three image modules with
arithmetic values ranging from 0 to 255. )ree features
retrieved are a gradient feature and two intensity features.
Several combinations of the above-mentioned characteris-
tics are used in the development of the proposed algorithm
[20] to find the feature that must be used for executing an
accurate depiction of the vocal fold edge. )e pixel inten-
sities of the green and red channels are considered two
characteristics of the kymogram.

)e proper feature selection is a crucial first step in the
successful use of the ML approach. )e intensities and
textures of the pixels play a major role in determining how to
extract the characteristics from an image [21]. A 2-D matrix
is made up of the pixels in the kymogram’s horizontal and
vertical directions. )e three image components in each
matrix (pixel) cell have a numerical value between 0 and 255,
which corresponds to the three color channels (i.e., red,
green, and blue). )e features were calculated using only the
intensity values of the red and green channels. )e blue
channel was excluded from the analysis due to severe noise
and a lack of essential data. In this work, two intensity
features and a gradient feature were retrieved as three
features [22]. )e creation of the suggested algorithms used
various numbers and combinations of the features to decide

which features should be used to provide an appropriate
vocal fold edge representation.

Intensity Features: Red and green channel pixel inten-
sities in a kymogram were regarded as two characteristics.
Selecting the pixel intensities as a feature was crucial to
making it easier to tell the glottal area from the laryngeal
tissues in the kymograms since the regions of interest in the
kymogram (glottal areas) have lower intensities (darker)
than the surrounding regions. Due to the significant degree
of noise in the current video data and the occurrence of black
pixels outside of the glottis, relying just on intensities as
features were insufficient to segment the image.

As the region of interest in kymograms has a lower
intensity (darker color) than the surrounding region, it is
critical to distinguish the glottal region using pixel intensity
[23]. Due to the increasing noise level in the prior video
footage and the existence of black pixels, the intensity feature
is insufficient to segment the image (except for the glottis).
)e contrast between the surrounding areas and the in-
tensity of the glottis is used to identify the glottal area
borders using an image gradient [24]. )e positive and
negative gradients in the kymogram are computed with an
eight-pixel step size beside x-and y-axes. As a result, features
are extracted using the kymogram image gradient.

3.3. DBN-Based Disorder Detection and Classification.
DBNs transcend the restrictions of backpropagation by
employing unsupervised learning to generate layers of
feature detectors that represent the statistical structure of the
input data without any prior knowledge of the intended
output. High-level feature detectors capture complicated
higher-order statistical patterns in input data that may be
used to forecast the labels [24]. DBNs based on RBMs are
one of the most significant deep learning technologies.
RBMs are equivalent to DBN building blocks in that they
provide an effective training mechanism. )e DBN model is
used to identify and categorize vocal folds. )e RBM is a
blended distribution of visible and hidden units in which the
parameters for energy function are set as given below:

E(v, h, θ) � 􏽘
j

vj − Ci􏼐 􏼑
2

2σ2j
− 􏽘

i

cihi − 􏽘
j,i

vj

σj
hiWji, (1)

where σj represents the standard deviation (SD) of Gaussian
noise to visible units. As the data are predicted in a usual
manner under the speech for spectrograms, it is anticipated
that the spectrogramwill be converted to a picture to create a
comparable dimension. )e weighted distribution of the
prediction based on real data and the forecast method is
determined as shown below:

−
zlogP(v)

zWji
�〈vjhi〉real −〈vjhi〉predict, (2)

where 〈vjhi〉 represents the distribution’s expected value, as
stated by the subscript that follows. )e stochastic ascent
from the log probability of learned data is proven using a
simple rate of learning concept as follows:
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ΔWji � α 〈vjhi〉real −〈vjhi〉predict􏼐 􏼑. (3)

)e pace of learning is denoted by the symbol. )e
purpose of applying the DBN’s learning rate for locating
momentum from upgrading weight and bias. MLP uses
DBN’s infrastructure, which is divided into many tiers. )e
DBN approach uses feature extraction in signal represen-
tation to train the infrastructure system, which was the basic
conceptual design [25]. One of the main goals of trained
DBN is to train a stack of RBMs, whereas the model of
parameters θ learned by probability determines both
P(v|h; θ) and the previous distribution on hidden vector
(h|θ), thus the probability of visible vector (v)̂ı expressed as:

P(v) � 􏽘
h

P(h|θ)P(v|h; θ). (4)

After learning θ the previous probability of P(v|h; θ)is

reserved but P(h|θ) is exchanged by maximizing the frame
level of cross entropy using the class label’s forecast prob-
ability distribution. )is replacement enhances the likeli-
hood of training in composite models by reducing different
constraints [26]. )e DBN framework is shown in Figure 2.

DBN training is often divided into two stages: greedy
layer-wise pretraining and practice fine-tuning. Unsuper-
vised training and farmland fertility method (FFM) are used

to train the model parameters layer by layer in layer-wise
pretraining [27]. )e training begins with the lower-level
RBM that receives the DBN inputs and progresses up the
hierarchy until it reaches the top-level RBM that stores the
DBN outputs. As a consequence, the preceding layer’s

Output Layer

Hidden Layer-3

Hidden Layer-1

Input Layer

Hidden Layer-2

RBM3

RBM2

RBM1

Figure 2: )e framework of DBN.

Input: Training Dataset

Data Preprocessing

Feature Selection and Extraction

Intensity Features

Gradient Features

Classification Process
using

Deep Belief Networks

Parameter Tuning Process
using

Farmland Optimization Algorithm

Performance Validation

AP Rate EP Rate

Accuracy Precision

Recall F-Measure

Figure 1: )e overall process of the ODL-VFDDC technique.
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learned features or output is used as input for the subsequent
RBM layer. Following the training of RBM, the network may
be fine-tuned in a supervised manner using the back-
propagation approach as the last step.

Data were collected while a vocally healthy person re-
cited the “Rainbow Passage” using a specially constructed
HSV system [28]. )e glottal area in the HSV data was
segmented using a deep belief network (DBN). )e glottis
region was automatically tagged during vocal fold vibrations
using a recently developed hybrid approach by the authors as
an automated labeling tool to train the network on a series of
HSV frames. )e network was then evaluated on various
phonatory events on the HSV sequence using multiple
metrics, including intersection over union (IoU) and
boundary F1 (BF) score, against manually segmented
frames. )erefore, DBN structures are recognized as RBMs,
which generate the unit variable from a directional network
and fix a quick-assessed prediction with a collection of
detection weights. For DBN processing, it is defined as a
peak in a waveform [29–32]. It is not as easy as utilizing the
FFT to digitally alter the data to establish a peak of raw
waveform signals. )e staging approach searching for peaks
is as follows:

(i) Initializing length of window signals X.
(ii) Divided the signal frame into 3 sections right, left,

and center.
(iii) Implementing any function (min , median, max ,

mean, and so on.)
(iv) Verify the maximal center value in the peak. Choose

maximal value f(c) extremely closer to the window,
define the peak then mark it and endure. Else, go to
the next step.

(v) Alteration of input data by one instance and repeat
the procedure.

(vi) When all data are being processed, the peaks are
identified.

After that, determine the peaks of the waveform and run
the DBN proposal with input and output dimensions set,
and set up the windowing frame vector for fixed value
modification of the DBN’s minimal layer’s visible unit,
which means generating a probability distribution on the
prediction label [33–35]. )e hammer distance technique is
used to anticipate the likelihood of future possibilities.

3.4. Hyperparameter Tuning Using FFA. )e FFA is used to
optimize the setting of the DBN model’s hyperparameters.
)e FFAmethod solves the optimum problem by simulating
farmers’ performance while applying different fertilizers on
farms with varying soil quality. )e fertilizing approach to
the land is the same throughout this technique, and the soil
quality is equal to the fitness worth of humans. For land with
poor soil quality, an ideal fertilization plan is chosen, but the
fertilization design for other land is chosen at random [32].
)e continuous advancement of fertilization processes
successfully enhances agricultural soil quality.

Algorithm 1 demonstrates the pseudocode of FFA. )e
key stages are described in detail below. It can be assumed
that the number of individuals is N, and all individuals Xi

are demonstrated as Xi � [Xi1, Xi2, Xi3, . . . , XiD]

(i � 1, 2, . . . , N), where D refers to the dimensional of
optimizing problem, Xij(j � 1, 2, . . . , D) refers the value of
ith individuals from the jth dimension and N refers the
individuals arbitrarily created using:

Xij � Lj + rand × Uj − Lj􏼐 􏼑, (5)

where Uj and Lj are the upper and lower limits of the op-
timized problems searching ranges, respectively. A rand is an
arbitrary number between zero and one. )e following is a
method of partitioning the farming region. )e people were
first numbered. Following that, n number of consecutive
people are segregated into one zone depending on the
primary person; however, it might be equally separated into
k sections [36]. )e value of k is an integer more than 2 but
less than 4; when no specific conditions are specified, if k� 4,
this approach achieves an excellent result.

)e person made from people from all around the world
is shown by,

sa � x(a−1)×n+1, x(a−1)×n+2, . . . , x(a−1)×n+n􏽮 􏽯, (a � 1, 2, . . . , k),

(6)

where a implies the sub-region number, that is, a ∈ [1, k],
and a ∈ N+; n � N/k; Sa implies the group of individuals
comprised in the region a. In order to minimize problems,
the area with worse average soil Sworst signifies the region
with maximum average fitness value of individual and vice-
versa. )e particular computation is demonstrated as
follows:

Sworst � arg max Fita �
􏽐

n
i�1f Sa(i)( 􏼁

n
􏼨 􏼩, (7)

whereas fit (Sa(i)) refers to the fitness value of ith individual
from region a.

)e memory comprises local and global memory. A
primary ML individual with higher soil quality from all the
regions is saved from the local memory, but the primary MG

individuals with higher soil quality from the total area are
saved from the global memory. ML and MG are defined
using the subsequent formulas:

ML � round(t × n), (8)

MG � round(t × N), (9)

where t refers to the arbitrary number between 0.1 and 1, and
round represents the rounding outcome.

Individuals from low-quality soil sub-region and indi-
viduals from other subregions are employed to optimize the
soil [37, 38]. Here is an example of a well-optimized tech-
nique. As depicted by an individual, it employs one of the
most successful fertilization procedures for spawning new
individuals in order to enhance the soil quality of the poorest
region as much as possible.
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Xinew � h1 × Xi − XMGlobal( 􏼁 + Xi, (i � 1, 2, . . . , n), (10)

where XMGlobal signifies the arbitrarily chosen individual in
the global memory, and h1 is computed as follows:

h1 � α × rand1, (11)

where α represents the constants, that is, α ∈ [0, 1], and
rand1 indicates the arbitrary number between −1 and 1.

Novel people are developed using the following method
to create individuals from places other than the region with
the worst soil quality:

Xinew � h2 × Xi − Xu( 􏼁 + Xi, (i � 1, 2, . . . , n), (12)

where Xu indicates the individual chosen arbitrarily in every
individual and h2 is computed as follows:

h2 � β × rand, (13)

where β represents the constant, that is, β ∈ [0, 1] and rand

denotes the arbitrary number between zero and one.
All the individuals Xi are fused with an optimum in-

dividual from global or local memory by utilizing

Xinew �
Xi + ωd

1 × Xi − G(B)( 􏼁, Q> rand,

Xi + rand × Xi − L(B)( 􏼁, else,

⎧⎨

⎩ (14)

where G(B) and L(B) signify the optimum individual from
the global and local memory of all the regions, respectively;
Q represents the constant, for instance, Q ∈ [0, 1], and their
value is usually 0.7 if no specific instruction is provided; rand
signifies the arbitrary number between zero and one; and ωd

1

(a)

(b)

Figure 3: (a). Sample images (normal) and (b). sample images (abnormal).

Input: N, D, U, L, MaxFEs

Output: Minimal value in f(X)

Parameter initialized (N, D, U, L, k, n, α, β,ω1, MaxFEs)

Initialize population X with equation (5)
For dd to MaxFEs
Divide farmland areas with equation (6)
Recognize the worse regions of soil with equation (7)
Upgrade memory with equations (8) and (9)
Optimizing soil with equations (10)–(13)
Upgrade X and f(X)

Combined soil with equation (14)
Upgrade X and f(X)

Upgrade ω1 with equation (15)
End for

ALGORITHM 1: Pseudocode of FFA.
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Figure 4: Result analysis of the ODL-VFDDC technique under distinct parameters and runs.
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is ω1 at dth iteration and reduces with iteration procedure
according to the subsequent formula:

ωd+1
1 � ωd

1 × rand, (15)

where ω1
1 is ω1 implies the custom integer, an initial iter-

ation, and usually equivalent to 1 for obtaining better results.

4. Results and Discussion

)e performance validation of the ODL-VFDDC model is
examined in this section. )e results are examined using a
variety of test photos gathered from various sources. Python
3.6.5 is used to simulate the proposed ODL-VFDDC model.
Figure 3 shows some examples of pictures.

In Table 1 and Figure 4 show the ODL-VFDDC model’s
outcome analysis for various parameters and runs. Initial
frequency, jitter, shimmer, and HNR are four separate
factors that are examined in the results. )e ODL-VFDDC
model produced effective vocal fold disorder classification
results in every run, according to the experimental results
and sample figure shown in Figures 3(a) and 3(b).

For example, under run 1 and beginning frequency,
for example, the ODL-VFDDC model has an accuracy,
sensitivity, and specificity of 58.49%, 57.30%, and 61.86%,
respectively. Under run 1 and jitter, the ODL-VFDDC
model exhibits sensitivity, accuracy, and specificity of
97.20%, 77.23%, and 16.71%, respectively. Under running
1 and HNR, the ODL-VFDDC model achieved sensitivity,
accuracy, and specificity of 71.46%, 64.66%, and 55.02%,
respectively. Furthermore, under run 3 and beginning
frequency, the ODL-VFDDC technique generated accu-
racy, sensitivity, and specificity of 58.16%, 58.11%, and
60.68%, respectively. Under run 3 and jitter, the ODL-
VFDDC technique similarly exhibits accuracy, sensitivity,
and specificity of 77.69%, 96.82%, and 18.37%, respec-
tively. )e ODL-VFDDC algorithm has a sensitivity,
accuracy, and specificity of 70.20%, 65.95%, and 65.95%,
respectively as shown in Figure 5.

In terms of accuracy, recall, and F measure, Figure 6
compares the ODL-VFDDC methodology to previous
methodologies. According to the data, the DT system per-
formed badly, with accuracy, recall, and F measure values of
92.19%, 93.02%, and 93.12%, respectively.

Furthermore, the Conv-NN model performs somewhat
better, with accuracy, recall, and F measures of 95.90%,
96.06%, and 97.38%, respectively. )e KNN and FCBD
models then provided findings that are comparable. After
that, the FCB strategy got a near-optimal recall, precision,
and F measures of 98.46%, 96.07%, and 97.64%, while the
ODL-VFDDC strategy got good results with measures of
97.53%, 99.07%, and 98.89% for precision, recall, and F
measures, respectively.

Table 2 and Figure 7 depict a brief comparison of the
ODL-VFDDC model to other techniques. According to the
data, the decision tree model performed worse, with an
accuracy of 92.04 percent. Furthermore, the Conv-NN
model has somewhat increased performance, with a 95.12
percent accuracy. Furthermore, the KNN and FCBD

techniques were somewhat more accurate, with 97.96% and
97.17% accuracy, respectively. Finally, whilst the FCB ap-
proach produced a near-optimal accuracy of 98.29%, the
supplied ODL-VFDDC system produced an effective out-
come with an accuracy of 98.95%.

Finally, Table 3 and Figure 8 show a detailed execution
time study of the ODL-VFDDC model. According to the
data, the Conv-NN model delivered inadequate results with
a minimum execution time of 280ms.

)e DT and KNN models, on the other hand, yielded
marginally faster execution durations of 55 and 52 milli-
seconds, respectively. Furthermore, the FCB and FCBD
models dramatically reduced execution times to 47 and 43
milliseconds, respectively. With a 25ms execution time, the
ODL-VFDDC model outperformed the other techniques.
From the facts and tables above, it is clear that the ODL-
VFDDC model did better than the others.

)e DT and KNN models then produced reaction times
of 67 and 42 milliseconds, respectively. Furthermore, the
FCB and FCBD models considerably reduced execution
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Figure 5: AP and RP rate analysis of the ODL-VFDDC technique
with recent algorithms.
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Figure 6: Comparative analysis of ODL-VFDDC technique with
recent algorithms.
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Table 2: Comparative analysis of the ODL-VFDDC technique with recent approaches.

Methods AP rate EP rate Precision Recall F measure Accuracy
Decision tree model 93.02 6.98 92.19 93.02 93.12 92.04
Conv-NN model 96.06 3.94 95.90 96.06 97.38 95.12
KNN model 97.20 2.80 95.95 97.20 98.34 97.96
FCB model 98.45 1.56 96.07 98.45 97.64 98.29
FCBD model 97.10 2.90 94.46 97.10 97.93 97.17
ODL-VFDDC 99.07 0.93 97.53 99.07 98.89 98.95
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Figure 7: Accuracy analysis of the ODL-VFDDC technique with recent algorithms.

Table 1: Result analysis of ODL-VFDDC technique under distinct parameters and runs.

Parameters Accuracy Sensitivity Specificity
Run-1
Initial frequency (Fo) 58.49 57.30 61.86
Jitter (%) 77.23 97.20 16.71
Shimmer (%) 79.00 93.61 34.15
HNR (dB) 64.66 71.46 55.02
Average 69.85 79.89 41.94

Run-2
Initial frequency (Fo) 60.21 59.49 62.01
Jitter (%) 77.97 97.62 15.79
Shimmer (%) 76.48 95.67 34.67
HNR (dB) 68.03 71.30 57.18
Average 70.67 81.02 42.41

Run-3
Initial frequency (Fo) 58.16 58.11 60.68
Jitter (%) 77.69 96.82 18.37
Shimmer (%) 78.56 95.45 34.08
HNR (dB) 65.95 70.20 55.40
Average 70.09 80.15 42.13

Run-4
Initial frequency (Fo) 58.42 57.92 61.09
Jitter (%) 78.47 99.09 17.18
Shimmer (%) 76.89 93.52 35.10
HNR (dB) 64.65 68.84 56.84
Average 69.61 79.84 42.55

Run-5
Initial frequency (Fo) 59.21 57.71 62.71
Jitter (%) 77.79 98.05 17.87
Shimmer (%) 77.75 94.03 34.37
HNR (dB) 66.10 70.35 56.56
Average 70.21 80.04 42.88
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times to 39 and 35 milliseconds, respectively. With a 20ms
execution time, the ODL-VFDDC model outperformed the
other approaches as shown in Table 4. By looking at the
numbers and tables above, it is clear that the ODL-VFDDC
model did better than the others.

Figure 9 depicts an MSE analysis of the ODL-VFDDC
model in contrast to previous techniques. According to the

data, the Conv-NNmodel performed worse, with an MSE of
66.04 percent. Furthermore, with anMSE analysis of 35.12%,
the FCDB model’s performance has been somewhat en-
hanced. Furthermore, the decision tree, KNN, and FCB
methods were slightly closer, with MSE analyses of 57.96%,
42.81%, and 39.17%, respectively. In the end, the suggested
model ODL-VFDDC system worked well, with an MSE of
19.92% or less.

5. Conclusion

In this work, a novel ODL-VFDDC approach was created for
identifying and categorizing vocal fold dysfunction. )e
suggested ODL-VFDDC technique includes preprocessing,
feature extraction, feature selection, DBN-based classifica-
tion, and FFA-based hyperparameter optimization. )e
performance of the ODL-VFDDCmodel is validated using a
benchmark dataset, and the results are evaluated in a variety
of ways. In terms of vocal fold disorder classification, the
results demonstrated that the ODL-VFDDC technique beat
the other current methodologies. When applied to tough
HSV data taken with a color camera, the suggested strategy
produced positive results, paving the way for increased
accuracy and performance when applying the ODL-VFDDC
method on less difficult photos (monochromatic images).
Given the limits of endoscopic analysis of linked speech, the
ODL-VFDDC technique might be a useful tool for auto-
mating the results and performance of vocal fold dynamics.
As a result, the ODL-VFDDC technique has improved vocal
fold disease classification. )e ODL-VFDDC technique
achieved an accuracy of 98.95%, F score of 98.89%, recall of
99.07%, and AP rate of 99.07%. A hybrid technique of RBMs,
DBNs, and LSTMs will be used as a preprocessing approach
in the future to see if it significantly improves the DBN’s
performance.
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Table 4: Response time analysis of the ODL-VFDDC technique
with current technologies.

Methods Response time (ms)
Decision tree model 67
Conv-NN model 153
KNN model 42
FCB model 39
FCBD model 35
ODL-VFDDC 20

Table 3: Execution time analysis of the ODL-VFDDC technique
with current technologies.

Methods Execution time (ms)
Decision tree model 55
Conv-NN model 280
KNN model 52
FCB model 47
FCBD model 43
ODL-VFDDC 25
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Figure 8: Execution time analysis of the ODL-VFDDC technique
with recent approaches.
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