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Natural computing refers to computational processes observed in nature and human-designed computing inspired by nature. In
recent times, data fusion in the healthcare sector becomes a challenging issue, and it needs to be resolved. At the same time,
intracerebral haemorrhage (ICH) is the injury of blood vessels on the brain cells, which is mainly liable for stroke. X-rays and
computed tomography (CT) scans are widely applied for locating the haemorrhage position and size. Since manual segmentation
of the CTscans by planimetry by the use of radiologists is a time-consuming process, deep learning (DL) is used to attain effective
ICH diagnosis performance. )is paper presents an automated intracerebral haemorrhage diagnosis using fusion-based deep
learning with swarm intelligence (AICH-FDLSI) algorithm. )e AICH-FDLSI model operates on four major stages namely
preprocessing, image segmentation, feature extraction, and classification. To begin with, the input image is preprocessed using the
median filtering (MF) technique to remove the noise present in the image. Next, the seagull optimization algorithm (SOA) with
Otsu multilevel thresholding is employed for image segmentation. In addition, the fusion-based feature extraction model using
the Capsule Network (CapsNet) and EfficientNet is applied to extract a useful set of features. Moreover, deer hunting optimization
(DHO) algorithm is utilized for the hyperparameter optimization of the CapsNet and DenseNet models. Finally, a fuzzy support
vector machine (FSVM) is applied as a classification technique to identify the different classes of ICH. A set of simulations takes
place to determine the diagnostic performance of the AICH-FDLSImodel using the benchmark intracranial haemorrhage data set.
)e experimental outcome stated that the AICH-FDLSI model has reached a proficient performance over the compared methods
in a significant way.

1. Introduction

In the last few years, traumatic brain injury (TBI) is the
primary cause of growing death rates and disability in the
USA. Nearly 30% of injury deaths have been reported [1].
After that, TBI, extra-axial intracranial tumours such as
intracranial hemorrhages (ICH), may take place. )e ICH
disease is the main reason for death worldwide that happens
for all ages. At first, the disease is initiated in the brain due to
the leakage in the blood vessel and removes the path of
interactions (follows the brain function and instruction
consequently) and internal organ that results in inactive

body functions such as memory loss, loss of eyesight, speech,
and so on [2–4]. )e most important risk factors such as
high blood pressure (BP), head trauma, leakage in veins, and
infected blood vessel walls are related to the ICH. To inspect
this disorder, the screening modalities such as single-photon
emission computed tomography (SPECT), X-ray, positron
emission tomography (PET), and computed tomography
(CT) are accessed via brain haemorrhage imaging. In
comparison to other methods, a CTscan is widely employed
in haemorrhage diagnosis as it is widely available, limited
duration, and inexpensive for imaging. )erefore, CT scans
are highly desired for ICH detection. )e manifestation of
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ICH clots on CT scans depends on external factors such as
volume, density, location, and slice intensity.

)e early prediction of ICH is indispensable for sufficient
scheduling of scanning and providing better treatment.
)erefore, enormous designers have used the computer-
based detection (CAD) method for ICH segmentation. )e
recently proposed computer-based CAD method of ICH is
based on the aspects such as automatic segmentation of
haemorrhage that can be forecasted without manual seg-
mentation, professional contribution, in which the human
experts have to offer a suitable input for segmentation. )e
current deployment in convolutional neural network (CNN)
and deep learning (DL) served remarkable performances in
automatic image segmentation and classification processes
[5].)us, the DL technique can able tomake automated ICH
segmentation and prediction.

In recent times, researchers have attempted to employ
the DL technique for the diagnosis of ICH on CT scans [6].
)is DL technique is a kind of machine learning (ML) that
employs various processing layers to learn a representation
of data with many levels of abstraction. Earlier researchers
utilizing this technique presented tremendous diagnostic
performances to detect ICH in every single CTscan, same as
that of expert radiotherapists. Additionally, the fully 3D DL
method (not on single CT scans) for diagnosing ICH has
been stated. Few researchers utilized the back-propagation
(BP) model for the learning approach and the CNN that has
pattern recognition and self-organization capacities without
human programming. Consequently, this method is a
problem agnostic and generic technique, not a problem-
specific and rule-based model [7]. But it remains challenging
to explicate how this technique generates the outcomes from
the input data.

)is paper presents an automated intracerebral hae-
morrhage diagnosis using fusion-based deep learning with
swarm intelligence (AICH-FDLSI) algorithm. )e AICH-
FDLSI model employs a seagull optimization algorithm
(SOA) with Otsu multilevel thresholding is employed for
image segmentation. Besides, the fusion-based feature ex-
traction using the Capsule Network (CapsNet) and Effi-
cientNet is applied to extract a useful set of features. At the
same time, deer hunting optimization (DHO) algorithm is
utilized for the hyperparameter optimization of the CapsNet
and DenseNet models. Lastly, a fuzzy support vector ma-
chine (FSVM) is employed as a classifier to determine
various classes of ICH. To showcase the improved classifier
results of the proposedmodel, a wide range of experiments is
performed using the test benchmark intracranial haemor-
rhage data set.

)e rest of the study is planned as follows. Section 2
provides the related works; Section 3 offers the proposed
model; Section 4 discusses the performance validation; and
Section 5 concludes the study.

2. Literature Review

Mansour et al. [8] proposed an innovative DL-based ICH
diagnoses and classification (DL-ICH) method with the help
of optimum image segmentation using inception network.

)e presented method includes segmentation, preprocess-
ing, classification, and feature extraction. First, the input
data undergoes conversion format in which the NIfTI files
are transformed into JPEG form. Anupama et al. [9] pre-
sented DL-based ICH diagnoses with GrabCut-based seg-
mentation using SDL, called GC-SDL algorithm.
Furthermore, GrabCut-based segmentation is utilized to
identify the infected portion efficiently in an image. To
execute the process of feature extraction, the SDL method is
employed, and lastly, the SM layer is applied as a classifier.

Venugopal et al. [10] proposed a uniquemultimodal data
fusion-based feature extraction method using a DL algo-
rithm, called FFE-DL for ICH Classification and Detection,
named as FFEDL-ICH. )e presented method consists of
classification, preprocessing, image segmentation, and fea-
ture extraction. First, the input images are preprocessed by
the GFmethod for removing noise. Next, the DFCMmethod
is employed for segmenting the image. Moreover, the fu-
sion-based feature extraction method is performed by deep
features (residual network 152) and handcrafted features
(local binary patterns) for extracting appropriate features.
Lastly, the DNN method is performed as a classification
method to distinguish different types of ICH. A new DL
method for ANN, totally distinct from the BP algorithm, was
proposed in earlier research [11]. )e objective is to measure
the possibility of utilizing the model for ICH classification
and detection of its subclasses, without applying the CNN
method.

Wang et al. [12] focused on evaluating the accuracy and
performance of a DL-based automatic segmentation method
in segmenting spontaneous ICH volume either with/without
IVH extensions. )ey related this automatic method with
two manual segmentation methods. Ginat [7] examines the
execution of DL for the work list prioritization and detection
of acute ICH on NCCT in different medical sceneries at an
academic medical centre.)e images were categorized based
on the type and presence of haemorrhage, whether this is
follow-up/initial images, and patient visit location, involving
outpatient, emergency or trauma, and inpatient sections. Yu
et al. [13] intended to improve a strong DL segmentation
technique for accurate and fast HV analyses via CT. Luong
et al. [14] presented a CAD that integrates a DL method and
image processing methods for determining patient who
suffers from ICH because of their CTscans.)e DLmethod-
based MobileNetV2 framework was trained.

Ngo et al. [15] developed a newfangled method for
training slice-level classifier on CT-based descriptor of the
nearby slices alongside the axis; all of them are extracted by
the CNN method. )is technique focuses on predicting the
existence of ICH and categorizes it into five distinct sub-
classes. )ey examine a two-phase training system. Initially,
CT images are processed simply as a group of two-di-
mensional images, and an advanced CNN classifier is trained
that is pretrained on ImageNet. In the training phase, all the
slices are tested together with the three slices beforehand and
the three slices afterward, which makes the batch size a
multiple of 7. Next, the output descriptor of all the blocks of
seven successive slices attained from phase 1 are stacked into
images and fed into other CNNs for the last predictions of
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middle slices. Hssayeni et al. [16] developed a method for
collecting and eighty-two CTscan data sets of subjects with a
traumatic brain injury.)en, the ICH regions were manually
delineated in every slice by a consensus decision of two
radiologists. )e data set is an open-source platform at the
PhysioNet repository for upcoming comparisons and ana-
lyses. Besides publishing the data set, that is, the major
objective of this manuscript, they executed a deep FCN
model called as UNet, for segmenting the ICH region from
the CT images in a fully automatic methodology.

3. The Proposed Model

)is paper has developed a novel AICH-FDLSI technique for
ICH detection and classification. )e proposed AICH-FDLSI
technique encompasses MF-based preprocessing, SOA with
Otsu multilevel thresholding-based segmentation, DHO-based
feature extraction, and FSVM-based classification.)e detailed
working of these processes is offered in the succeeding sections.

3.1. Image Preprocessing. Primarily, the MF technique is
applied as a preprocessing tool to eliminate the presence of
noise involved in it. )e MF is nonlinear statistical filtering
that changes the existing pixel values with the median value of
pixels under the adjacent area. A naive execution primary
makes a cumulative histogram to the neighbor area and af-
terward defines the primary index elsewhere half the amount
of pixels from the histograms. An essential issue of this
manner on GPU is all the threads required for computing
whole histograms. For 8-bit images, a histogram made of 256
bins is generated. It can be useless on present GP as there are
not sufficient hardware registers obtainable to all the threads,
and utilizing global memory to histogram calculation was too
slow. For resolving this issue, the presented model depends
upon a bisection search on histogram ranges. )is technique
does not calculate the actual histogram then iteratively im-
proves the histogram range that contains the median value. In
all rounds, the existing valid range was separated into two
halves, and the half that is the huge amount of pixels is elected
to the next iteration. )is procedure was repeated still the
range converged to a single bin.

3.2. Image Segmentation. During the image segmentation
process, the SOA with Otsu multilevel thresholding is ap-
plied to determine the affected regions. )e Otsu is also
named as maximal difference between clusters [17]. An
image histogram as fundamental and maximal difference
between target as well as background as the selective con-
dition, this technique obtained an optimum threshold from
several cases. An image whose gray-scale range has
0, 1, . . . , L − 1{ } was separated as to destination and back-
ground by thresholds t. )e possibility of gray i is pi. )e
likelihood of objective has ω0(t) � 

t
i�0 pi. )e possibility of

background is ω1(t) � 
L−1
i�t+1pi. )e mean of objective is

u0(t) � 
t
i�0 ipi/ω0. )e mean background is u1(t) �


L−1
i�t+1ipi/ω1. )e formulation of difference between two

parts is d(t) � ω0(t)ω1(t)(u0(t) − u1(t))2. An optimum

threshold t∗ generates the difference maximal.)erefore, the
process of multithreshold segmentation is as follows:
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i�tn−1+1
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ωn−1
, 1≤ n≤ (k + 1).

(1)

Optimum thresholds t∗1 , t∗2 , . . . , t∗k create the entire dif-
ference maximal as defined below:

t
∗
1 , t
∗
2 , . . . , t

∗
k � Argmax0<t1 < t2 < ...< tk

d t1, t2, . . . , tk( . (2)

In this study, the optimal threshold values of the Otsu
method are decided by the SOA. )e SOA is based on the
migration and attacking behavior of the seagulls in nature
[18].)emathematical model of attacking andmigrating the
prey is described below.)emigration (exploration) method
inspires how the group of seagulls moves everywhere. In this
stage, the seagulls need to fulfill three criteria:

To prevent collision between neighbors (i.e., other sea-
gulls), a further parameter A is applied for the assessment of
the new search location as follows:

C
→

s � A × P
→

s(x) , (3)

where C
→

s signifies the location of search agent that does not
collide with other searching agents, P

→
s implies the existing

location of the search agent, and x means the existing it-
eration as follows:

A � fc − x ×
fc

Maxiterαtion
  , (4)

where x � 0, 1, 2, . . .Maxiteration. fc controls the fre-
quency of A that is decreased gradually from fc to 0. In this
study, the value of fc is set to 2. After evading the collision
between neighbors, the searching agent is moving towards
the direction of the optimal neighbor.

M
�→

s � B × P
→

bs(x) − P
→

s(x) . (5)

Let M
�→

s be the position of searching agent P
→

s towards the
optimal fit searching agent P

→
bs (viz., appropriate seagull).

)e behavior of B is randomly assigned, that is, accountable
for appropriate balancing between exploitation and explo-
ration. B is evaluated by

B � 2 × A
2

× r d, (6)

where r d represents an arbitrary value within [0.1]. Finally,
the searching agent could upgrade its location regarding
optimal search agent as follows:
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D
→

s � C
→

s + M
�→

s



. (7)

Let D
→

s be the distance between the optimal fit search
agent and search agent (viz., optimal seagulls that fitness
value is lesser). )e exploitation focuses on exploiting the
history and experience of the searching method. Seagulls are
capable of changing the speed and angle of attack contin-
uously in migration. )ey retain their altitude with their
weight and wings. During prey attacking, the spiral
movement behavior takes place in the air. )e x, y, and z

planes are shown as follows:

x′ � r × cos(k),

y′ � r × sin(k),

z′ � r × k,

r � u × e
kv

,

(8)

where r indicates the radius of every turn of the spiral, k

represents an arbitrary value within [0≤ k≤ 2A], u and v

denote constant for determining the spiral shape, and e

represents the base of the natural logarithm. It can be
evaluated by

P
→

s(x) � D
→

s × x′ × y′ × z′  + P
→

bs(x), (9)

where P
→

s(x) saves the optimal solutions and upgrades the
position of another search agent. )e presented SOA ini-
tiates by an arbitrarily made population. )e search agent
might update their location regarding the optimum search
agent in the iteration method. For smooth transition be-
tween exploitation and exploration, B is in charge. )ere-
fore, the SOA is regarded as a global optimizer as a result of
its good exploitation and exploration capacity.

3.3. Feature Extraction. Once the images are segmented, the
next stage is to derive a fusion of feature vectors using the
CapsNet and EfficientNet models. )e two vectors can be
defined as follows:

fCapsNet1×n � CapsNet1×1,CapsNet1×11 × 2,CapsNet1×11×3, . . . ,CapsNet1×11×n ,

fEfficientNet×m � EfficientNet1×1,EfficientNet1×2,EfficientNet1×3, . . . ,EfficientNet1×n .
(10)

In addition, the derived individual features are combined
into a single vector, using the following equation:

Fused(features vector)1×q � 

2

i�1
fCapsNet1×n, fEfficientNet1×m,

(11)

where f represents fused vectors (1 × 1186). )e entropy is
applied on the features vectors to choose optimal features
based on the score to the classifier for differentiating the
healthier and glioma images.

3.3.1. CapsNet Model. To address the limitations of CNN,
Hinton [19] presented a higher dimension vector named
“capsule” for representing an entity (object or a portion of
object) by a set of neurons instead of an individual
neuron. )e activity of the neuron in the active capsule
signifies different features of a certain entity, that is,
existing in an image. Every capsule learns an implicit
description of a visual entity that outputs the likelihood
and a group of instantiated parameters that includes the
accurate posture (orientation, position, and size), albedo,
hue, texture, deformation, and so on. )e framework of
CapsNet is dissimilar to other DL methods. )e outcomes
of input and output of CapsNet are vector that direction
and norm represent the various attributes and existence
probability of the entity, correspondingly. )e similar
levels of capsule assist to forecast the instantiation pa-
rameter of a high-level capsule over a conversion matrix,
and then dynamic routing is adapted for making the
predictions reliable. Once the various predictions are

reliable, the high-level of the single capsule would turn out
to be active.

A simple CapsNet framework has been demonstrated in
Figure 1, where the framework is shallow by only one fully
connected layer (EntityCaps) and two convolution layers
(PrimaryCaps and Convl). Especially, Convl is the typical
convolution layer that converts the output to PrimaryCaps
and images to primary features via a convolutional filter with
13 × 13 × 256 size. In case, the original images are not
appropriate for the input of the primary layer of the Cap-
sNet, and the primary feature afterward convolution is
adapted. )e next convolution layer creates the respective
vector as input of the capsule layer. )e standard convo-
lutions of all the outputs are a scalar; however, the con-
volution of PrimaryCaps is dissimilar to the standard one. It
is considered as a two-dimensional convolution of eight
distinct weights for the input of 15 × 15 × 256. )e Pri-
maryCaps generate a thrity-two size of 11× 11 steps to 2
convolutions and output. )e third layer (EntityCaps) is the
output layer, which has nine traditional capsules respective
to nine distinct categories.

3.3.2. EfficientNet Model. )e EfficientNet technique was
utilized as a feature extraction component for generating a
helpful group of feature vectors of the input satellite image
[20]. )e DL is the most well-known framework as DL
approaches have been learned significant features in an input
image at a different convolutional level similar to the pur-
pose of the human brain. )e DL was solving complex
problems usually well as well as quickly with high classifier
accuracy and lower error rate. )e DL approach was
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contained different modules (convolutional, pooling layer,
and fully connected (FC) layers, and activation function).
)e DL models have the capability of attaining optimal
performance over the machine learning models with high
computational complexity. Distinct from other existing DL
approaches, the EfficientNet structure was a compound
scaling manner that employs the compound coefficients to
uniformly scale network width, depth, and resolution. An
EfficientNet has eight different methods from B0 to B7. )e
EfficientNet employs inverted bottleneck convolution which
is primarily well-known from the MobileNetV2 approach
that is a layer that primarily expands the network and next
compresses the channel. )is structure reduced computa-
tion with the factor of 2 as compared with normal convo-
lution, where f signifies the filter size. It is depicted that
EfficientNetB0 was the easiest of all eight approaches as well
as employs minimal parameters. So it can be directly
employed EfficientNetB0 to evaluate performance.

3.3.3. DHO-Based Hyperparameter Tuning. In this work, a
new metaheuristic DHO method has been developed for the
hyperparameter tuning process, stimulated from deer
hunting by a group of hunters [21]. For deer hunting, the
hunter encircles it as well as gets closer to them by using
some strategies. )is strategy includes the deliberation of
several parameters, such as the deer position, wind angle,
and so on. Cooperation between the hunters is another
relevant standard that makes hunting very efficient. Lastly,
they attain the target as per the location of the successor and
leader. )e objective function of this presented model is
shown below:

f(x) � max (accuracy). (12)

)e weight optimization with the DHO method is de-
scribed as follows: because of the unique capabilities of deer,
it could escape easily from hunting.)e process initiates by a
vector of an arbitrary population named hunter. It is de-
scribed by the following equation:

X � X1, X2, . . . , Xm 1< j≤m , (13)

where m means the amount of hunter’s population (weight),
and the overall amount of weight employed to the opti-
mization is denoted as follows. Next, the key parameters
such as position angle (weight) and wind angle are
employed. )e whole searching space is deliberated as a

circle; hence, the wind angle can be defined as the cir-
cumference of the circle.

θj � 2πa, (14)

where the arbitrary value within� [0, 1] is denoted as a, and
the existing iteration is signified as J. Now, θ implies the
wind angle. Subsequently, the location propagation with the
leader position (Xl) and successor location (Xs) for opti-
mization is presented. )e successor location defines the
location of subsequent weights, while the leader location
defines the primary location of the hunter.

Propagation via (Xl). Afterward initiating the optimal
location, all the weights in the population try to attain the
optimal location. )en, the location updating algorithm
starts by modeling the encircling behavior as follows:

Xj+1 � Xl − Y · p · L × Xl − Xj



. (15)

Let Xj be the location at the existing iteration and the
succeeding iteration location is denoted as Xj+1. )e Z and
K coefficient vectors are involved in this process. )e ar-
bitrary value, that is, presented by considering the wind
speed is denoted as p, and it comprises values fiiom0 to 2.
)e expression to estimate the Z and K coefficient vectors
are given below:

Z �
1
4
log j +

1
jmax

 b,

K � 2 · c,

(16)

where the maximal iteration is denoted as jmax . )e b

variable has values ranging from −1 to 1, besides the value of
other variables lies within [0, 1]. )e first location of the
hunter is signified as (X, Y) that gets upgraded according to
the location of prey. Both Z and K coefficient vectors are
modified to reach the optimal location (Xb, Yb). When the
value of p <1, the location updation algorithm takes place
that implies the hunter could arbitrarily move in a different
direction without considering the angle location. Propaga-
tion through Angle Location. )e angle location updating is
considered to rise the searching space. For making the
hunting method more efficient, it is crucial to describe the
angle location of the hunter. It can be implemented by

Xj+1 � Xl − p · cos (v) × Xl − Xj



, (17)

Input Image

ReLU Conv1

PrimaryCaps

DigitCaps

Wij = (8×16)
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20
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16

9×9

9×9

Figure 1: Process of CapsNet [19].
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where p denotes the arbitray values and the optimal lo-
cation can be depicted as B � φj+1, Xbj

and p. )e individual
location is found the opposite to the angle location; hence, the
prey does not have any alertness of the hunter. Propagation via
Successor Location. In the exploration, the vector K is pre-
sented within the encircle behavior. At first, the arbitrary
searching method is performed by considering the K values as
less than 1. Lastly, the location updating algorithm takes place
based on a successor location instead of considering the op-
timal location. Next, the global searching is carried out by

Xj+1 � Xs − Z · p · K × Xs − Xj



. (18)

)e location updating method is performed for identi-
fying the optimal location (viz., termination condition).

3.4. ImageClassification. At the final stage, the FSVMmodel
is applied to determine the suitable class labels for the test
images. In conventional SVM, each data point is regarded as
equally significant and allotted a similar penal variable.
)ough in several real-time classification applications, few
sample points, such as noises/outliers, may not be accurately
allotted to one of these two classes, and all the sample points
do not have a similar meaning to the decision surface. )e
hyperplanes in the SVM model are shown in Figure 2. To
resolve this issue, the FSVM concept was initially presented
[22]. Fuzzy membership to all the sample points is proposed
so that discrete sample points might generate distinct
contributions to the generation of decision surfaces. )e
trained sample is considered as follows:

S � xi, yi, si( , i � 1, . . . , N . (19)

Let xi ∈ Rn be the n-dimensional sample point,
yi ∈ −1, +1{ } signifies its class label, and si (i � 1, . . . , N)

implies a fuzzy membership that fulfills σ ≤ si ≤ 1 with small
constant σ > 0. )e quadratic optimization problems for
classification can be represented by

min
w,s,ξ

1
2
w

T
w + C 

l

i-1
siξi,

s.t. yi w
T
xi + b ≥ 1 − ξi, ξi ≥ 0, i � 1, . . . , l,

(20)

where w indicates a standard vector of the separating hy-
perplane, b denotes a bias, and C represents a parameter that
needs to be determined earlier to control the trade-offs
amongst the cost of misclassification error and the classi-
fication margin. As si represent the attitude of the respective
point xi towards one class and the slack parameter ξi is a
measure of error, the siξi the term could consider the
measure of error with discrete weights. It is considered that
the larger the si is, the more significantly the respective point
is treated; the lower the si is, the less outstandingly the
respective point is treated. Hereafter, FSVM could discover a
strong hyperplane by maximalizing the margin by letting
some misclassification of lesser significant points.

For resolving the FSM problems, (2) is transformed into
the subsequent dual problem by introducing Lagrangian
multiplier αi as follows:

max
α



N

i�1
αi −

1
2



N

i�1


N

j�1
αiαjyiyjxixj,

s.t. 
N

i�1
yiαi � 0, 0≤ αi ≤ si C, i � 1, . . . , N.

(21)

When compared to the typical SVM, the above stated has
only a small difference, that is, the upper bounds of the value
of αi. By solving this dual problem in (3) for optimal αi, w,
and b could be recovered in the same way as in the typical
SVM.

4. Performance Validation

)e performance validation of the proposed model takes
place using a benchmark CT ICH data set, including 341
images [23]. It comprises 171 images under epidural (EPI)
class, 24 images under intraventricular (IVT), 72 images
under intraparenchymal (IPC), 56 images under subdural
(SBD), and 18 images under subarachnoid (SAD) class. )e
size of the image is 512∗ 512 pixels. Figure 3 shows the
sample test images. )e data sets include ICHmasks and CT
scans, in JPG and NIfTI format at PhysioNet repository.
NIfTI is a type of file format for neuroimaging, which is used
very commonly in imaging informatics for neuroscience and
even neuroradiology research.

Figure 4 showcases the confusion matrix of the AICH-
FDLSI technique on the test images under run-1. )e figure
reported that the AICH-FDLSI technique has classified 19
images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Table 1 reports the ICH classification results analysis of
the AICH-FDLSI technique under run-1. )e results
demonstrated that the AICH-FDLSI technique has classified
the IVT class with the sensy, specy, precn, and accuy of
0.7917, 0.9811, 0.7600, and 0.9677, respectively. In line with,
the AICH-FDLSI technique has identified the IPC class with
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Figure 2: SVM hyperplanes.
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the sensy, specy, precn, and accuy of 0.8889, 0.9888, 0.9552,
and 0.9677, respectively. Moreover, the AICH-FDLSI
technique has identified the instances under SBD with the
sensy, specy, precn, and accuy of 0.9643, 0.9895, 0.9474, and
0.9853, respectively.

Figure 5 displays the confusion matrix of the AICH-
FDLSI technique on the test images under run-2. )e figure
revealed that the AICH-FDLSI technique has identified 20

images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Table 2 offers the ICH classification results analysis of the
AICH-FDLSI technique under run-2. )e experimental
values stated that the AICH-FDLSI technique has classified
the IVT class with the sensy, specy, precn, and accuy of
0.8333, 0.9811, 0.7692, and 0.9707, respectively. Moreover,
the AICH-FDLSI technique has categorized the IPC class
with the sensy, specy, precn, and accuy of 0.8889, 0.9888,
0.9552, and 0.9677, respectively. Eventually, the AICH-
FDLSI technique has determined the images under SBDwith
the sensy, specy, precn, and accuy of 0.9643, 1.0000, 1.0000,
and 0.9941, respectively.

Figure 6 demonstrates the confusion matrix of the
AICH-FDLSI technique on the test images under run-3. )e
figure shows that the AICH-FDLSI technique has identified
22 images under IVT, 64 images under IPC, 12 images under
SAD, 170 images under EPI, and 54 images under SBD.

Figure 3: Sample images.
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Figure 4: Confusion matrix of AICH-FDLSI technique under
run-1.

Table 1: ICH classification results analysis of AICH-FDLSI
technique on test run-1.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.7917 0.9811 0.7600 0.9677
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9529 0.9551 0.9736
SBD 0.9643 0.9895 0.9474 0.9853
Average 0.8611 0.9812 0.8950 0.9742
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Figure 5: Confusion matrix of AICH-FDLSI technique under
run-2.
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Table 3 depicts the ICH detection performance analysis of
the AICH-FDLSI technique under run-1. )e results show
that the AICH-FDLSI technique has effectively identified the
IVT class with the sensy, specy, precn, and accuy of 0.9167,
0.9811, 0.7857, and 0.9765, respectively. Meanwhile, the
AICH-FDLSI technique has identified the IPC class with the
sensy, specy, precn, and accuy of 0.8889, 0.9888, 0.9552, and
0.9677, respectively. Lastly, the AICH-FDLSI technique has
identified the instances under SBD with the sensy, specy,
precn, and accuy of 0.9643, 1.0000, 1.0000, and 0.9941,
respectively.

Table 4 and Figure 7 offer an overall result analysis of
the AICH-FDLSI technique under three different runs.
)e results show that the AICH-FDLSI technique has
accomplished maximum classification performance under
three test runs. For instance, under run-1, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8611, 0.9812, 0.8950, and
0.9742, respectively. Likewise, under run-2, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8695, 0.9810, 0.9052, and
0.9754, respectively. Similarly, under run-3, the AICH-
FDLSI technique has classified the ICH with the sensy,
specy, precn, and accuy of 0.8861, 0.9833, 0.9106, and
0.9777, respectively.

Figure 8 investigates the accuracy graph of the AICH-
FDLSI technique on the test data set. )e figure demon-
strated that the AICH-FDLSI technique has resulted in
improved training and validation accuracies.

)e loss graph analysis of the AICH-FDLSI technique
takes place on the test data set in Figure 9. )e results
highlighted that the loss values tend to decrease with the
increased epoch count, and it is observable that the vali-
dation loss seems to be lower than the training loss.

Table 5 provides a brief result analysis of the AICH-
FDLSI with recent techniques. A brief sensy analysis of
the AICH-FDLSI technique with existing approaches
[16,24–27] is provided in Figure 10. )e figure shows that
the UNet, WANN, and SVM techniques have attained
lower sensy values of 63.10%, 60.18%, and 76.38%, re-
spectively. Eventually, the WEM-DCNN and convolu-
tional NN techniques have resulted in reasonable sensy of
83.33%, and 87.06%, respectively. But the AICH-FDLSI
technique has surpassed the other ones with the increased
sensy of 88.61%.

A comparative precn analysis of the AICH-FDLSI
technique with other techniques is shown in Figure 11. )e
figure reported that the WANN and SVM techniques have

Table 2: ICH classification results analysis of AICH-FDLSI
technique on test run-2.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.8333 0.9811 0.7692 0.9707
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9412 0.9444 0.9677
SBD 0.9643 1.0000 1.0000 0.9941
Average 0.8695 0.9810 0.9052 0.9754
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Figure 6: Confusion matrix of AICH-FDLSI technique under
run-3.

Table 3: ICH classification results analysis of AICH-FDLSI
technique on test run-3.

Classes Sensitivity Specificity Precision Accuracy
IVT 0.9167 0.9811 0.7857 0.9765
IPC 0.8889 0.9888 0.9552 0.9677
SAD 0.6667 0.9938 0.8571 0.9765
EPI 0.9942 0.9529 0.9551 0.9736
SBD 0.9643 1.0000 1.0000 0.9941
Average 0.8861 0.9833 0.9106 0.9777

Table 4: Overall ICH results analysis of AICH-FDLSI technique.

No. of runs Sensitivity Specificity Precision Accuracy
Run-1 0.8611 0.9812 0.8950 0.9742
Run-2 0.8695 0.9810 0.9052 0.9754
Run-3 0.8861 0.9833 0.9106 0.9777

0.85

Sensitivity

Va
lu

es

Specificity Precision Accuracy

0.9

0.95

1

Run-1
Run-2
Run-3

Figure 7: Results analysis of AICH-FDLSI technique under three
different runs.
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attained lower precn values of 70.08% and 77.53%, respec-
tively. Along with that, the UNet, WEM-DCNN, and con-
volutional NN techniques have obtained moderate precn of
88.19%, 89.90%, and 87.98%, respectively. However, the

AICH-FDLSI technique has outperformed the other ones
with the higher precn of 91.06%.

Table 6 offers a comparative results analysis of the
AICH-FDLSI with recent techniques in terms of specy and
accuy. Figure 12 depicts the comparative specy analysis of
the AICH-FDLSI system with other techniques. From the
figure, it is notable that the UNet, WANN, Res-NexT,
convolutional NN, and SVM techniques have accom-
plished minimal classification performance with the specy

values of 88.60%, 70.13%, 90.42%, 88.18%, and 77.53%,
respectively. Next to that, the DN-ELM andWEM-DCNN
techniques have resulted to reasonable specy of 97.70%,
and 97.48%, respectively. However, the AICH-FDLSI
technique has gained improved performance with the
superior specy of 98.33%.
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Figure 8: Accuracy graph analysis of AICH-FDLSI technique.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900
Epochs

Loss Graph

Lo
ss

 P
er

 E
po

ch

Training Loss
Validation Loss

Figure 9: Loss graph analysis of AICH-FDLSI technique.

Table 5: Comparative results analysis of AICH-FDLSI with recent
methods-I.

Methods Sensitivity Precision
AICH-FDLSI 88.61 91.06
UNet model 63.10 88.19
WANN 60.18 70.08
WEM-DCNN 83.33 89.90
Convolutional NN 87.06 87.98
SVM 76.38 77.53
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Figure 13 portrays the comparative accuy analysis of the
AICH-FDLSI system with other techniques. From the figure, it
is notable that the UNet, WANN, Res-NexT, convolutional
NN, WEM-DCNN, and SVM techniques have accomplished
minimal classification performance with the accuy values of
87%, 69.78%, 89.30%, 87.56%, 88.35%, and 77.32%, respec-
tively. Following that, the DN-ELM model has offered com-
petitive accuy of 96.34%. But the AICH-FDLSI technique has
surpassed the other ones with the maximum accuy of 97.77%.

Finally, the CT analysis of the AICH-FDLSI method-
ology with recent approaches is shown in Figure 14. )e

results portrayed that the WANN, Res-NexT, and SVM
models have obtained worse outcomes with maximumCTof
78 s, 80 s, and 89 s, respectively. Following that, the WEM-
DCNN and convolutional NN techniques have attained
moderately closer CT of 75% and 74%, respectively. Along
with that, the DN-ELM and UNet models have obtained
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Figure 10: Comparative sensy analysis of AICH-FDLSI technique.
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Figure 11: Comparative precn analysis of AICH-FDLSI technique.

Table 6: Comparative results analysis of AICH-FDLSI with recent
methods-II.

Methods Specificity Accuracy
AICH-FDLSI 98.33 97.77
DN-ELM 97.70 96.34
UNet model 88.60 87.00
WANN 70.13 69.78
Res-NexT 90.42 89.30
WEM-DCNN 97.48 88.35
Convolutional NN 88.18 87.56
SVM 79.41 77.32
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Figure 12: Comparative specy analysis of AICH-FDLSI technique.
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Figure 13: Comparative accuy analysis of AICH-FDLSI technique.
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Figure 14: Comparative CT analysis of AICH-FDLSI technique.

10 Journal of Healthcare Engineering



reasonable CT of 29 s and 42 s, respectively. However, the
AICH-FDLSI technique has accomplished improved per-
formance with the CT of 24 s. From the above-mentioned
results, it is evident that the AICH-FDLSI process is found to
be an efficient tool for ICH detection and classification.

5. Conclusion

)is paper has developed a novel AICH-FDLSI technique for
ICH detection and classification. )e proposed AICH-
FDLSI technique encompasses MF-based preprocessing,
SOA with Otsu multilevel thresholding-based segmentation,
fusion-based feature extraction, DHO-based feature ex-
traction, and FSVM-based classification. )e application of
SOA and DHO algorithms helps improvise the overall ICH
classification performance. To showcase the improved
classifier results of the proposed model, a wide range of
experiments is performed using the test benchmark intra-
cranial haemorrhage data set. )e experimental outcome
stated that the AICH-FDLSI model has reached a proficient
performance. )erefore, the proposed AICH-FDLSI tech-
nique can be applied as a proficient tool for ICH diagnosis
and classification. In the future, the ICH classification
performance of the AICH-FDLSI technique can be im-
provised by the use of hybrid DL models.
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