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A U-Net-based network has achieved competitive performance in retinal vessel segmentation. Previous work has focused on using
multilevel high-level features to improve segmentation accuracy but has ignored the importance of shallow-level features. In
addition, multiple upsampling and convolution operations may destroy the semantic feature information contained in the
decoder layer. To address these problems, we propose a scale and feature aggregate network (SFA-Net), which canmake full use of
multiscale high-level feature information and shallow features. In this paper, a residual atrous spatial feature aggregate block
(RASF) is embedded at the end of the encoder to learn multiscale information. Furthermore, an attentional feature module (AFF)
is proposed to enhance the e�ective fusion between shallow and high-level features. In addition, we designed the multi-path
feature fusion (MPF) block to fuse high-level features of di�erent decoder layers, which aims to learn the relationship between the
high-level features of di�erent paths and alleviate the information loss. We apply the network to the three benchmark datasets
(DRIVE, STARE, and CHASE_DB1) and compare them with the other current state-of-the-art methods.�e experimental results
demonstrated that the proposed SFA-Net performs e�ectively, indicating that the network is suitable for processing some complex
medical images.

1. Introduction

Retinal vessel image segmentation is an important medical
image processing method for diagnosing and treating
common eye diseases such as high blood pressure [1], as
shown in Figure 1. However, the retinal vessels have a
complex structure and a small area of interest compared to
other medical images, making manual segmentation time-
consuming and limited by expert experience [2]. �erefore,
in order to tackle the problem, it is necessary to propose an
automatic segmentation algorithm for retinal vessel
segmentation.

With the development of arti�cial intelligence, many
di�erent e�orts have been dedicated to segmenting retinal
vessel images [1, 3–7]. It can be broadly divided into tra-
ditional machine learning segmentation methods and deep
learning methods. Traditional methods focused on adopting
hand-crafted features to segment retinal blood vessels. For
instance, fully-connected conditional random �eld (FCCRF)

is used to segment retinal vessel images [8]. Similarly,
Orlando et al. [9] also used FCCRF to segment the retinal
vessels. Sreejini and Govindan [10] employ particle swarm
optimization (PSO) to optimally �lter parameters of the
multiscale Gaussian matched �lter (MF) for improving the
accuracy of retina vessel segmentation. After that, fuzzy
C-means are employed to segment retinal blood vessels [11].
Although these traditional machine learning approaches
show good performance in some cases, hand-crafted features
[12, 13] depend much too heavily on prior knowledge and,
hence, fail in datasets with many complex cases. Due to the
powerful feature extraction capability of deep learning, se-
mantic segmentation tasks using deep learning are gradually
becoming mainstream. �erefore, we used deep learning for
the retinal vessel segmentation.

In recent years, people have begun to use convolutional
neural networks for semantic segmentation. For example,
Dasgupta and Singh [14] and Mo and Zhang [15] employ
fully convolutional networks (FCN) to segment retinal
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blood vessels and achieve good performance. Later, U-Net
[16] and many U-shaped structure-based networks
[6, 17–19] have been proposed, which significantly im-
prove the semantic segmentation accuracy. For instance,
Khan et al. [20, 21] developed a hybrid deep learning
model that combines the DenseNet and the U-Net for
semantic segmentation. Although the algorithms perform
well in semantic segmentation, they do not consider the
problem of feature information loss in the encoding and
decoding stages. U-Net++ [17] designed a densely con-
nected coding-decoding structure in order to improve
semantic segmentation accuracy and reduce the problem
of feature information loss. However, the U-Net++ has a
complex structure and too many training parameters,
which are prone to overfitting. SCS-Net [22] also used an
encoder-decoder structure to fundus vascular segmenta-
tion, considering the problem of information loss in the
decoding phase but ignoring the same problem in the
encoding phase. To a certain extent, these methods are
dependent on the encoder-decoder structure, which fo-
cuses on processing the feature maps obtained from the
feature samples of the decoder and ignores shallow fea-
tures. 'e shortcomings of those methods are that they
have not been good enough for feature extraction from the
encoding and decoding layers.

To address the aforementioned problems, we propose a
new framework that follows the pipeline of encoder-de-
coder. In the decoding layer, a new module is designed to
make better use of the output features of the different layers
in the decoding stage. It solves the phenomenon of feature
loss in the feature decoding stage. In addition, we also
redesigned two feature extraction modules to solve the
problem of feature loss in the encoding stage. 'ese two
modules make full use of the features at different scales and
different layers to supplement the feature information lost in
the coding stage. Herein, we propose a scale and feature
aggregate network for retinal vessel segmentation (SFA-
Net), which is an encoder-decoder structure with three basic
components. First, the residual atrous spatial feature ag-
gregate (RASF) module is set at the end of the encoder layer
and is used to effectively learn multiscale feature informa-
tion. 'en, in the decoder layer, the vanilla skip connection
is replaced by an attention feature fusion (AFF) module.
Finally, a multi-path feature fusion (MPF) module is
designed to learn the high-low features of different stages. In
addition, in the MPF module, we introduce an attention
mechanism that can effectively suppress noise and redun-
dant information. In summary, we make the following key
contributions in this paper:

(1) We propose to use the RASF block to learn multi-
scale feature information and increase the receptive
field of the network.

(2) To adaptively combine high-level features informa-
tion with shallow features information, the attention
feature fusion (AFF) module is introduced. 'en, we
apply an MPF module to extract more global se-
mantic information from high-level features.

(3) Based on the RASF, AFF, and MPF blocks. We
propose an efficient retinal vessel segmentation
model (SFA-Net) and teste it in different fundus
datasets. 'e experimental results demonstrate that
our model can effectively improve the vessel seg-
mentation results

2. Related Work

2.1. Image Semantic Segmentation. 'e main current se-
mantic segmentation methods are usually based on deep
learning [16, 19, 23–26]. A fully convolutional network
(FCN) [26] is the first end-to-end neural network to be
applied to semantic segmentation. Later, many FCN-based
semantic segmentation networks have been proposed. For
example, UI-Net [27] runs the FCN model several times
and builds upon a state-of-the-art FCN as an active user
model for training. Drozdzal et al. [28] combined FCN
with fully convolutional residual networks (FC-ResNets)
for medical image segmentation. Another famous se-
mantic segmentation network is U-Net [16], which is a
classical encoder-decoder structure. U-Net introduced
vanilla skip connections to connect the high-level features
and shadow features in the encoding and decoding layers.
Inspired by U-Net, many U-shaped-based structure net-
works have been proposed for semantic segmentation
[29–33]. Later, with rapid advancements in convolutional
neural network technology, such as multiscale context
extraction and attention mechanisms, were introduced to
the semantic segmentation task. For instance, the DeepLab
family [29, 30] proposed the atrous spatial pyramid
pooling (ASPP) block to capture multiscale features by
increasing the network receptive field. 'e pyramid
pooling module was used by PSPNet [34] to improve the
network’s capacity to utilize global context information.
Woo et al. [35] introduced channel attention and spatial
attention for adaptive feature refinement. ATTU-Net [23]
proposed an attention gate (AG) model to learn target
structures of varying shapes and sizes. Dual attention [36]
uses spatial and channel attention to capture abundant

Figure 1: .Various fundus retinal data images containing the disease.
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contextual features to better improve the network’s ability
to segment the blood vessels in the fundus. We also use
multiscale feature extraction and attention mechanisms in
our network.

2.2. Retinal Vessel Segmentation. 'ere are many different
algorithms for retinal vessel segmentation, and these can be
divided into two main categories: traditional machine
learning methods and deep learning methods. Traditional
machine learning segmentation methods utilize hand-
crafted features to conduct retinal vessel segmentation. Such
as fuzzy C-means [11] is employed to segment retinal blood
vessels. Mahapatra et al. [37] proposed a novel framework
for retinal vessel segmentation using an optimal improved
frangi filter and adaptive weighted spatial fuzzy C-means.
Zhang et al. [38] used an unsupervised texton dictionary,
where vessel textons were derived from the responses of a
multiscale Gabor filter bank. Lupascu et al. [39] adopted a
feature-based AdaBoost classifier for segmenting retinal
vessels. Javidi et al. [40] and Zhang et al. [41] used sparse
coding for retinal vessel enhancement and segmentation.
However, traditional methods rely on manually extracted
features, and their accuracy is difficult to guarantee.

Following the successful application of convolutional
neural networks (CNNs) in the medical image field, many
CNN-based segmentation networks have been applied to
retinal vessel segmentation [1, 4, 42–44]. For example,
Deepvessel [44] first applied a multiscale CNN to learn rich
hierarchical features, and then combined conditional ran-
dom fields to improve the performance of retinal vessel
segmentation. SCS-Net [22] proposed three new modules to
capture multiscale contextual information and promote the
fusion of the features at different levels. DNL-Net [45]
optimized the structure of the non-local block (NL) and
presented a deformed non-local neural network (DNL-Net)
for retinal vessel segmentation. ResDO-UNet [46] proposed
an automatic and end-to-end detection scheme from fundus
images to enhance feature extraction capabilities. Kim et al.
[47] adopted the concept of iterative learning in a U-Net-like
model for medical image segmentation. Dasgupta et al. [14]
used FCN to segment retinal vessels in color fundus pho-
tography images. R2U-Net [48] proposed a recurrent con-
volutional neural network (RCNN) for medical image
segmentation. 'e Dense U-Net [49] transforms the con-
volutional modules in the common U-Net model into the
dense block. SA-Net [50] proposes a scale of attention to
enforce the scale-attention capability, which can learn the
multiscale features and improve accurate segmentation.

Although the above-mentioned achieved notable per-
formance, these algorithms still have some problems with
feature information retention. Specifically, the existing
methods suffer from the following limitations. First, these
semantic segmentationmodels usually only use the output of
the last layer of the final decoding stage as the predicted
segmentation map. In principle, the output of each layer in
the decoding stage contains abundant segmentation infor-
mation. Second, the vanilla skip connections are used to
connect high-level features and shadow features in the

U-shaped based structures network. However, shallow
features that have undergone subsampling and convolution
operations can suffer from information loss. 'erefore, to
address the shortcomings mentioned above, we redesigned
the encoder-decoder structure. Compared with the tradi-
tional encoder-decoder structure, SFA-Net can better reduce
the information loss in the coding and decoding stages and
improve the performance of retinal vessel segmentation.

3. Method

'e proposed SFA-Net, which is an encoder-decoder
structure, is shown in Figure 2. We optimize both the coding
and decoding layers of the U-Net for retinal vessel seg-
mentation. In the coding layer, we use a new structure for
feature extraction, and in the decoding layer, three different
modules (RASF, AFF, and MPF) are proposed for the ex-
traction of multiscale features and increasing the network
perceptual field. 'e details are explained.

In the coding phase, we used the “Conv + BN” module,
which is a simple convolution and BN module:

F(x) � Relu(BN(conv(x))), (1)

where BN represents a batch normalization and ReLu
represents a rectified linear unit (ReLu).

In the decoding phase, the RASF block consists of re-
sidual atrous networks, where the dilated convolution rates
are set to 1, 3 and 5.'e AFF module is designed to combine
high-level features information with shallow features in-
formation. 'e MPF module is used for learning global
semantic feature information from each layer of the decoder
phase.

3.1. Residual Atrous Spatial Feature Aggregate (RASF).
'e receptive field is important in semantic segmentation. A
number of scholars have proposed methods to increase
network segmentation accuracy by increasing the receptive
field, such as Fu et al. [51], Shi et al. [42], Tao [52], and
Larsson et al. [53]. Although these methods differ in
structure and results, they all increase the network receptive
field by using multiscale information. To follow this idea, we
propose a residual atrous spatial feature aggregate (RASF)
module as shown in Figure 3.

In the RASF module, the input feature map
F ∈ RCin×H×W, which is extracted from the encoder stage.
First, the feature F be feed into three parallel atrous con-
volution layers with three dilate rates are 1, 3, and 5. After
that, we obtained three new feature maps (F1, F2, and F3).
'en, to preserve multiscale feature information, the feature
maps F1, F2, and F3 were concatenated:

F12 � F1⊕F2,

F23 � F2 ⊗F3,
(2)

where “⊕” denotes the tensor summation operation, ⊗ de-
notes the element-wise multiplication operation.

Considering the problem of feature redundancy and
suppressing the irrelevant background noise, we introduce
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an attention mechanism to automatically select the im-
portance of the feature map. We fused the F12 by employing
a 3× 3 convolution, and then obtained the feature maps F122:
F122 � δ(f(F12)). Where f(·) function is the convolution
with a kernel size of 3× 3; δ(·) represent activation function
(ReLU). After the convolution, the global average pooling
(GAP) is used to extract the global feature information.
'en, the feature map F122′ is obtained after two full con-
nected operations and Sigmoid activation operations. 'en,
we will perform a matrix multiplication operation on the
feature map F122′ and the feature map F1 to obtain the feature
map F1′. In addition, we send the feature map F23 to the
Softmax operation. After the Softmax operation, the feature
map F123 and the feature map F3 are subjected to a matrix
multiplication operation to obtain the feature map F2′ . 'en,
we combine the feature map F2′ and the feature map F1′ , and
then use the 3× 3 convolution to perform the dimensionality
reduction operation. Finally, the feature map F12′ and the
feature map F are aggregated via a residual connection.

3.2. Attention Feature Fusion (AFF). To make better use of
the feature maps in the coding and decoding stages, U-Net
immediately concatenates the high-level and shadow fea-
tures by employing vanilla skip connections. However, this
connection ignores shadow features, and high-level features
contain different feature information at different stages.
High-level features contain more semantic information than
shadow features but often lack spatial information. Low-
level features have much more spatial information, which
helps reconstruct intricate details. In addition, multiple
convolution and subsampling operations in the encoding
stage may lead to the loss of feature information. Hereby, we
fuse low-level features before and after subsampling in the
attention feature fusion (AFF) module to prevent the loss of
information, as illustrated in Figure 4.

We first perform a global average pooling (GAP) op-
eration on the low-level features_1 and perform a matrix
multiplication operation with the low-level features_2. 'is
operation can effectively suppress the irrelevant background

2×
Upsample

4×
Upsample

8×
Upsample

1×1
Conv

AFF

AFF

AFF

AFF

Feature
fusion

C Sigmoid

RASF

1/2

1/4

1/8

1/16 MPF

Figure 2:'e SFA-Net architecture with convolutional encoding and decoding units consists of three main blocks: RASF, AFF, andMPF. ©
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noise in the shadow features. 'en, we perform a transpose
convolution operation on the high-level features to recover
the resolution of the high-level features. Finally, fusing the
shallow features and the high-level produces the final output
features as follows:

Fout � Fre©f Fhig ,

Fre � Flow2©Fnewlow,

Fnewlow � δ GAP f′ Flow1( ( (  × Flow2,

(3)

where f and f′ denotes the transpose convolution layer and
3× 3 convolution; © and δmeans the concatenate operation
and L2-Norm; GAP is global average pooling operation.

3.3. Multi-Path Feature Fusion (MPF). In order to obtain
more semantic information and improve network accu-
racy, we introduce the MPF module to improve the

efficiency of the network as shown in Figure 5. Specifically,
we used an attention mechanism to fuse the high-level
features of the different stages. In the classical code-and-
decode structure, the final output of the high-level fea-
tures is used as the segmentation prediction result.
However, the multiple upsampling and convolution op-
erations usually result in the loss of high-level informa-
tion. 'erefore, we used the high-level features from
different stages of the decoding phase for the final seg-
mentation prediction.

We first perform upsampling operations on the high-
level features at different stages to recover the resolution of
the features. 'en, we perform a convolution operation on
the high-level features to optimize the high-level features.
Also, we use a self-attention-like operation to perform
feature filtering and reduce redundant features. Finally, a
matrix multiplication operation is performed to fuse the
high-level features map:
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Figure 4: 'e flowchart of the AFF block.
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Fout � F1 ⊗F2,

F1 � Conv3×3 Upsample Xh1( ( ,

F2 � δ GAP sofmax X1 ⊗X2( ( ( ,

X1 � Conv3×3 Upsample Xh2( ( ,

X2 � Conv3×3 Upsample Xh3( ( .

(4)

3.4. Loss Function. In this paper, considering the distribu-
tions of foreground and background in the retinal vessel
map, we employ the binary cross entropy for training SFA-
Net, defined as follows:

L � −yilog pi(  − 1 − yi( log 1 − pi( , (5)

where yi and pi represent ground truth and predicted
probability, respectively.

pi ∈ [0, 1],

yi ∈ 0, 1.
(6)

4. Results and Discussion

4.1. Datasets Summary and Experimental Details. 'ree
public datasets (DRIVE, CHASEDB1, and STARE) were
used to test our model as shown in Table 1. All the images are
RGB color in various formats and sizes, as illustrated in
Figure 6.

'e DRIVE (Digital Retinal Images for Vessel Extrac-
tion) dataset [54] consists of 40 color retinal images with a
resolution of 565×584. 'e dataset is already divided into
test and training, with 20 samples utilized for training and
the remaining 20 samples for testing.

'e CHASE_DB1 (Child Heart and Health Study in
England) dataset [55] contains 28 retinal images, and the size
of each image is 999× 960 pixels. 'e dataset is divided into
two sets, in which a 20-sample set is used for training and the
remaining 8 samples are used for testing.

'e STARE (Structured Analysis of the Retina) dataset
[56] contains 20 colorful retinal fundus images, and each
image has a size of 700× 605 pixels. We employed the leave-
one-out strategy on the STARE dataset due to the smaller
number of samples, which means that one image is used for
testing and the remaining 19 samples are used for training.

Table 1: An overview of the three publicly available retinal vessel databases.

Dataset Quantity Train-test split Resolution Format
DRIVE 40 20–20 565× 584 .Tiff
CHASEDB1 28 20–8 999× 960 .Jpg
STARE 20 18–2 400× 605 .Ppm

Figure 6: Example images from the training dataset, from left to right are DRIVE dataset, CHASEDB1 dataset, and STARE dataset.'e first
row shows the original images, the second row shows the label.
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We used 190,000 randomly chosen patches from the
retinal blood vessel images in all three datasets. In this
implementation, 152,000 patches were used for training, and
another 38,000 patches were used for validation. For all three
datasets, the patch size is 96× 96. 'e Keras platform and an
NVIDIA TITAN XP graphics card with 12GB of memory
are used to implement our proposed SFA-Net. After re-
peating the upsampling operation and down-sampling op-
eration four times, the number of train parameters is 9.3M.
In addition, we employ the Adam as an optimization ap-
proach during training, with an initialization learning rate of
1e− 4 and a weight decay of 0.0001. 'e batch size in our
experiments is set to 16.

Several significant metrics are used to quantitatively
evaluate the experimental data, including sensitivity (SE),
specificity (SP), and accuracy (ACC), which are calculated
using the following:

SE �
|TP|

|TP + FN|
,

SP �
|TN|

|FP + TN|
,

ACC �
|TP + TN|

|TP + TN + FN + FP|
,

(7)

where TP and FP are the true positive and false positive,
respectively. Correspondingly, TN is the true negative, while
FN is the false negative. 'e receiver operating characteristic
curve (ROC) area under the curve (AUC) is also used to
evaluate segmentation performance, which is dependent on
recall and precision.

4.2. Results. To demonstrate the outstanding performance
of our proposed method, we compare it to other state-of-
the-art deep learning methods, such as U-Net [16], R2U-
Net [48], AttU-Net [23], and DenseU-Net [49]. We
implemented all algorithms on three datasets (DRIVE,
CHASEDB1, and STARE). 'e experimental result indi-
cators for these methods are shown in Table 2 and
Figure 7.

We used four significant statistical metrics (SE, SP,
ACC, and AUC) to analyse the SFA-Net on three public
datasets. As shown at the top of Table 2, compared with the
other four algorithms, SFA-Net shows better performance
than the state-of-the-art methods in most metrics on the
DRIVE dataset. In the DRIVE dataset, it has an AUC of
98.44%. It also has the highest SE of 83.53%, the highest
ACC of 96.31%, and a SP of 98.09%. 'is means that our
proposed SFA-Net is beneficial to retinal vessel segmen-
tation. Also, in the CHASEDB1 dataset, with comparative
results of other methods presented in the middle of Ta-
ble 2. SFA-Net outperforms other methods in SE and ACC
by 84.26% and 97.48%, respectively. When compared with
AttU-Net, the SE increased from 77.87% to 84.26%. 'e
ACC and AUC increased from 96.36%/98.29% to 97.48%/
98.93%, respectively. 'e STARE dataset performance
comparisons are shown at the bottom of Table 2. In terms

of AUC evaluation metrics, SFA-Net outperforms other
algorithms, and it also outperforms other algorithms in
terms of SE and ACC.

In addition, we utilize ROC curves and AUC metrics to
evaluate the performance of the SFA-Net, as shown in Fig-
ure 8. We can see that the SFA-Net outperforms state-of-the-
art methods by obtaining the highest ROC and AUC values.

4.3. Ablation Studies. 'e SFA-Net contains three main
components in the proposed approach in order to illustrate
that each block of the SFA-Net can improve the performance
of retinal vessel segmentation. We implement ablation re-
search to prove the performance of each block on the DRIVE
database. Figure 9 and Table 3 show the visual results
components and statistical comparisons, respectively. A
U-shaped network (U-Net) is referred to as “Baseline” in
ablation study.

4.3.1. Effectiveness of the RASF Module. 'e Baseline with
the RASF module is referred to as “Baseline +RASF.”
Compared with “Baseline,” “Baseline +RASF’ increases
from 73.24% to 79.84% in terms of SE. 'e ACC and AUC
increased from 95.63% to 97.06% to 96.20% and 98.28%,
respectively. In addition, we add the RASF block into the
“Baseline +AFF,” which is referred to as
“Baseline +RASF+AFF.” Compared with “Baseline +AFF,”
the performance of “Baseline +RASF+AFF” increases by
0.3% in terms of SE. 'is means that our proposed RASF
module is beneficial for effectively obtaining multiscale
information and improving network accuracy.

4.3.2. Effectiveness of the AFF Module. 'e Baseline with
AFF module is referred to as “Baseline +AFF.” Compared
with the “Baseline,” the “Baseline +AFF” increases in terms

Table 2: Experimental results of SFA-Net for segmentation and
comparison with other approaches on three retina vessel databases:
DRIVE, CHASEDB1, and STARE.

Method SE (%) SP (%) ACC (%) AUC (%)
DRIVE dataset
Dense U-Net 80.40 98.23 96.04 97.97
AttU-Net 83.19 97.87 96.07 98.11
R2U-Net 83.18 97.71 95.93 98.01
U-Net 73.24 98.76 95.63 97.06
SFA-Net (ours) 83.53 98.09 96.31 98.44
CHASEDB1 dataset
Dense U-Net 80.63 98.51 97.38 98.66
AttU-Net 77.87 98.23 96.36 98.29
R2U-Net 82.23 97.85 96.42 98.38
U-Net 79.97 98.05 96.39 98.33
SFA-Net (ours) 84.26 98.36 97.48 98.93
STARE dataset
Dense U-Net 68.34 99.06 97.00 98.02
AttU-Net 71.09 99.00 97.13 98.51
R2U-Net 73.06 98.60 96.29 98.51
U-Net 67.63 98.77 95.96 97.59
SFA-Net (ours) 76.47 98.82 97.32 98.84

Journal of Healthcare Engineering 7



of SE by 12.5% (from 73.24% to 82.42%). 'en, we further
embed AFF into “Baseline + RASF” (referred to as
‘Baseline +RASF+AFF’) to further enhance the validity of
the AFF module. As shown in Table 3, the AUC and SE of
“Baseline +RASF+AFF” are 0.12% and 0.08% better than
the “Baseline +RASF network.”

4.3.3. Effectiveness of the MPF Module. In order to learn
multilevel features, MPF is inserted into different stages of
the decoding phase. To verify its validity, we add the MPF
block into the ‘Baseline +RASF+AFF(referred to as
“Baseline +RASF+AFF+MPF (ours)”). Compared with the

‘Baseline +RASF+AFF’, the proposed SAT-Net has an in-
crease in AUC of 0.65%, as shown in Table 3.'is means that
the proposed MPF module is effective at the decoder stage
and improves network accuracy.

4.4. Limitations. Currently, the main retinal vessel seg-
mentation algorithms are based on convolutional neural
networks, which often require a large amount of data during
training. Since the images of fundus vascular datasets are
usually small, resulting in the robust performance of the
trained models being poor. However, traditional machine
learning methods are usually better at dealing with small

Original image Ground truth AttU-Net DenseU-Net R2U-Net U-Net Ours

Figure 7: Example segmentation results on three databases: DRIVE (top), CHASEDB1 (middle), STARE (bottom).
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data sets. 'erefore, we should pay more attention to the
combination of traditional machine learning methods with
convolutional neural networks to improve the accuracy of
retinal vessel segmentation.

In our experiments, we find that when the contrast
between the blood vessels and the background noise is low in
the retinal vessel pictures, there are still some failure cases as
shown in Figure 7. 'e reason for this situation is that we
believe that the fundus vascular dataset is small and it is
difficult for the model to learn rich features. However, even
under such conditions, our method outperforms other state-
of-the-art methods, and our model’s segmentation results
are more accurate.

5. Conclusion and Future Works

'is paper proposed a retinal vessel segmentation network
(SFA-Net) with three module components, i.e., RASF, AFF,
and MPF. 'e proposed method can effectively capture
multiscale contextual information and fuse high-level and

shadow features to improve network segmentation accuracy.
'e RASF module is designed to feature aggregate, which
uses dilated convolution to dynamically change the receptive
field and learn more multiscale contextual information.
Besides, the AFF modules fuse shadow and high-level fea-
tures in each stage of the encoding layer. In addition, the
MPF involves all shallow features at different scales in the
coding stage in the final feature segmentation to improve the
network segmentation accuracy. 'e experimental results
demonstrate the outstanding performance of the SAF-Net in
the segmentation of retinal vessels.

In the future, we will introduce traditional machine
learning methods into deep learning to improve semantic
segmentation accuracy. Although various deep learning-
based semantic segmentation algorithms have achieved
excellent results, they do not perform well when dealing with
datasets with a small number of images. We will introduce
traditional machine learning methods to improve the ability
of deep learning to deal with datasets with a small number of
images.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9: Example segmentation results of different blocks in ablation research on the DRIVE dataset. (a) Original image, (b) detailed view,
(c) ground truths, (d) Baseline, (e) Baseline +RASF, (f ) Baseline +AFF, (g) Baseline +RASF +AFF, and (h) Baseline +RASF +AFF+MPF
(Ours).

Table 3: Ablation studies on the DRIVE dataset for each block.

Method SE (%) SP (%) ACC (%) AUC (%)
Baseline 73.24 98.76 95.63 97.06
Baseline +RASF 79.84 98.08 96.20 98.28
Baseline +AFF 82.42 98.08 96.16 98.22
Baseline +RASF +AFF 85.13 97.71 96.18 98.34
Baseline +RASF +AFF+MPF (ours) 83.53 98.09 96.31 98.44
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Data Availability

'e data used to support the findings of this study have been
deposited in the DRIVE, CHASE_DB1, and STARE reposi-
tory, the dataset is freely available and can be downloaded
from DRIVE (https://drive.grand-challenge.org/), CHA-
SE_DB1 (https://blogs.kingston.ac.uk/retinal/chasedb1/), and
STARE (http://cecas.clemson.edu/∼ahoover/stare/).
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