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COVID-19 continues to pose a dangerous global health threat, as cases grow rapidly and deaths increase day by day. Tis
increasing phenomenon does not only afect economic policy but also international policy around the world. In this paper,
Pakistan daily death cases of COVID-19, from February 25, 2020, to March 23, 2022, have been modeled using the long-
established autoregressive-integrated moving average (ARIMA) model and the machine learning multilayer perceptron (MLP)
model. Te most beftting model is selected based on the root mean square error (RMSE), mean square error (MSE), and mean
absolute error (MAE). Values of the key performance indicator (KPI) showed that the MLP model outperformed the ARIMA
model. Te MLP model with 20 hidden layers, which emerged as the overall most apt model, was used to predict future daily
COVID-19 deaths in Pakistan to enable policymakers and health professionals to put in place systematic measures to reduce death
cases. We encourage the Government of Pakistan to intensify its vaccination campaign and encourage everyone to get vaccinated.

1. Introduction

From the beginning of this contagious coronavirus disease
2019 (COVID-19), it was acknowledged as a crisis that has
negatively impacted almost all aspects of public and economic
life. Due to the increasing infectious cases of COVID-19, there
is also an increase in the death rate of patients, which creates a
chaotic and mental disorder among humans across the globe.
Predicting the behavior of contagious diseases is a major
headache for both policymakers and health professionals [1, 2].

Jabardi et al. [3] utilized the autoregressive-integrated
moving average (ARIMA) model to forecast the infection and
death cases of COVID-19 in Iraq.Tey selected their model by
implementing the root mean square error (RMSE) criteria.
Shareef et al. [4] used four diferent models for analyzing the
drift of COVID-19 cases in Pakistan and found the ARIMA
model as an optimum forecastingmodel. Nesa et al. [5] utilized

the ARIMA model for forecasting confrmed recovery and
death cases of COVID-19 in Bangladesh. Banda [6] used the
ARIMAmodel in predicting the cumulative confrmed cases of
COVID-19. In their work, the appropriate model is selected
based on the root mean square error (RMSE), mean square
error (MSE), and mean absolute percentage error (MAPE).

Xu et al. [7] applied three machine learning models,
namely, convolutional neural networks (CNNs), long short-
term memory (LSTM), and CNN-LSTM to forecast new
cases of COVID-19 and found that the LSTM has high
accuracy in prognosticating new COVID-19 cases. Naimoli
[8] compared the heterogeneous autoregressive (HAR)
model and the ARIMAmodel in fnding the positive rates of
COVID-19 in Italy and concluded that the HAR model
outperformed the ARIMA model. Chyon et al. [9] used the
ARIMAmodel andmachine learning propositions to predict
COVID-19-afected individuals.
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Machine learning approaches to time series modeling
and forecasting seems to perform better with more accurate
forecast values than those of the traditional time series
models [7–9]. Terefore, more machine learning time series
approaches ought to be explored.

1.1. Literature Review. Predictive and statistical models have
been used constantly for modeling diseases and other
pandemics. Te conventional models used in time series
analysis are ARIMA models proposed by Box–Jenkins for
modeling and forecasting time series data.

Mohan et al. [10] put forward a hybrid ARIMAmodel to
model and predict the daily confrmed and cumulative
confrmed cases of COVID-19. Te results showed that the
modifed ARIMA model outperformed the traditional
ARIMA model in predicting the daily confrmed and cu-
mulative confrmed cases. Argawu [11] applied the ARIMA
model to prognosticate COVID-19 new cases in Algeria,
Egypt, Ethiopia, Morocco, and South Africa. Rachman [12]
and Zhang et al. [13] conducted a study to compare and
forecast the vaccination of COVID-19 using the ARIMA and
LSTM models. Chen et al. [14] employed three time series
models to predict confrmed cases of COVID-19 for dif-
ferent provinces in Canada. Tey found out that the neural
network outperformed the others in short-term forecasting.
Ribeiro et al. [15] used ARIMA models, Cubist model,
random forest (RF), ridge regression (RIDGE), support
vector regression (SVR), and stacking ensemble learning in
predicting one, three, and six days forward confrmed cu-
mulative COVID-19 cases in ten Brazilian states. Warssamo
and Sciences [16] developed the ARIMAmodel for analyzing
verifed recuperate and death cases in Ethiopia, while Sahai
et al. [17] utilized the ARIMA model for estimating and
predicting the infected cases from the top fve countries with
a high number of COVID-19 cases at a particular time
frame, namely, the United States (US), Brazil, India, Russia,
and Spain. Biswas [18] and Zeroual et al. [19] conducted a
comparative study on the new daily cases of COVID-19
using fve deep learning models to predict the number of
recovered and new cases.

Li et al. [20] reported diferent ARIMA models for
diferent countries to forecast coronavirus incidence, and
their model was selected based on AIC criteria. Tan et al. [21]
developed the seasonal autoregressive moving average
(SARIMA) model for the analysis of the trend of the third
wave of COVID-19 in Malaysia. Teir model selection was
based on the RMSE, mean absolute percentage error (MAE),
and Bayesian information criterion (BIC). Rajab et al. [22]
suggested an approach to predict the spread of COVID-19 in
the United Arab Emirates (UAE), Saudi Arabia, and Kuwait
by utilizing the vector autoregressive (VAR) model. Rguibi
et al. [23] employed the ARIMA and LSTM models to
forecast and predict the time evolution of COVID-19 in
Morocco.

Te epidemiological viewpoint on displaying contagious
sickness spread includes the thought of a bigger number of
demonstrating boundaries enumerating the spread of the
infection and recuperation from the infection, extra

compartments relating to mature classifcation, and other
related decisions [24, 25]. An information-driven way to
deal with displaying COVID-19 has likewise arisen, in which
measurable and machine learning models are utilized for
gauging cases, hospitalizations, passings, and efects of social
separating [26, 27]. Considering machine learning ap-
proaches, forecasting by using artifcial and wavelet neural
networks with meteorological conditions has been studied
by Guo et al. [28]. Guo and He [29] predicted confrmed
death cases together with confrmed global COVID-19
confrmed cases utilizing artifcial intelligence. Guo et al.
[30] explored the changes in air quality from COVID-19 to
the post-COVID-19 era in the Beijing-Tianjin-Tangshan
region of China using the air quality index in machine
learning, while He et al. [31] implemented artifcial neural
networks to predict monthly PM2.5 concentration in
China’s Liaocheng province.

It is clear from the above that there is an inconclusive
approach to modeling COVID-19 death cases using ARIMA
and machine learning techniques. In this study, we modeled
daily COVID-19 death cases in Pakistan using the classical
ARIMA model and the machine learning multilayer per-
ceptron (MLP) model [32–35]. Te models are compared
using performance indicators (KPIs). Te most appropriate
model is selected to predict future cumulative COVID-19
deaths in Pakistan. Forecasting through the selected mod-
eling technique will assist authorities in Pakistan to observe
the daily death trend due to COVID-19 in Pakistan, thereby
providing them with a valid tool for controlling the efects of
the pandemic. Tis will, in the long run, help Pakistan
authorities to put in place strategic prevention measures and
mechanisms to curtail death cases in the country. It will also
assist the authorities concerned to ascertain the intensity of
the pandemic in future. Our proposed model can be
compared with existing models in the literature to show
predictive strength and accuracy.

Te remainder of the article is organized as follows: in
the upcoming section, we present the data and methods,
followed by the results and discussion. In the last section, we
present the conclusions of the study.

2. Data and Methods

2.1. Data. Te data consist of daily confrmed COVID-19
death cases from February 25, 2020, to March 23, 2022,
which are available on the ofcial website of the Pakistan
Ministry of National Health Services, Regulation and Co-
ordination (https://covid.gov.pk).Te data were collected by
a joint action between the Government of Pakistan, the
Pakistan Ministry of National Health Services, Regulation
and Coordination, and the World Health Organization.
Table 1 shows the summary statistics of COVID-19 death
cases in Pakistan.

2.2. Methods

2.2.1. Autoregressive-Integrated Moving Average (ARIMA)
Model. Te ARIMA model, also known as the Box–Jenkins
methodology [36], is among the best classical time series
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models that are used for short-term forecasting purposes.
Tis model [ARIMA (p, d, q)] is a combination of three
components; namely, autoregression (AR), gives us infor-
mation about how the series is dependent on its past lag and
denoted by a parameter p, the moving average (MA) part
which tells us about the dependency of error terms on past
lags and is denoted by q, and the last part is the integrated
part which is used when the series is not stationary and
denoted by d. Tis methodology comprises four procedures,
namely, model identifcation, estimation of parameters,
diagnostic checking, and forecasting. Te series is checked
by applying some tests of stationarity, and after that, the
model is identifed based on the correlogram of the data. It
proceeds with the estimation step, and after that, the esti-
mated models are examined based on diagnostic checking; if
the candidate model fulflls the criteria, the model is utilized
for forecasting. Mathematically, this model can be written as

Φp(B)∆d
yt � өq

(B)et, (1)

if the series is nonseasonal. However, if the model is based on
seasonal components, then we can write this model in terms
of the backshift operator as

φP(B)Φp(B)∆d∆D
s yt � ΘQ(B)өq

(B)et, (2)

where Φp stands for the autoregressive part and өq stands
for the moving average part, while ∆dyt denotes the dif-
ference in the series. φP(B) is the seasonal autoregressive
polynomial of order P and ΘQ is the seasonal moving av-
erage polynomial of order Q. ∆d∆D

s yt is the seasonal dif-
ference. Figure 1 shows the fowchart for this methodology.

2.2.2. Multilayer Perceptron (MLP) Model. Te multilayer
perceptron (MLP) machine learning model [37–39] is ac-
knowledged as one of the most fexible mathematical al-
gorithms according to its potential applications as well as its
precision in time series predicting and forecasting. Te MLP
model is particularly useful in approximating any type of
continuous, nonlinear, diferentiable, and limited function.
Tis has made it a universal approximator. Structurally, the
MLP model comprises an input layer and an output layer
vis-a-vis one or more hidden layers. Artifcial neurons are
used to process information from one layer to another layer.
Hidden layers receive the information from the input layers
and then pass the information in a nonlinear function to
another space, depending on the study of interest. Tis
interconnected information then enters the output layer,

resulting in the network response. Te structure of the
network is a feed-forward information algorithm, with
connecting layers being disjoint. Mathematically, the net-
work of the MLP model is given by the following equation:

y � fs 􏽘
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where the network inputs un are the bias of the network bn, f
is the activation function of the intermediate layers, and fs is
the output layer activation function. y is the output signal,
wi

kn is the weight of the intermediate layer, and w0
1k is the

connection of the output neurons. Figure 2 represents the
diagrammatic structure of the MLP model.

We used both models to predict the cumulative death
cases in Pakistan and compared the models based on KPIs
such as the mean square error (MSE), RMSE, and MAE.
Mathematical expressions for KPIs are given as follows:
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(4)

where Y1, . . . , YN and Y, . . . , YT are a partition of the data.
Te model with the smallest KPI is selected as the most apt
for the series and used for forecasting. All analyses were
performed in R.

3. Results and Discussion

Figure 3 shows the visual features of the series. It can be
deduced that the series is not stationary. Te correlogram in
Figure 4, the autocorrelation function (ACF), and the partial
autocorrelation function (PACF) plot confrmed that the
series is not stationary. We applied the augmented Dick-
y–Fuller test of stationary at a 0.05 signifcant level to the
following hypotheses:

Ho: the series is not stationary,

H1: the series is stationary.
(5)

Te p value of the series was found to be 0.5385, whichmeans
we fail to reject Ho, confrming that indeed the series is not
stationary. To make the series stationary, we applied diference
transformation, thereby fnding the order of the candidate model.
Tis was achieved by making a correlogram of the transformed
series. Figure 5 shows the correlogram of the transformed series.
From the fgure, it is easy to estimate the diferent candidate
models, and the best candidate model is selected according to
KPIs. Te estimated candidate models are given in Table 2.

Table 1: Descriptive statistics of Pakistan COVID-19 confrmed
deaths from February 25, 2020, to March 23, 2022.

Daily death cases
Mean 41.00
Median 32.00
Minimum 0.00
Maximum 313.00
Variance 1445.38
Lower quartile 9.00
Upper quartile 60.75
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From Table 2, we notice that the candidate model,
ARIMA (6, 1, 6), is the best ft since it has the least KPIs
among the other competing models. We used this ARIMA
(6, 1, 6) to prognosticate future values of everyday death due

to COVID-19 in Pakistan. We also present the graph of the
ftted values versus the original values of the series. Figure 6
shows the graph of the ftted versus original series, while
Figure 7 shows the forecasted values given. From Figure 7, it
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Figure 2: Structure of a single hidden layer of the multilayer perceptron (MLP) modeling technique.
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Figure 3: Time series plot of daily death cases of COVID-19.
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Figure 1: ARIMA model (Box–Jenkins methodology) fowchart.
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can be observed that by using the ARIMA (6, 1, 6) model, we
get the 95% and 90% confdence interval values, with the
dark blue showing 95% confdence interval values and the
light blue showing 90% confdence interval values. It can be
noticed that the ftted values of this model efciently follow
the original series of data, which indicates that this model is
efcient with a given confdence interval to forecast the daily
death cases of COVID-19 in Pakistan. Our results contradict
those obtained by Shareef et al. [4].

We then applied the machine learning MLP model to
predict the death cases of COVID-19. To achieve this, we set
the hidden layers to fnd the optimum estimates. Figure 2
shows the diferent candidate models of the MLP.

From Table 3, we found that the MLP model with 20
hidden layers outperforms the other candidates of MLP
models. It is interesting to note that as we increase the
number of hidden or intermediate layers, the KPI decreases
with optimum efciency. However, increasing the hidden
layer must be done with caution as the model may not
remain efcient at some point after some fxed number of
hidden layers. Figure 8 shows the ftted versus the original
values, while Figure 9 shows the forecasted values for the
MLP with 20 hidden layers. From the fgures, we can observe
that the MLP model gives us multiple horizon forecasts as it
indicates that the series can behave in many but limited
directions. Furthermore, the residual plot indicates that the
model fts to the data very efciently and can forecast the
future values efciently. Additionally, it can also be noticed
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Figure 4: ACF and PACF of daily death cases of COVID-19.
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Table 2: Candidate models for prediction of daily death cases of
COVID-19 using the ARIMA model.

ARIMA (p, d, q) MSE RMSE MAE
ARIMA (4, 1, 5) 446.47 21.13 11.51
ARIMA (5, 1, 5) 446.05 21.12 11.50
ARIMA (6, 1, 6) 435.13 20.86 11.45
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Figure 6: Original versus ftted values using the ARIMA (6, 1, 6)
model.
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Figure 7: Forecasted values using the ARIMA (6, 1, 6) model.
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that in comparison with the ARIMAmodel, all MLP models
outperformed the ARIMAmodels in terms of the KPIs. MLP
with 20 hidden layers has the lowest values of MSE, RMSE,
and MAE among all models considered (i.e., ARIMA and
MLP models). We can state that the machine learning
model, MLP with 20 hidden layers, can be utilized to forecast
efciently the future death cases of COVID-19 in Pakistan.
Our MLP model performance is similar to that of Srinivasa
and Santhi Tilagam [37], Deyasi et al. [38], and Chai et al.
[39].

4. Conclusion

Te COVID-19 death cases in Pakistan have been analyzed
using the classical time series ARIMA model and the ma-
chine learning MLP model. Diferent candidate models of
both models were applied and compared using diferent
KPIs. Te KPIs used, which have been frequently used in
numerous classical and machine learning time series
modeling, pointed to the fact that the MLP model with 20
hidden layers outperforms all other competing models for
modeling and prediction purposes. It must be noted that
increasing the hidden layer should be done with caution as
the model may not remain efcient at some point after some
fxed number of hidden layers. Te MLP model was then
used to forecast COVID-19 confrmed deaths in Pakistan.

Tis will, in the long run, help authorities to put in place
strategic prevention measures and mechanisms to curtail the
death cases in the country. It will also assist authorities to
ascertain the intensity of the pandemic in future. Although
there is a strong campaign for vaccination, people should be
encouraged to take vaccination seriously. It is the respon-
sibility of the Government of Pakistan and the whole society
to make the vaccination process successful.

Data Availability

Daily confrmed COVID-19 data from February 25, 2020 to
March 23, 2022, provided by the Pakistan Ministry of Na-
tional Health Services, Regulation and Government of
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