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Te automatic segmentation of cardiac magnetic resonance (MR) images is the basis for the diagnosis of cardiac-related diseases.
However, the segmentation of cardiac MR images is a challenging task due to the inhomogeneity of MR images intensity
distribution and the unclear boundaries between adjacent tissues. In this paper, we propose a novel multiresolution mutual
assistance network (MMA-Net) for cardiac MR images segmentation. It is mainly composed of multibranch input module,
multiresolution mutual assistance module, and multilabel deep supervision. First, the multibranch input module helps the
network to extract local and global features more pertinently. Ten, the multiresolution mutual assistance module implements
multiresolution feature interaction and progressively improves semantic features to more completely express the information of
the tissue. Finally, the multilabel deep supervision is proposed to generate the fnal segmentation map. We compare with state-of-
the-art medical image segmentation methods on the medical image computing and computer-assisted intervention (MICCAI)
automated cardiac diagnosis challenge datasets and the MICCAI atrial segmentation challenge datasets. Te mean dice scores of
our method in the left atrium, right ventricle, myocardium, and left ventricle are 0.919, 0.920, 0.881, and 0.960, respectively. Te
analysis of evaluation indicators and segmentation results shows that our method achieves the best performance in cardiac
magnetic resonance images segmentation.

1. Introduction

Cardiovascular disease is one of the world’s leading causes of
death, and it kills more people each year from cardiovascular
disease than from any other disease [1, 2]. In recent years, the
number of patients with cardiovascular disease has increased
sharply. Te prevention and treatment of cardiovascular
disease should attract public attention. With the develop-
ment of modern medicine, in order to reduce the mortality
rate and misdiagnosis rate of cardiovascular diseases,
medical imaging technologies such as magnetic resonance
imaging (MRI), computerized tomography (CT), and ul-
trasound (US) are widely used in the diagnosis and treat-
ment of cardiovascular diseases. Cardiac MRI is currently
recognized as the gold standard for evaluating the cardiac
function, and MRI has the advantages of less harm to the
human body and clear imaging [3–6]. Te automatic seg-
mentation of cardiac magnetic resonance (MR) images is the

basis for the diagnosis of cardiac-related diseases. In general,
the anatomy of the cardiac MR image includes the left
ventricle, right ventricle, epicardium, endocardium, and
myocardium. At present, the main segmentation method in
clinical use is manual segmentation by doctors, which can
obtain accurate results but is very time-consuming. Te
limitations of manual segmentation have motivated re-
searchers to continue developing automatic segmentation
methods for cardiac segmentation [7].

Te current cardiac MR images segmentation methods
can be mainly divided into traditional methods [8–10] and
deep learning-based methods [11–15]. Traditional methods
mainly include graph searching based on intensity [8], re-
gion growing [9], and active appearance models [10].
However, most of these traditional methods have problems
such as complex design, poor versatility, and low segmen-
tation accuracy. In recent years, deep learning has achieved
great success in medical image processing [16–19]. Some
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researchers introduced deep learning into medical image
segmentation. Te deep learning-based method gradually
replaces the traditional medical image segmentation method
due to its good versatility, high segmentation accuracy, and
high efciency [20–23]. Te proposal of UNet [24] is a
milestone in medical image segmentation. Based on the
U-shaped structure and skip connections, UNet fuses low-
resolution information and high-resolution information and
has been widely used for cardiac MR images segmentation.
Li et al. [25] proposed a new multiscale feature attentive
UNet for cardiac MR images segmentation and achieved
excellent performance. Sharan et al. [26] combined feature
pyramid network and UNet architecture to study the au-
tomatic segmentation of left ventricle, myocardium, and
right ventricle. Sharan et al. [27] proposed a stack attention-
based convolutional neural network approach for fully
automatic segmentation from short-axis cardiac MR images.
Cui et al. [28] added the direction feld module, channel self-
attention module, and selective kernel module to the UNet
framework to improve the segmentation performance, and
the segmentation experiments on cardiac MR images
demonstrated the efectiveness of the improvements. Wang
et al. [29] proposed an auto-weighted supervision frame-
work to solve the problem of scar and edema segmentation
in multisequence cardiac MR images although the existing
cardiac MR images segmentation methods have achieved
good results. However, the segmentation of cardiac MR
images is still a challenging task due to the inhomogeneity of
MR images intensity distribution and the unclear bound-
aries between adjacent tissues.

Recently, Fu et al. [30] proposed that a multiscale
input layer constructs an image pyramid to achieve
multiple level receptive feld sizes for optic disc and optic
cup segmentation. It is proved that multiscale input can
improve the segmentation performance. Shi et al. [31]
proposed a multiinput fusion network model based on
multiscale input and feature fusion, which automatically
extracts and fuses the features of diferent input scales to
realize the detection of cardiac MR images. Chen et al.
[32] proposed a T-based multiresolution input network,
which achieved good performance in the feld of medical
image segmentation. Currently, the application of mul-
tiresolution input in medical image segmentation is less
studied. Tere is still a lot of room for improvement in the
existing methods. Firstly, the existing multiresolution
input network only considers the fusion of multi-
resolution features at the encoder side but does not
consider the fusion of multiresolution features at the
decoder side. Second, the shallow features extracted from
high-resolution images contain a lot of irrelevant back-
ground information, and existing methods do not con-
sider how to suppress this irrelevant background
information by utilizing deep features extracted from low-
resolution images.

In this paper, we propose a novel multiresolution mutual
assistance network (MMA-Net) for cardiac MR images
segmentation. It is mainly composed of multibranch input
module, multiresolution mutual assistance module, and
multilabel deep supervision. First, the multibranch input

module is responsible for feature extraction of input images
with diferent resolutions. Each resolution input image has a
separate feature extraction branch. Te high-resolution
input image branch is responsible for learning the local
information of the image without worrying about the loss of
global information because the extraction of global infor-
mation is completed by the low-resolution input image
branch. Similarly, the low-resolution input image branch is
responsible for learning the global information of the image
without worrying about the loss of local information. Sec-
ond, the multiresolution mutual assistance module imple-
ments multiresolution feature interaction and progressively
improves semantic features to more completely express the
information of the tissue. Finally, the multilabel deep su-
pervision is proposed to generate the fnal segmentation
map. In addition, we designed the attention gate that utilizes
global features extracted from low-resolution input images
to suppress irrelevant background information from local
features extracted from high-resolution input images. We
compared with state-of-the-art medical image segmentation
methods on the medical image computing and computer-
assisted intervention (MICCAI) automated cardiac diag-
nosis challenge datasets (ACDC) [33] and theMICCAI atrial
segmentation challenge datasets (ASC) [34]. Te mean dice
score of our method in the left atrium, right ventricle,
myocardium, and left ventricle are 0.919, 0.920, 0.881, and
0.960, respectively. Te analysis of evaluation indicators and
segmentation results shows that our method achieves the
best performance in cardiac magnetic resonance images
segmentation.

Te main contribution of this work can be summarized
as follows:

(1) A novel multiresolution mutual assistance network
(MMA-Net) for cardiac MR images segmentation is
proposed. It implements multiresolution feature
interaction and progressively improves semantic
features to more completely express the information
of the tissue.

(2) We designed the attention gate that utilizes global
features extracted from low-resolution input images
to suppress irrelevant background information from
local features extracted from high-resolution input
images.

(3) Amultilabel deep supervision is proposed, which can
well handle the problem of inconsistent prediction
results and labels caused by up sampling of small-
scale feature layers in deep supervision.

(4) Our method outperforms the existing six excellent
medical image segmentation methods.

2. Method

Te proposed multiresolution mutual assistance network
(MMA-Net) is shown in Figure 1. It is mainly composed of
multibranch input module, multiresolution mutual assis-
tance module, and multilabel deep supervision. As shown in
Figure 1, frst, 2D medical images with resolutions of
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224× 224 and 112×112 are input to the multibranch input
module to extract features, respectively. Second, these
extracted features are then input to the multiresolution
mutual assistance module for information interaction and
progressively improves semantic features to more com-
pletely express the information of the tissue. Finally, the
multilabel deep supervision to guide the learning of the
network and the prediction result of MD,1 are used as the
fnal result.

2.1. Multibranch Input Module. Te multiresolution input
has been shown to be efective in improving segmentation
quality [30]. Te current multiresolution input mostly
adopts the structure of the shared encoder.Te disadvantage
of this structure is that it is difcult to balance the learning of
local features and global features. If the receptive feld of the
convolution kernel in the convolutional layer is increased,
the learning of global features can be enhanced, but some
local features will be lost at the same time, and vice versa.
Terefore, we adopted a multibranch structure with a
separate encoder for each resolution input. Te high-reso-
lution input branch can learn the local information of the
image without worrying about the loss of global information
because the extraction of global information is done by the
low-resolution input branch. Similarly, the low-resolution
input branch is responsible for learning the global

information of the image without worrying about the loss of
local information. For the selection of the number of
branches, after our experiments, we chose the dual-branch
structure, as shown in Figure 1. For branch 1, its input is an
image with a resolution of 224× 224, and the output is the
feature ME,i (i� 1, 2, 3, 4, 5) of each encoding stage. For
branch 2, its input is an image with a resolution of 112×112,
and the output is the feature NE,j (j� 2, 3, 4, 5, 6) of each
encoding stage.

2.2. Multiresolution Mutual Assistance Module. After
obtaining the features at each stage of the input image at
diferent resolutions, our goal is to use this information to
obtain better decoded features for fnal segmentation pre-
diction. Te input to multiresolution mutual assistance
module is the features of each stage of the branch 1 and
branch 2 encoders, including ME,i (i� 1, 2, 3, 4, 5) and NE,j

(j� 2, 3, 4, 5, 6). Te outputs are the features of each stage of
the branch 1 and branch 2 decoders, including MD,i (i� 1, 2,
3, 4) and ND,j (j� 2, 3, 4). For each branch, the input to each
decoder stage consists of the complementary features gen-
erated by the previous stage and the features of the corre-
sponding encoder stage. Te output of each stage of the
decoder is calculated by the following formulas.

For branch 1,

MD,i � A Up F MD,i+1, ND,i+1  , ME,i , i � 1, 2, 3,

MD,4 � A Up F Up NE,6 ,AG Up NE,6 , ME,5   , ME,4 .

⎧⎪⎨

⎪⎩
(1)

For branch 2,

ND,j � A Up F MD,j+1, ND,j+1  , NE,j , j � 2, 3,

ND,4 � A Up F Up NE,6 ,AG Up NE,6 , ME,5   , NE,4 .

⎧⎪⎨

⎪⎩
(2)

Here, Up is the up sampling; AG is the attention gate;
A is the attention feature selection; and F is the feature
fusion.

2.2.1. Attention Gate. In our network, branch 1 is mainly
used to extract shallow local features, and branch 2 is mainly
used to extract deep global features. Local features contain a
large amount of detailed information of the target tissue, but
they also introduce a lot of irrelevant background infor-
mation. Global features contain information such as the
location of the target tissue, and there is less detailed in-
formation, but there is also little irrelevant background
information. Inspired by reference [35], we designed an
attention gate that utilizes global features of the last stage

(NE,6) of branch 2 to suppress the irrelevant background
information of the local features of the last stage (ME,5) of
branch 1. Te structure of attention gate is shown in
Figure 2.

2.2.2. Attention Feature Selection. For each branch, the
input to each decoder stage consists of the complementary
features generated by the previous stage and the features of
the corresponding encoder stage. Te feature input from the
encoder stage has shallower features than the corresponding
complementary features. Terefore, we also designed to use
complementary features to suppress the irrelevant back-
ground information of the corresponding encoder stage
input features, and the attention feature selection is shown in
Figure 3.
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2.2.3. Feature Fusion. It frst concatenates multiple input
features along the channel axis and then applies two 3× 3
convolutional layers to the fusion result with the same
number of output channels as a single input.

2.3. Multilabel Deep Supervision. In deep supervision, there
are only labels of the same size as the original image. Te
prediction result of the last layer is the same as the scale of
the label, and the loss can be calculated directly with the
label. Te prediction results of other small-scale feature
layers are usually up sampling to the original image size, and
then the loss is calculated with the labels. However, during
the up sampling process, the prediction results become
coarse, which may lead to inconsistencies between the
prediction results and the labels. To solve this problem, we
propose a multilabel deep supervision. Figure 4 shows the
deep supervision and multilabel deep supervision of MD,1
and MD,4 layers. As shown in Figure 4(a), in the deep su-
pervision, the consistency between MD,1 results and labels is
good, but the consistency between up sampling and labels is
poor in MD,4 results, which may cause the network to learn
wrong information. As shown in Figure 4(b), in the mul-
tilabel deep supervision, each scale feature layer has a label
that is consistent with its feature map size. Te results are
consistent with the label, which can well guide the network
learning.

We have seven output prediction maps and the total loss
function is a simple addition of the loss functions of these

seven output prediction maps. For each output prediction
map, we considered the combination of binary cross-en-
tropy and dice loss as

L � LBCE + LDICE. (3)

Here,

LBCE � 
x,y

Gx,y ∗ log Qx,y  + 1 − Gx,y ∗ log 1 − Qx,y ,

LDICE � 1 −

2 
x,y

Gx,y ∗Qx,y


x,y

Gx,y + Qx,y 
,

(4)

where LBCE and LDICE represent the binary cross-entropy
loss and dice loss, respectively. Gx,y ∈ 0, 1{ } is the area label
at position (x, y), and Qx,y ∈ [0, 1] is the area value at po-
sition (x, y) in output prediction.

3. Experiments

3.1. Datasets, Preprocessing, Implementation Details, and
Evaluation Metrics

3.1.1. Datasets and Preprocessing. We evaluated our
method at the medical image computing and computer-
assisted intervention (MICCAI) automated cardiac di-
agnosis challenge (ACDC) [33] and the MICCAI atrial

A

A

A

F

A

F F FUU U U

Backbone 1 AG

U

A

A

A

Backbone 2

MD, 1

MD, 2

MD, 3

MD, 4

ND, 2

ND, 3

ND, 4

AG Attention gate U Up sample

F Feature fusion A Attention feature
selection

Figure 1: Te proposed multiresolution mutual assistance network (MMA-Net).
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segmentation challenge (ASC) [34]. Te ACDC has
cardiac MR images for 150 cases, but only 100 cases are
annotated (right ventricle, myocardium, and left ven-
tricle), and we only use the 100 annotated cases. Te ASC
has 154 cardiac MR images, all annotated. For all datasets,
we additionally cropped input images at their centers to

make their size 224 × 224 pixels. In addition, we per-
formed max-min normalization (0–1) for each case. For
both the ACDC and ASC datasets, we augmented the
training set by slightly translating, scaling, and rotating.
We evaluated the performance of each model by 5-fold
cross-validation.

Up
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Result for M D, 1

Result for M D, 4
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Down
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......

Result for M D, 1 Lable for M D, 1

Lable for M D, 4
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Figure 4: Te deep supervision and multilabel deep supervision of the MD,1 and MD,4 layers. (a) Deep supervision. (b) Multilabel deep
supervision.
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3.1.2. Implementation Details. Each model runs on four
RTX 3090 cards. We trained our network in the multilabel
deep supervision way. All models are trained with the Adam
optimizer with batch size 32, learning rate 5∗10−4, mo-
mentum 0.9, weight decay 1∗10−4, and max-epoch 1000.Te
early stopping is set to 20. For each branch, we use VGG19 as
the backbone network to extract features.

3.1.3. Evaluation Metrics. We measured the accuracy of
segmentation by the dice similarity coefcient (dice),
specifcity , sensitivity, and F1-score (F1) by

di ce �
2∗ (A∩B)

A∪B
,

specificity �
TN

TN + FP
,

sensitivity �
TP

TP + FN
,

F1 �
2∗TP

2∗TP + FP + FN
,

(5)

where A and B represent prediction result and ground truth,
respectively. TP, TN, FP, and FN represent the number of
true positives, true negatives, false positives, and false
negatives, respectively.

3.2. Ablation Experiments and Analyses

3.2.1. Number of Branches. We analyzed the infuence of the
number of branches in the network on the segmentation
accuracy in the ACDC and ASC, which includes (a)
Num� 1 (the input image size is 224× 224), (b) Num � 2
(the input image sizes are 224 × 224 and 112 ×112, re-
spectively), (c) Num � 3 (the input image sizes are
224× 224, 112 ×112 and 56× 56, respectively), and (d)
Num� 4 (the input image sizes are 224 × 224, 112 ×112,

56 × 56 and 28× 28, respectively). Te results are shown in
Tables 1 and 2. According to our network structure rules,
when Num� 5, branch 5 will have no decoder stage;
therefore, we do not compare the case of Num≥ 5. As
shown in Tables 1 and 2, when Num � 2, the segmentation
performance of the network is the best, so we fnally chose
the dual-branch network structure.

3.2.2. Multiresolution Mutual Assistance Module. We ana-
lyzed the infuence of the multiresolution mutual assis-
tance module in the network on the segmentation accuracy
in the ACDC and ASC, which includes (a) unidirectional
fusion mode (UFM), (b) two-way fusion mode (TFM), and
(c) multiresolution mutual assistance module (MMAM).
Te results are shown in Tables 3 and 4. As shown in
Tables 3 and 4, compared with other modes, our multi-
resolution mutual assistance module achieves better
performance.

Table 1:Te infuence of the number of branches in the network on
the segmentation accuracy in the ACDC.

Num� 1 Num� 2 Num� 3 Num� 4
Dice 0.897 0. 20 0.911 0.908
Specifcity 0.999 0.   0.999 0.999
Sensitivity 0.891 0. 15 0.902 0.900
F1 0.899 0. 20 0.911 0.908
Te best performance is shown in bold.

Table 2:Te infuence of the number of branches in the network on
the segmentation accuracy in the ASC.

Num� 1 Num� 2 Num� 3 Num� 4
Dice 0.909 0. 1 0.914 0.912
Specifcity 0.995 0.  6 0.996 0.995
Sensitivity 0.911 0. 17 0.914 0.913
F1 0.911 0. 20 0.915 0.913
Te best performance is shown in bold.

Table 3: Te infuence of the multiresolution mutual assistance
module in the network on the segmentation accuracy in the ACDC.

UFM TFM MMAM
Dice 0.908 0.909 0. 20
Specifcity 0.999 0.999 0.   
Sensitivity 0.900 0.899 0. 15
F1 0.908 0.911 0. 20
Te best performance is shown in bold.

Table 4: Te infuence of the multiresolution mutual assistance
module in the network on the segmentation accuracy in the ASC.

UFM TFM MMAM
Dice 0.911 0.910 0. 1 
Specifcity 0.995 0.995 0.  6
Sensitivity 0.913 0.912 0. 17
F1 0.911 0.910 0. 20
Te best performance is shown in bold.

Table 5: Te infuence of the multilabel deep supervision in the
network on the segmentation accuracy in the ACDC.

DS MLDS
Dice 0.915 0. 20
Specifcity 0.999 0.   
Sensitivity 0.908 0. 15
F1 0.915 0. 20
Te best performance is shown in bold.

Table 6: Te infuence of the multilabel deep supervision in the
network on the segmentation accuracy in the ASC.

DS MLDS
Dice 0.916 0. 1 
Specifcity 0.996 0.  6
Sensitivity 0.915 0. 17
F1 0.917 0. 20
Te best performance is shown in bold.
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3.2.3. Multilabel Deep Supervision. We analyzed the infu-
ence of themultilabel deep supervision in the network on the
segmentation accuracy in the ACDC and ASC, which in-
cludes (a) deep supervision (DS) and (b) multilabel deep
supervision (MLDS).Te results are shown in Tables 5 and 6.
As shown in Tables 5 and 6, compared with deep super-
vision, our multilabel deep supervision achieves better
performance. Tis is because in deep supervision, the results
of small-scale feature layers are inconsistent with the labels,
causing the network to learn wrong information. Our
multilabel deep supervision has labels of corresponding sizes
for each scale feature layer. Te results are consistent with
the label, which can well guide the network learning.

3.3. Comparison with State-of-the-Art Methods and
Discussion. In this section, we compared the proposed
MMA-Net with previous state-of-the-art medical image
segmentation methods on the ACDC [33] and the ASC [34].

3.3.1. Quantitative Comparison. Tables 7 and 8 show the
segmentation results on the ACDC and the ASC, respectively.
As shown in Tables 7 and 8, our method achieves the best
performance for most of the metrics on the ACDC and the
ASC. Especially in the dice, as a key indicator for evaluating
the performance of medical image segmentation, our method
has a great improvement compared with other methods. Te

Table 7: Comparison with state-of-the-art methods on the ACDC.

UNet [24] Att-UNet [35] UNet++ [36] UNet3+ [37] TransUNet [38] Swin-UNet [39] Ours

Dice
RV 0.892 0.895 0.900 0.905 0.901 0.841 0. 20
Myo 0.861 0.851 0.858 0.854 0.845 0.775 0.881
LV 0.939 0.940 0.936 0.947 0.942 0.909 0. 60

Specifcity
RV 0.998 0.999 0.999 0.999 0.999 0.997 0.   
Myo 0.999 0.998 0.   0.999 0.998 0.997 0.998
LV 0.999 0.999 0.999 0.999 0.999 0.999 0.   

Sensitivity
RV 0.891 0.885 0.894 0.900 0.899 0.855 0. 0 
Myo 0.852 0.849 0.840 0.843 0.868 0.800 0.883
LV 0.929 0.928 0.931 0.939 0.950 0.894 0. 53

F1
RV 0.894 0.898 0.902 0.907 0.903 0.845 0. 21
Myo 0.863 0.854 0.859 0.856 0.847 0.777 0.881
LV 0.941 0.942 0.939 0.949 0.945 0.910 0. 60

Te best performance is shown in bold.

Table 8: Comparison with state-of-the-art methods on the ASC.

UNet [24] Att-UNet [35] UNet++ [36] UNet3+ [37] TransUNet [38] Swin-UNet [39] Ours
Dice LA 0.909 0.908 0.907 0.907 0.904 0.876 0. 1 
Specifcity LA 0.995 0.995 0.996 0.995 0.995 0.994 0.  6
Sensitivity LA 0.911 0.914 0.905 0.911 0.902 0.887 0. 17
F1 LA 0.911 0.911 0.911 0.911 0.908 0.886 0. 20
Te best performance is shown in bold.
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specifcity of all methods is close to 1.000 because the
background is the majority, and most of the background is
easily classifed. Our method may be more sensitive to tissue,
misclassifying many backgrounds as tissue, which may be the
reason why our method does not achieve optimal perfor-
mance in terms of specifcity. Sensitivity is another important
metric to evaluate the performance of medical image seg-
mentation, and our method achieves a large performance
improvement on RV, Myo, and LV, and a certain perfor-
mance improvement on LA as well. F1 is a relatively com-
prehensive evaluation index for medical image segmentation
performance, and our method has a certain degree of im-
provement compared with other methods. Figure 5 shows the
change in loss and dice of our method on the ACDC (RV
tissue). As the number of iterations increases, the loss
function converges rapidly, proving that our network
structure and training parameter design are reasonable.

3.3.2. Qualitative Comparison. Figure 6 shows the visuali-
zations on the right ventricle (RV), myocardium (Myo), left
ventricle (LV), and left atrium (LA). As shown in Figure 6,
compared with other methods, our method shows signif-
cant improvement in segmentation performance. For the RV
tissue, our method can localize the tissue well and segment
the edges of the tissue well. For the Myo tissue, only our
method formed complete rings, and none of the other
methods formed complete rings. LV is an easy tissue to
segment, but other methods still have some segmentation
failures. Our method can segment the LV tissue more
perfectly. LA is a difcult tissue to segment, and other
methods are generally efective in segmenting the details of
LA tissue. Our method can better segment the details of LA.

4. Conclusion

In this paper, a novel multiresolution mutual assistance
network (MMA-Net) for cardiacMR images segmentation is
proposed. It implements multiresolution feature interaction

and progressively improves semantic features to more
completely express the information of the tissue. We
compare with state-of-the-art medical image segmentation
methods on the ACDC and the ASC. Te mean dice score of
our method in the left atrium, right ventricle, myocardium,
and left ventricle are 0.919, 0.920, 0.881, and 0.960, re-
spectively. Te analysis of evaluation indicators and seg-
mentation results shows that our method achieves the best
performance in cardiac magnetic resonance images
segmentation.
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