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One common type of vascular dementia (VaD) is poststroke dementia (PSD). Vascular dementia can occur in one-third of stroke
patients. Te worsening of cognitive function can occur quickly if not detected and treated early. One of the potential medical
modalities for observing this disorder by considering costs and safety factors is electroencephalogram (EEG). It is thought that
there are diferences in the spectral dynamics of the EEG signal between the normal group and stroke patients with cognitive
impairment so that it can be used in detection. Terefore, this study proposes an EEG signal characterization method using EEG
spectral power complexity measurements to obtain features of poststroke patients with cognitive impairment and normal subjects.
Working memory EEGs were collected and analyzed from forty-two participants, consisting of sixteen normal subjects, ffteen
poststroke patients with mild cognitive impairment, and eleven poststroke patients with dementia. From the analysis results, it
was found that there were diferences in the dynamics of the power spectral in each group, where the spectral power of the
cognitively impaired group was more regular than the normal group. Notably, (1) signifcant diferences in spectral entropy
(SpecEn) with a p value <0.05 were found for all electrodes, (2) there was a relationship between SpecEn values and the severity of
dementia (SpecEnDem< SpecEnMCI< SpecEnNormal), and (3) a post hoc multiple comparison test showed signifcant diferences
between groups at the F7 electrode. Tis study shows that spectral complexity analysis can discriminate between normal and
poststroke patients with cognitive impairment. For further studies, it is necessary to simulate performance validation so that the
proposed approach can be used in the early detection of poststroke dementia and monitoring the development of dementia.

1. Introduction

Vascular dementia (VaD) is one of the most common types
of dementia after Alzheimer’s dementia (AD) [1]. Vascular
dementia accounts for about 20% of dementia cases
worldwide [2]. VaD is a form of cognitive impairment as-
sociated with cerebrovascular disease [3]. Stroke is the
vascular disease that is the second most commonly asso-
ciated with VaD. Impaired cognitive function due to stroke
is often underestimated compared to motoric dysfunction
[4]. It is thought that cognitive impairment will also

contribute to the quality of the patient’s health problems and
lead to dependence on the people around them.

Based on previous studies, stroke patients will develop
15–30% of dementia three months after stroke, and about
20–25% will develop delayed dementia [5]. Risk factors can
potentially increase with age [6]. Decreased cognitive
function due to dementia can have a broad impact, including
decreased social activities in daily life and increased costs for
families, communities, and the government [7] so early
detection is needed to prevent the worsening of dementia,
which may occur quickly.
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Te diagnostic process of VaD is complex because it
must go through the stages of clinical diagnosis of cognitive
impairment that is severe enough to meet the criteria for
dementia, and it must be proven that the dementia is the
result of cerebrovascular events, including stroke, as evi-
denced by brain imaging [8]. One alternative cognitive
screening test that can be used considering cost and time is
the Mini-Mental State Examination (MMSE) or the Mon-
treal Cognitive Assessment (MoCA) [9]. Furthermore, the
diagnosis of dementia can be supported by examining ge-
netic polymorphisms, cerebrospinal fuid, and microRNA
profling [10–12]. Medical imaging techniques are also es-
sential instruments for establishing poststroke dementia.
Medical imaging modalities have high sensitivity and
specifcity for detecting pathological changes, including
small blood vessel damage that causes cognitive impairment
[13]. However, genetic and medical imaging methods re-
quire specifc equipment that is relatively expensive, com-
plex in installation, not always available, and may pose risks
if performed regularly in a short time. One of the biomarkers
that can be an alternative in studying brain function related
to dementia is the electroencephalogram (EEG), which is
supported by quantitative measurements [14].

Over the past several decades, quantitative EEG (QEEG)
has been used to complete the criteria for dementia. Re-
cently, QEEG research on dementia has focused on early
detection, evaluation of severity, and discrimination of
dementia type [15, 16]. Most studies characterize or detect
Alzheimer’s dementia (AD) based on the EEG. Meanwhile,
poststroke dementia has not been widely explored. Con-
sidering the risk of stroke, which continues to increase every
year, is followed by the risk of dementia, it is necessary to
study the detection of poststroke dementia using EEG.
Recently, a previous study was conducted to characterize
EEG signals from normal subjects and poststroke patients
with cognitive impairment. Tis study showed diferent
power spectral characteristics between normal and post-
stroke with cognitive impairment [17]. Other studies on the
detection of poststroke dementia based on EEG are also
reported in [18, 19]. In their study, measurement of signal
complexity was used to extract EEG features from normal
subjects, stroke-related mild cognitive impairment (MCI),
and VaD.

One of the degrees of complexity proposed in the study
[19] is spectral entropy (SpecEn), which represents a mea-
sure of EEG spectral dynamics. Te degree of EEG spectral
dynamics is thought to have a close relationship with a
cognitive function where there is a signal pattern transition
when responding to a stimulus. Te study [19] reported that
SpecEn in the group with cognitive impairment was lower
than in the normal group. However, in this study, no sig-
nifcant diference was found (p< 0.05) in all EEG channels
with a frequency range (1–60Hz). It is thought that in the
EEG spectral analysis, high-frequency-band activities play a
more important role in emotion than cognitive function, as
reported in [20].

Terefore, this study proposes a characterization of EEG
signals in poststroke patients with cognitive impairment
using the SpecEn approach at a diferent frequency range

from previous studies. In this study, SpecEn wasmeasured in
the frequency range of 1–30Hz as a representation of delta,
theta, alpha, and beta waves. Te EEG wave pattern in this
band is more representative of resting, awake, focused, and
thinking conditions. Tus, it is hoped that signifcant dif-
ferences will be found between the observed groups. Tis
study involved forty-two participants consisting of sixteen
normal subjects, ffteen poststroke patients with mild cog-
nitive impairment, and eleven poststroke patients with
dementia. SpecEn measurements were performed during
working memory EEG recordings. Tis study obtained the
spectral dynamics characteristics of the EEG signal and the
signifcant diferences between groups. Te proposed
method is expected to be used for feature extraction com-
bined with machine learning for the early detection of
poststroke dementia.

Te paper is structured as follows: Section 2 contains
descriptions of materials and methods, including EEG re-
cording, signal preprocessing, spectral entropy, and statis-
tical methods. Section 3 contains simulation results,
including signal preprocessing results, SpecEn measurement
results for each group, and the calculation of signifcant
diferences, followed by a discussion. Section 4 contains the
conclusions of the study, limitations, and future work.

2. Materials and Methods

Te stages of EEG spectral dynamics measurement and
analysis in this study are shown in Figure 1. It includes EEG
recording, signal preprocessing, SpecEn calculation, and a
signifcance test on each EEG channel. Details of the stages
and methods used in this study are presented in the fol-
lowing subsections.

2.1. Subject Criteria andEEGRecording. Te type of research
used is a quantitative study with a case-control study design
with a total of 42 participants consisting of 16 subjects with
normal categories, 15 subjects with ischemic stroke patients
without dementia (MCI), and 11 subjects with ischemic
stroke patients with dementia. Recruitment of participants
in this study was conducted at Hasan Sadikin General
Hospital, Bandung, Indonesia, after obtaining ethical ap-
proval no. LB.02.01/X.6.5/272/2019. All participants are
willing to be included in this study by flling out the in-
formed consent. Te subject criteria used in this study were
based on recommendations. Tey were selected by a neu-
rologist (Neurobehavioral Consultant), the Indonesian
Neurologist Association (PERDOSSI), after a clinical ex-
amination, neuropsychology, and brain imaging (CT-scan)
were carried out.

Normal subjects were recruited with the following cri-
teria: healthy, no indication of neurological and physio-
logical disorders, and never had a severe brain injury.
Meanwhile, the recruited poststroke patients had the fol-
lowing criteria: a stroke at least in the last three months and a
complaint of cognitive impairment. Exclusion criteria for
both sample groups: subjects with aphasia; From anamnesis,
there were no sensory disturbances in hearing, vision,
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movement disorders, and a history of cerebral diseases such
as epilepsy, severe head injury, multiple sclerosis, brain
tumors, history of brain surgery, alcoholism by a
neurologist.

Cognitive function status was confrmed using the
MoCA Indonesian Version (MoCA-INA) test and inter-
views by psychologists and neurologists. Te MoCA score is
greater than 26 normal considerations. MoCA less than 19
and having disturbances in basic and instrumental daily
activities are poststroke patients with dementia. Meanwhile,
for patients with mild vascular cognitive impairment, the
MoCA-INA score is between 19 and 25, and there are no
disturbances in basic daily activities or mild disturbances in
daily instrumental activities. Te demographic data in this
study are presented in Table 1.

EEG recording was carried out at the diagnostic center of
Hasan Sadikin General Hospital using a 19-channel Cadwell
Easy III amplifcation system. Te tapped EEG channels
refer to 10–20 systems, including Fp1, Fp2, F7, F3, Fz, F4, F8,
T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 with
reference channels A1 and A2. Cadwell EEG has a sampling
frequency of 250Hz, a sensitivity of 0.5mV, 18 bit ADC
resolution, and the ability to reject noise >110 dB at a fre-
quency of 50–60Hz. Te recording is done in a comfortable,
closed room with low light intensity and a minimum sound
level. During the recording, the subject lies down on a bed.
All participants were given a stimulus by the operator to
memorize fve familiar words (“face,” “silk,” “mosque,”
“orchid,” and “red”) and then mentioned these words. EEG
recordings at rest with closed eyes at the time before and
after the stimulus were then ignored. Tis study has received
ethical approval from the hospital ethics committee, and all

participants agreed to be included in this study by flling out
an informed consent form.

2.2. EEG Signal Processing Stages. Te aim of the EEG signal
processing in this study is to obtain the spectral complexity
features of each observed group. Te signal processing stages
are presented in Figure 1. Te frst step is preprocessing,
including noise removal for 19 channels of EEG signal in the
time domain. Te main objective is to eliminate low- and
high-frequency noise, which are common and dominant due
to eyeball movement, blinking, jaw muscle activity, and line
noise [21]. Te ICA-based decomposition method is applied
to observe the noise component. Te EEG electrode, sus-
pected of containing a large amount of noise, becomes the
basis for elimination. Te decomposition process, electrode
selection containing noise, and elimination were carried out
using the EEGLAB toolbox. At this stage, fltering is also
carried out using a digital band-pass flter at a frequency of 1
to 30Hz. Te next step is the quantization of signal com-
plexity parameters using SpecEn. SpecEn value diference test
is then applied to observe the signifcance value. Details of the
proposed method are described in the following subsections.

2.3. Preprocessing Stage. Artifact noise is generally caused by
the infuence of limb movements, especially eyeball move-
ment and eye blinking. Another form of noise is baseline
wandering, which is often present at low frequencies and
causes changes in the baseline signal. Line noise occurs
because the operating frequency of the power source is in the
50–60Hz range. Meanwhile, muscle noise will interfere at
high frequencies due to electromyography (EMG) signals
around the jaws of the mouth, which have frequency
characteristics between 30 and 400Hz. Terefore, two ap-
proaches are used at this stage to remove the noise, including
Independent Component Analysis (ICA) and a digital flter
with a cut-of frequency of 1–30Hz. Te ICA process is
carried out using the EEGLAB toolbox in MATLAB [22].

Te denoising process using ICA is principally a de-
composition that involves changing the linear basis of the data
collected at each electrode and then transforming it spatially.
Each row of the data activation matrix provides the time
direction of the activity of one component process that is
spatially fltered from the EEG electrode data. In the case of
ICA parsing, an independent component flter is selected to
generate the maximum transient independent signal available
in the electrode data. Basically, the source of information in
the data contaminated with noise has been recorded on the
scalp electrodes. Tis contamination process is passive and
linear. Tese sources of information can represent synchro-
nous activity from noncortical sources (eyeball and/or muscle
movement potential), as shown in Figure 2.Te noise removal
process using ICA is done by inspecting each channel’s scalp
topography and spectral power.

Eye or eyeball artifacts are almost always present in EEG
recordings. Tey tend to be easily observed and have
dominant high power in the front position on the scalp
topography. Te following criteria are applied in identifying
a noise source containing eye movement: a smoothly

Start

Noise removal using
Independent Component

Anaysis

HPF 1Hz
LPF 30Hz

Calculate SpecEn

End

19-Channels
Raw EEG Signal

ANOVA &
PostHoc Test

Figure 1: EEG processing stage in this study.
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decreased EEG spectrum is typical of ocular artifacts, and
scalp topography shows high-power frontal projections.

An example of an EEG wave contaminated by eye
movement or blinking is shown in Figure 3 in the following.
Te red color in the front area indicates high power. Tis
component is eliminated and becomes a reference for other
channels to get the original signal information that is not
contaminated by eye movement noise.

Figure 2 also shows the T3 channel, which is thought to
be contaminated with muscle noise. Furthermore, the in-
spection was carried out through topographic and spectral
plots, as presented in Figure 4. Figure 4(a) shows the scalp
topography, with dominant energy in the area around the
left ear associated with the jaw muscles. Tis is confrmed by
a spectral plot showing the dominant activity at high fre-
quencies (>30Hz), as presented in Figure 4(b).

Meanwhile, line noise has a topography like muscle
noise, and it always comes with high power. Tis noise will
be easier to identify using the power spectral. Figure 5 shows
the topography and spectral power in one of the channels
contaminated with line noise, where the dominant power is
found at a frequency of 50Hz.

Tis inspection is carried out visually by observing all
EEG recordings and eliminating noise-containing channels.
Furthermore, signal fltering in the range of 1–30Hz is
carried out to represent the existence of the delta, theta,
alpha, and beta bands. A high-pass flter with a cut-of of
1Hz and a low-pass flter with a cut-of of 30Hz based on IIR
Butterworth were employed in this stage.

2.4. Spectral Dynamics Estimation Using Entropy.
Generally, entropy is a measurement of signal complexity
[23]. Te higher the entropy value represents the more
unpredictable the system. In this study, signal complexity is
calculated using spectral entropy. SpecEn represents the
probabilities of power spectral. SpecEn describes the spec-
trum irregularities of the signal in the frequency domain
[24]. SpecEn estimates the change in the amplitude com-
ponent of the EEG spectral power as a probability calculated
using Shannon’s entropy [25]. Te spectral entropy is
normalized according to the frequency range [f1, f2], as
shown in the following equation.

SE[f1, f2] � −
1

log [N[f1, f2]]
􏽘

f2

fi�f1
Pn fi( 􏼁log Pn fi( 􏼁( 􏼁,

(1)
where s[N[f1, f2]] is the total components of frequency in
range [f1, f2] and Pn(fi) is the probabilities of the total
components of frequency [26, 27]. Higher SpecEn values
indicate more complex signals, as illustrated in Figure 6.

2.5. Signifcance Test Using Statistical Analysis. Since the
number of samples is small, the validation of the proposed
method is carried out through statistical analysis by cal-
culating the signifcance level. Tis test was used to observe
whether there were statistically signifcant diferences in
SpecEn between groups. Tis study calculated the signif-
cance test using one-way variance analysis (ANOVA) and
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Figure 2: Example of an EEG signal contaminated with noise.

Table 1: Demographic data of the control group and patient.

Index Normal Poststroke no dementia (MCI) Poststroke dementia
Number of samples 16 15 11
Sex (M/F) 8/8 7/8 6/5
Age (std. dev.) 57.18± 4.16 59.82± 6.41 60± 5.34
Education (year) 13.45± 3.44 12.18± 4.11 14± 3.89
Onset stroke (month) — 11.55± 7.22 17.75± 9.55
MoCA-INA 26.5± 0.67 22.33± 2.10 12.38± 4.37
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post hoc multiple comparisons based on the Tukey ap-
proach for a more detailed diference test. We set a 95%
confdence level. Signifcance was calculated for each
electrode and was considered signifcant if it generated a p

value <0.05.

3. Results

In this section, the results of each signal processing stage are
discussed in detail and followed by a discussion. Figure 7
shows the results of denoising ICA from one of the EEG
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Figure 4: (a) Scalp topography in the channel is suspected of containing muscle noise and (b) it is spectral.
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Figure 5: (a) Scalp topography (b) spectral power in the channel suspected of containing line noise.
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recordings after the noise source channel is eliminated.
Channel-1 and channel-5 show the signal after eye noise
compensation. Meanwhile, signal correction after muscle
noise elimination was found in channel-3. Figure 8(a) shows
the scalp topography validation of channel-1 after elimi-
nating the noise component. Figure 8(b) shows the power
spectral of channel-3 after the elimination of muscle noise.
From the topography, it can be seen that there is no high-
power spectral in the frontal area. Re-evaluation in this stage
is performed on all EEG recordings to ensure the EEG signal
is free of noise. In the next stage, the EEG signal is fltered to
get a signal with a frequency of 1–30Hz, followed by SpecEn
measurements.

Te average results of SpecEn measurements on 19
channels for each group are presented in Figure 9. Tese
results indicate that poststroke patients with cognitive im-
pairment tend to have lower spectral complexity than the
normal group. It indicates a decrease in the spectral power
dynamics of the EEG signal. Moreover, it was also found that

there was a relationship between the degree of signal
complexity and the severity of cognitive impairment, as the
results of the study reported by Al-Qazzaz [18, 19]. Patients
with dementia generate lower SpecEn than patients with
mild cognitive impairment SpecEn. Measurements in the
1–30Hz range generated signifcant diferences compared to
the previous study by Al-Qazzaz et al. [19], which calculated
SpecEn in the 1–60Hz range.

Furthermore, validation is carried out with a signifcance
test. Te results of the ANOVA test are presented in Table 2.
Diferent tests that generated p value <0.05 showed sig-
nifcant diferences between groups. Te results of ANOVA
with a p value <0.05 were found for all electrodes.

Post hoc multiple comparisons with Tukey’s approach
were then performed to confrm the signifcance between
groups, including normal vs. stroke-MCI, normal vs. stroke-
dementia, and stroke-MCI vs. stroke-dementia. Te results
of the multiple comparison tests are presented in Table 3.
Te post hoc test results showed a signifcant diference
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Figure 6: Two signals with diferent complexity (a) SpecEn� 0.5754 (b) SpecEn� 0.997.
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between the pairs of groups found on the F7. Te post hoc
test results also showed that statistically, there was a sig-
nifcant diference in normal vs. stroke-dementia cases.
Meanwhile, in normal vs. stroke-MCI and stroke-MCI vs.
stroke-dementia cases, signifcance was found in several
EEG channels. It can be thought of, and in the case of
comparison, the EEG signal has a very smooth change and
has similar characteristics.

 . Discussion

Te brain represents a dynamic system that is nonlinear,
nonstationary, and complex. Te degree of complexity is
considered to be able to represent the condition of the
brain, referring to the dynamic nature of the brain [28].
Tis study showed that the EEG waves in the cognitively
impaired group tended to have lower spectral dynamics
than the normal group, as reported in the study by
Nobukawa et al. [29]. In other terms, EEG signals in the
pathology group had a lower degree of irregularity or less
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Figure 8: (a) Scalp topography after eye noise elimination (b) power spectral of channel-T3 after muscle noise elimination.

Fp1 F7 T3 T5 Fp2 F8 T4 T6 F3 C3 P3 O1 F4 C4 P4 O2 Fz Cz Pz

Normal
Stroke-MCI
Stroke-Demensia

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Figure 9: Mean SpecEn of each group.

Table 2: Signifcance test results for each EEG channel.

Channel F-statistic P value
Fp1 6.662 0.0032
F7 13.1172 ≤0.001
T3 9.4634 ≤0.001
T5 6.4278 0.0039
Fp2 6.6593 0.0033
F8 10.0087 ≤0.001
T4 10.8629 ≤0.001
T6 10.5156 ≤0.001
F3 12.009 ≤0.001
C3 8.8403 ≤0.001
P3 5.4087 0.0084
O1 3.8516 0.0298
F4 11.3396 ≤0.001
C4 11.248 ≤0.001
P4 8.2756 ≤0.001
O2 7.0931 0.0024
Fz 10.0438 ≤0.001
Cz 6.7725 0.003
Pz 4.1805 0.0226
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complex electrophysiological behavior than in the normal
group.

Changes in brain dynamics, represented as degrees of
complexity in the cognitive impairment group, can be related
to neuronal cell death followed by a decrease in brain
functional coupling so that neural dynamics are disrupted
[30]. Impaired brain functional connectivity will lead to brain
failure to integrate electrophysiological networks between
brain areas, which can underlie cognitive function changes.

EEG complexity studies in cases of patients with post-
stroke MCI and dementia show the same characteristics as
AD. Te results of the complexity calculation on the EEG
recording of memory activity showed that the poststroke
patient group with cognitive impairment tended to have a
lower signal complexity than the normal group
(SpecEnDem.< SpecEnMCI< SpecEnNormal). Another fnding
from observing SpecEn values is that there is a relationship
between decreased signal complexity and dementia severity,
as reported in the study by Al-Qazzaz et al. [18]. Tis fnding
confrms the results of previous studies that are worsening of
dementia will be followed by a decrease in signal complexity.
Post hoc test results in normal vs. stroke-dementia showed
signifcant diferences in all brain areas. Tis fnding con-
frms the studies by Al-Qazzaz et al. [18] andMusa et al. [31],
which interpreted the characteristic diferences to be sig-
nifcant between normal and VaD.Teir study yielded 100%
and 94.4% accuracy in cases classifed as normal and VaD,
respectively. It is hoped that if the SpecEn feature is used in
the automatic classifcation simulation, it is expected to
produce high detection accuracy, especially in normal and
stroke-dementia cases. Interestingly, and it should be noted
that the proposed study found a signifcant diference in
SpecEn values between groups on the F7-channel, which is
considered to represent the frontal area. Te frontal area is
strongly associated with executive function [32], which is
common in patients with VaD [33]. Executive function
defcits appear in early or mild vascular dementia [34].
Analysis of EEG signal patterns in the frontal area can be an
exciting topic in the early detection of vascular dementia.

SpecEn shows a change in the frequency distribution of
the power spectrum.Tis is related to slowing the EEGwaves
in MCI and dementia patients [28, 35]. Te most likely
physiological interpretation to explain this is the occurrence
of signifcant brain cholinergic defcits as the basis for
symptoms of cognitive decline [36]. Cholinergic regulates
spontaneous activity at low frequencies, followed by the loss
of neurotransmitters and slowing nerve oscillations.

Te fndings of this study suggest that the analysis of EEG
spectral dynamics can be a method to investigate and difer-
entiate dementia in poststroke patients. It is also hoped that it
can be used to determine the severity of poststroke dementia so
that it can be used for early detection. Future studies need to be
extended to a larger population to meet the statistical criteria
that can be considered to support a clinical diagnosis. Te
simulation in this study can provide knowledge that each group
has discriminant characteristics. Te proposed method can
simplify the detection process with an automatic classifcation
algorithm as a complement to validation in clinical diagnosis.

5. Conclusions

In this study, we investigated the EEG signal as a proposed
biomarker for the diagnosis of poststroke dementia. Tis
study involved forty-two participants, consisting of sixteen
normal subjects, ffteen poststroke patients with mild cog-
nitive impairment, and eleven poststroke dementia patients.
Signal characterization was performed using spectral en-
tropy (SpecEn) to measure the irregularity of the EEG
spectral power, which was thought to be correlated with
cognitive impairment. From the results of the SpecEn cal-
culation, it is known that the cognitive impairment group
tends to generate a lower SpecEn than the normal group,
which means it has lower complexity than the normal group
EEG. One-way ANOVA showed a signifcant diference with
p< 0.05 between normal and cognitive impairment found in
all EEG channels. Post hoc test confrmed the relationship
between signal complexity and the severity of dementia
where SpecEnDem.< SpecEnMCI< SpecEnNormal. From this
test, there were signifcant diferences between groups on the
F7-channel. Meanwhile, in normal vs. poststroke MCI and
poststroke MCI vs. poststroke dementia cases, signifcant
diferences were found in diferent channels.

Te results of this study indicate that themeasurement of
the spectral complexity of the EEG signal has the potential to
be a discriminatory feature between normal subjects and
poststroke patients with cognitive impairment. It is also
expected to be used to evaluate the severity and early de-
tection of vascular dementia. However, spectral entropy is
sensitive to noise so the processed EEG signal must be free
from low- and high-frequency noise to avoid measurement
errors. Another issue is that, this study is still limited in the
number of samples.Te next study is to increase the number
of samples, explore other complexity methods to obtain
higher feature gaps between groups, and continue with
performance validation of the proposed method through
classifcation simulation to determine the accuracy of the
proposed method.
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