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Early and accurate detection of COVID-19 is an essential process to curb the spread of this deadly disease and its mortality rate.
Chest radiology scan is a significant tool for early management and diagnosis of COVID-19 since the virus targets the respiratory
system. Chest X-ray (CXR) images are highly useful in the effective detection of COVID-19, thanks to its availability, cost-effective
means, and rapid outcomes. In addition, Artificial Intelligence (AI) techniques such as deep learning (DL) models play a
significant role in designing automated diagnostic processes using CXR images. With this motivation, the current study presents a
new Quantum Seagull Optimization Algorithm with DL-based COVID-19 diagnosis model, named QSGOA-DL technique. 'e
proposed QSGOA-DL technique intends to detect and classify COVID-19 with the help of CXR images. In this regard, the
QSGOA-DL technique involves the design of EfficientNet-B4 as a feature extractor, whereas hyperparameter optimization is
carried out with the help of QSGOA technique. Moreover, the classification process is performed by a multilayer extreme learning
machine (MELM) model. 'e novelty of the study lies in the designing of QSGOA for hyperparameter optimization of the
EfficientNet-B4 model. An extensive series of simulations was carried out on the benchmark test CXR dataset, and the results were
assessed under different aspects. 'e simulation results demonstrate the promising performance of the proposed QSGOA-DL
technique compared to recent approaches.
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1. Introduction

Coronavirus disease (COVID-19) should be diagnosed in
early stages in order to reduce the spread of virus and
prevent further complications. With the increasing spread of
COVID-19 cases, on a day-to-day basis across the globe, the
limitation of the present diagnosis tool imposes challenges in
managing and curbing the outbreak. Global researchers have
conducted vigorous research to develop efficient diagnosis
procedures and speed up the development of treatments and
vaccine [1]. In general, three diagnostic procedures are
widely employed such as medical imaging, blood tests, and
viral tests [2]. One of the most widely employed viral tests
that is identified as the gold-standard for detecting COVID-
19 is Reverse Transcription Polymerase Chain Reaction (RT-
PCR) which is employed as first-line screening tool. How-
ever, a number of researchers found that the experiment
results achieved a sensitivity between 50 and 62% only [3].
'is reveals the fact that first RT-PCR results could be
attained as negative also. 'erefore, in order to validate the
accuracy of the experimental diagnoses, many RT-PCR
experiments are conducted on a 14-day period of obser-
vation. In other words, an RT-PCR negative result for a
suspicious COVID-19 case is taken into account as True
Negative, if there is no positive RT-PCR result after running
screening tests during the 14-day period of observation.
Practically, this frustrates the patient diagnosed with
COVID-19 and stresses the already-exhausted healthcare
infrastructure of most of the nations due to lack of sufficient
RT-PCR kits and qualified personnel [4].

As per the literature, chest X-rays (CXR) were employed
as a first-line diagnosis tool in Italy and several countries [5].
Radiology scans can be run to detect the condition of the
lungs and the patient’s distinct phase of recovery/illness in
an efficient manner [6]. Radiologists have observed a range
of abnormalities present in radiology scan reports of
COVID-19 patients. In recent years, deep learning, observed
as the fundamental component of enhancing Artificial In-
telligence technology, was stated to have considerable di-
agnosis accuracy, in medical imaging, for automated
diagnosis of lung disease. It exceeded human level perfor-
mances on ImageNet classification tasks with one million
images to train in 2015 and further displayed dermatologist
level performances on the classification of skin lesions in
2017. It further produced outstanding results in terms of
screening lung cancer in 2019 [7].

In general, a radiologist’s manual screening process may
bring bias or wrong diagnoses and increases the possible risk
of lost diagnoses for minuscule lesions. 'erefore, health
professionals such as radiotherapists gain excellent benefit
out of emerging Artificial Intelligence (AI) methods in
computer-aided COVID-19 diagnostics. Artificial Intelli-
gence (AI) and advanced software, in the field of healthcare
image analyses, have directly assisted the healthcare pro-
fessionals in fighting this novel coronavirus. 'ese systems
offer effective and high-quality diagnosis result and drasti-
cally reduces manpower requirement [8]. Recently, machine
learning and deep learning, the two main fields of AI, have
forayed into healthcare applications commonly. Deep

learning-based support system is established in the diagnosis
of COVID-19 using X-ray and CT scan samples. Few
schemes have been proposed according to the pretrained
models using transfer learning, whereas some methods have
been presented with a personalized network [9]. Data sci-
ence and machine learning, though being different domains,
have been brought together and are dynamically employed
in different stages such as prognosis, diagnosis, outbreak
forecasting, and prediction for COVID-19. However, almost
all of the DL-based techniques, used in disease diagnosis,
require annotating the lesion, particularly for the disease
diagnoses in CT volume. Annotating the lesion of COVID-
19 incurs heavy cost, time, and effort for the radiotherapist
which prevents efficient curbing of the disease. COVID-19
has rapidly spread to global nations, and there is a huge
shortage for radiotherapists.'erefore, conducting COVID-
19 diagnosis using DL models is of great significance for the
community.

'e current study focuses on the design of a new
Quantum Seagull Optimization Algorithm with DL-based
COVID-19 diagnosis model, named QSGOA-DL technique.
Besides, the proposed QSGOA-DL technique involves the
design of EfficientNet-B4 as a feature extractor, whereas the
hyperparameter optimization process is carried out by the
QSGOA technique. Moreover, the classification process is
performed by a multilayer extreme learning machine
(MELM) model. In order to showcase the supremacy of the
proposed QSGOA-DL technique, a wide range of experi-
mental analyses was conducted on benchmark test CXR
dataset and the results were assessed under several aspects.

'e rest of the paper is organized as follows: Section 2
reviews the literature; Section 3 discusses the proposed
model; Section 4 validates the performance of the proposed
model; at last, Section 5 concludes the study.

2. Related Works

Roy et al. [10] presented a new deep network acquired from
the spatial transformer network. 'is network can predict
the disease’s seriousness rate concurrently based on input
frames and offer positioning of pathological artefact in a
weakly supervised manner. Additionally, the authors pre-
sented a novel methodology according to the uninorm for
aggregation of efficient frame scores at a video level. At last,
advanced deep methods were validated to estimate the pixel-
level segmentation of COVID-19 imaging biomarker. In
[11], a matrix profile technique was presented to detect the
abnormalities in CT scan image through two stages. Ab-
normality Severity Score (CT-SS) was evaluated, and the
variance of CT-SS between the COVID-19 CT image and
non-COVID-19 CT image was examined. A sparse abnor-
mality mask was evaluated and used for penalizing the pixel
value of all the images. 'e abnormality-weighted images
were utilized later for training the benchmark DenseNet DL
model to differentiate COVID-19 CT from non-COVID-19
CT image. In this study, the authors applied the VGG19
model as a baseline model for comparison purposes.

Sakib et al. [12] proposed a feasible and effective DL-
CRC framework for distinguishing COVID-19 from other
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abnormalities (for example, pneumonia) and usual case with
high precision. Exclusive datasets were developed from four
open sources with PA chest sight of X-ray information for
pneumonia, COVID-19, and usual case. 'e presented DL-
CRC frameworks leveraged the DARI model for COVID-19
data by adaptively using GAN and GAD models. Kaur et al.
[13] proposed expert models on the basis of deep feature and
PF-BAT enhanced PF-FKNN classifiers to diagnose the
novel coronavirus. In the presented method, the feature is
extracted from the FC layer of transfer-learned MobileNetv2
and FKNN training. 'e hyperparameter of FKNN is fine-
tuned with the help of PF-BAT algorithm.

Singh and Singh [14] proposed an automatic approach
to diagnose COVID-19 from chest X-ray images. 'e
study proposed an enhanced depth-wise CNN model to
analyze the chest X-ray image. Wavelet decompositions
were used in this study to integrate multiresolution an-
alyses in the network. 'e frequency subbands, attained
from the input image, were fed into the network to
identify the disease. 'e networks were developed to
predict the class of input image as either COVID-19 or
normal or viral pneumonia.

Li et al. [15] proposed a new method for efficient and
effective training of COVID-19 classification network with
less number of COVID-19 CT exams and a record of
negative samples. Specifically, new self-supervised learning
methods were introduced to extract the features from
negative sample and COVID-19-positive samples. Next, two
types of soft labels (“diversity” and “difficulty”) were made
for a negative sample by calculating the earth mover distance
between COVID-19 features and negative samples, where
the data “value” of the negative sample could be measured.
Shamsi et al. [16] presented a deep uncertainty-aware TL
architecture for COVID-19 recognition using healthcare
image. Four common CNNs, including InceptionResNetV2,
VGG16, ResNet50, and DenseNet121, were initially used in
this study to extract the deep features from CT and X-ray
images. Later, feature extraction was accomplished using
distinct ML and statistical modelling methods to identify
COVID-19 cases.

Wu et al. [17] developed a new JCS system to execute
explainable and real-time COVID-19 chest CT diagnoses.
In order to train these JCS systems, the authors created a
large-scale COVID-19 Segmentation and Classification
(COVID-CS) dataset containing 144,167 chest CT images
collected from 400 COVID-19 persons and 350 negative
samples. A total of 3,855 chest CT images, collected from
200 persons, were annotated to fine-grained pixel-level
label of opacification, i.e., improved attenuation of lung
parenchyma. Han et al. [18] proposed an AD3D-MIL
model in which a person-level label is allocated to a 3D
chest CT scan image that is viewed as a bag of instance.
AD3D-MIL could semantically create deep 3D instances by
following the probably diseased region. Furthermore,
AD3D-MIL employs an attention-based pooling method
for 3D instances so as to provide insight to every instance
that contributes toward bag labels. Finally, AD3D-MIL
learns Bernoulli’s distribution of bag-level label for easily
available learning.

3. The Proposed Model

In this study, a novel QSGOA-DL technique is presented to
detect and classify COVID-19 using CXR images. 'e
presented QSGOA-DL technique encompasses different
operational stages such as preprocessing, EfficientNet-B4-
based feature extraction, QSGO-based hyperparameter
optimization, and MELM-based classification. Figure 1 il-
lustrates all the processes involved in the proposed QSGOA-
DL model. 'e design of QSGO technique assists in optimal
selection of hyperparameter values of EfficientNet-B4
model.

3.1. Preprocessing. In the presented model, the images un-
dergo preprocessing through two ways such as data aug-
mentation and image resizing. 'e augmentation technique
generates the perturbed versions of the available images.
Scaling, rotations, and other affine conversions are com-
monly used herewith. It is generally carried out to increase
the size of the dataset and provide effective training to the
deep learning model on different types of images. Besides,
the 2D array (x-axis and y-axis) of the image of X-data (size
of 512 × 512) is normalized for pixel values between 0 and
255 and stored from PNG format with the help of OpenCV
library. All the preprocessed images measure 512 × 512 and
have three channels.

3.2. EfficientNet-B4-Based Feature Extraction. In this stage,
the preprocessed CXR images are passed onto EfficientNet-
B4 technique and generate a useful set of feature vectors.
Here, the CNN is directed towards an acyclic graph. 'is
network is able to learn extremely nonlinear functions too.
Neurons are the fundamental unit inside a CNN. All the
layers, in a CNN, are made up of many neurons. 'ese
neurons are hooked together, i.e., the output of neuron from
layer l becomes the input of neuron at layers l + 1, as given in
the following equation:

a
(l+1)

� f W
(l)

a
(l)

+ b
(l)

 , (1)

where W(l) represents the weight matrix of layers l, b(l)

denotes bias term, and f indicates the activation function.
'e activation for layer l is represented as a(l). In order to
train a CNN, it is important to learn W and b for all the
layers, so the cost functions are minimalized [19]. Generally,
assume a training set (x(1), y(1)), . . . , ( x(m), y(m))  with m

training example; weight W and bias b should be defined
since they minimize the cost, i.e., the differences between the
preferred output y and actual output fW,b(x). 'e cost
functions for individual training examples are determined as
follows:

J(W, b; x, y) �
1
2

hW,b(x) − y
����

����
2
, (2)

where h(x) represents the activation of final layer. Mini-
mization process is iteratively performed by following the
gradient descent method. 'is method involves the com-
putation of partial derivatives of cost functions with regard
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to weight and updates the weight consequently. A single
iteration of gradient descent updates the variables W and b

as follows:

W
(l)

� W
(l)

− α
z

zW
(l)

J(W, b),

b
(l)

� b
(l)

− α
z

zb
(l)

J(W, b).

(3)

'e BP model is employed in the computation of a
partial derivative of cost function. Each FC has a hidden unit
interconnected to each input unit. 'is increases the
numbers of connections to extreme levels, while at the same
time, it can also handle high-dimension information such as
images. When the image size is assumed to be its dimen-
sions, then the process of interconnecting every input pixel
to all the neurons incurs heavy computation cost. An image
as small as 100 × 100 pixel requires 104 × N connection at
the input layer, in which N represents the number of
neurons at the initial layer. 'e convolution layer allows the
construction of a sparse connection by assigning parameters
through neurons. In comparison with the FC layer, the
convolution layer has fewer parameters. So, it can be trained
easily. It is derived at the cost of small reduction in the
performance. 'e widely employed CNN for image detec-
tion includes convolutional and FS layers too. 'is network
is frequently called as a deep network.

In DL training procedure models, expansion of network
width, intensification of network depth, and improvement of
input image solutions are the most widely employed
methods to improve the precision of the models. Even
though previous works such as ResNet and WideResNet
proved the supremacy of the abovementioned approaches, it
is important to balance each dimension in network reso-
lution or width or depth so that the balance could be attained
by scaling all the dimensions at a constant ratio. Tan pre-
sented the EfficientNet models that could produce appro-
priate effects on the extension of resolution, depth, and
width of the networks and later attain a better performance.
Initially, the researchers could portray CNN as a function:

Yi � Fi(Xi), in which Fi represents the operator (op), Yi

indicates the tensor of output, and Xi signifies the input
tensor of shape 〈Hi, WI, Ci〉, where Ci, Hi , and Wi denote
the numbers of channels of an input image, height, and
width. A CNN could be determined as a sequence of layers:
Net � Fk ⊙ . . . ⊙F2 ⊙F1(X1) � ⊙ j�1...kFj(X1). In actual
application procedure, the CNN layers are generally
employed at many phases, where every phase uses a similar
network framework. Hence, it is determined as follows [20]:

Net � ⊙
i�1...s

F
Li

i X〈Hi,Wi,Ci〉 , (4)

where F
Li

i represents the layer Fi which is continued Li time
in a phase i and 〈Hi, WI, Ci〉 represents the height, width,
and numbers of channels of input tensor X of a layer i. Next,
the standard CNN design mostly focuses on identifying an
optimum layer framework Fi. However, according to the
predetermined Fi baseline network framework, model
scaling mostly extends the resolution (Hi, Wi), length (Li),
and width (Ci) of the networks. In the meantime, model
scaling overcomes the implementation problems for a novel
resource constraint by setting Fi.'ey could also examine Li,

Ci, Hi, andWi distinctly for all the layers because it is a
sample design space. EfficientNet stresses that each layer
should be uniformly scaled by a constant ratio to reduce the
design space. 'e target is to considerably enhance the
precision of the models in the provided resource constraint
environment since it is considered as an optimization
problem:

max
d,w,r

Accuracy (Net(d, w, r)),

s. t.Net (d, w, r) � ⊙ j�1...k
F

d·Li

i X
〈r·Hi,r· Wi,w·Ci〉

 ,

Memory (Net)≤ terget−memory,

FLOPS (Net)≤ terget_flops,

(5)

where w, d, and r represent the coefficients employed to
scale the width, depth, and resolution of the network;
Fi,

Li,
Hi,

Wi, and Ci represent the predetermined parame-
ters in the baseline network. Next, a novel compound scaling

Sensitivity Specificity Accuracy
Performance Measures

COVID

NORMAL

ClassifierOutput

Precision F-score MCC

Classification Process
using

Multilayer Extreme Learning Machine

Parameter Tuning
using

Quantum Seagull Optimization

Feature Extraction Process

Deep Learning
based

EfficientNet-B4 Model

Training Images

Figure 1: Overall process of the QSGOA-DL model.
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technique, using a compound coefficient ϕ, is employed for
uniform expansion of depth and width of the network as
follows:

depth: d � αϕ,

width: w � βϕ,

resolution: r � c
ϕ
,

s. t. α · β2 · c
2 ≈ 2,

α≥ 1, β≥ 1, c≥ 1 ,

(6)

where α, β, and c are constants. Amongst others, ϕ repre-
sents a stated value that determines how much resource is
valid for expanding the models, whereas α, β, and c de-
termine the allocation method of extra resources to reso-
lution, width, and depth of the network correspondingly.
Also, there is a certain relationship between the FLOPS of a
standard convolutional op and d, w2, and r2. When the
depth of network doubles, then FLOPS doubles as well.
However, when the network resolution/width doubles,
FLOPS quadruples. Since convolutional ops frequently
control the computational costs in the CNN, the CNN is
expanded with equation (7) which accurately increases the
overall FLOPS as (α · β2 · c2)ϕ. At last, scaling models does
not alter the layer operator Fi in the predetermined baseline
networks. 'erefore, it is crucial to have a baseline network
in place. EfficientNet, a novel mobile-size baseline network,
is proposed with multiobjective neural framework which
enhances both FLOPS and accuracy. 'e fundamental
component consists of squeeze and excitation optimization
and mobile-inverted bottleneck MBConv.

3.3. Hyperparameter Optimization. 'e QSGOA technique
is deployed for optimal selection of hyperparameters in-
volved in the EfficientNet-B4 model. In line with this, the
performance gets boosted. Seagulls (scientific term: Larus
minutus) are one amongst the coastal birds that started
inhabiting the planet before 30 million years. 'ey exist
nearly everywhere in the world. With large wings, seagulls’
hind legs have evolved so that they can travel in water too.
'ough fish is cited as the major food source for seagulls,
they also consume amphibians, reptiles, moles, earthworms,
and insects. In other terms, seagulls are omnivorous. 'ey
are considered as intelligent birds, while the average life span
of seagulls is between 10 and 15 years. Generally, they live as
a swarm and have a unique behaviour at the time of
migration.

Migration is the movement of birds to the south during
fall and to north during moving/spring from the ground to
the height or from coast-coast to endure the winter con-
dition and get wealthy food source with adequate amount of
ease. 'is migration phenomenon of seagulls, which is a
seasonal behaviour, is taken into account since they migrate
everywhere to achieve a wide range of food sources to gain
sufficient energy [21]. 'e procedure is given as follows:

(i) Migration starts when swarms of seagulls started
travelling towards north/south. In order to evade

collision, their primary position is made distinct
from one another.

(ii) One of the benefits from this swarm’s experience is
that they attempt to travel in the direction of optimal
survival so as to achieve the minimum cost value.

In general, seagulls attack the migrating birds on the
sea. 'is phenomenon occurs as a spiral-shaped behaviour
at the time of attack. Seagull models for SGO are delib-
erated through the following points. 'e migration be-
haviour simulates the mobility of seagull swarms towards
the position. For this purpose, three conditions must be
fulfilled.

Collision avoidance: in order to evade the collisions
amongst the neighboring seagulls, the models are deter-
mined as further parameter A to update the novel position of
the deliberated seagull (search agents):

P
→

� A × p
→

c(i),

i � 0, 1, 2, . . . , Max(i),
(7)

where P
→

N describes the location that avoids colliding with
other search agents, p

→
c(i) represents the location of the

candidates in their current iteration (i), and A describes the
movement behaviour of searching agents in their searching
region which is also modelled as follows:

A � fc − i ×
fc

Max(i)
  , (8)

where i describes the iteration and fc represents the fre-
quency control of parameter A in the range of [0, fc].

(i) With another neighbors’ experience: after avoiding
the collision from the neighbor, the candidate
progresses in the direction of optimal neighbors
(optimal solutions).

d
→

e � B × P
→

(i) − p
→

c(i) , (9)

where d
→

e describes the position p
→

c(i) of candidate
towards an optimal fitness candidate p

→
b(i). 'e

coefficient B is an arbitrary value which makes the
trade-off between exploration and exploitation
phases. B is attained as follows:

B � 2 × A
2

× R. (10)

Let R describe the arbitrary values between zero and
one.

(ii) Migration towards optimal solutions (search agents):
at last, search agents upgrade their location
according to the optimal solutions as follows:

D
→

e � P
→

N + d
→

e



, (11)

where D
→

e describes the variance between optimal
costs and seagulls.

At the time of migration, seagulls change the attack
speed and angle frequently. 'e location of seagulls can be
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retained in the air by using their wings and weight. During
attack procedure, the seagull moves in a spiral direction in
air in x, y, and z plane by

X � r × cos(t),

y � r × sin(t),

Z � r × t,

(12)

where t describes arbitrary values in the range between 0 and
2π andr denotes the radius of spiral turn as per the following
formula:

r � α × e
βt

, (13)

where e describes the natural logarithm base and α and β
represent the shapes of the spiral. 'e novel positions of the
seagull are upgraded as follows:

P
→

c(i) � D
→

e × x × y × z  + P
→

b(i), (14)

where P
→

c(i) keeps the optimal result. In order to improve
the exploration abilities of SGO algorithm, QSGOA is
designed including quantum computing.

Bit is the smallest unit of data fromdigital computers which
demonstrates either 0 or 1 at a particular time, while Q-bit or
quantum bit has achieved minimum unit of data from
quantum computing. All Q-bits are capable to exist in the
range of 0, 1, or a group of combined states simultaneously.
'is is named as superposition. Q-bit is referred to as a pair of
numbers (α, β), in which the values of |α|2 and |β|2 signify the
probabilities of determining the Q-bit from the states 0 and 1
correspondingly. 'e state of Q-bit is projected as follows:

|ψ � α|0 + β|1. (15)

All the Q-bits must fulfill the normalization formula
given as follows:

|a|
2

+|β|
2

� 1. (16)

In quantum computer, a separate q is signified as the
order of n Q-bits as follows [22]:

q � q1, q2, . . . , qn  �
α1
β1



α1
β2


· · ·



αn

βn

⎡⎢⎣ ⎤⎥⎦ . (17)

When a quantum state’s performance is detected, it
collapses toward the single state. 'e observation procedure
of Q-bit i is carried out as follows:

If rand. (0, 1)< (αi)
2

'en. fi � 0
Else. fi � 1
In quantum computer, the order of quantum functions is

implemented to update the values to Q-bits from all the
individuals. 'is results in adherence of the upgraded Q-bits
as in equation (20). Q-gate is the most quantum function to
update Q-bits. 'ere exist different Q-gates such as NOT
gate, controlled NOT gate, rotation gate, Hadamard gate,
x-gate, y-gate, and z-gate. In major analysis, the rotation
Q-gate is utilized over other Q-gates. 'e rotation Q-gate
U(Δθi) can be determined as follows:

U Δθi(  �
cos Δθi(  −sin Δθi( 

sin Δθi(  cos Δθi( 
 , (18)

where Δθi refers to the rotation angle of Q-bit i near 0/1
state. 'e state of Q-bit i at time t gets upgraded as follows:

αi(t + 10)

βi(t + 1)
  � U Δθi( 

αi(t)

βi(t)
  . (19)

3.4. ImageClassification. In this final stage, the derived set of
features is fed into MELM classifier to allot appropriate class
labels to the test CXR images. In the basic forms of SLFN,
Huang et al. presented ELM to enhance the training speed of
the work and later extended the hypotheses of ELM from
neurons hidden node to another hidden node. Sample
training can be expressed by xi, ti 

n
i�1, where n represents

the training sample, xi indicates the input of ith sample
using m dimension. Furthermore, ti denotes the output of
ith instance. Later, the input vector x is assumed to be the
output of SLFN using L hidden node, and it is expressed as
follows:

f(x) � 
L

i�1
βihi(x)

� h
T
(x)β,

(20)

where h(x) � [h1(x) · · · hL(x)]T represents the hidden
output and β � [β1 · · · βL]T indicates the output weight.
Given the output of n training, the sample could be esti-
mated by zero error and is given as follows:

Hβ � t, (21)

where H � [h(x1) · · · h(xn)]T signifies the hidden output
matrix [23]. 'e output weight β solutions involve a linear
formula, while such solutions might be equal to mitigation of
training errors, namely, minHβ − t. 'e optimum approx-
imation of output weight might be denoted as Moor-
e–Penrose generalized inverse H†:

β � H
†
t. (22)

In general, orthogonal projection is employed to resolve
the generalized inverse H†. If HTH is nonsingular,
H† � (HTH)− 1HT, or if HHT is nonsingular,
H† � HT(HHT)− 1.

MELM is a multilayer NN in which multi-ELM-AEs are
stacked together, where X(i) � [x

(i)
1 , · · · , x(i)

n ]; let x
(i)
k be the

ith data depiction for input xk, k � 1 to n. Assume Λ(i) �

[λ(i)
1 , · · · , λ(i)

n ] denotes the ith transformation matrix, in
which λ(i)

k denotes the transformation vectors employed in
depiction learning regarding x

(i)
k . Based on this, B replaces

with Λ(i), where T is replaced by X(i) correspondingly [24]:

H
(i)Λ(i)

� X
(i)

. (23)

Let H(i) be the output matrix of ith hidden layer with
regard to X(i), and Λ(i) is resolved as follows:
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Λ(i)
� H

(i)
 

T I

C
+ H

(i)
H

(i)
 

T
 

− 1
X

(i)
. (24)

Next,

X
∗

� g X
(i) Λ(i)

 
T

 , (25)

where χ∗ represents the final depiction of X(1). X∗ is
employed as the hidden layer outputs to estimate the output
weights β∗ and β∗ which are evaluated by

β∗ � X
∗

( 
†
,

T � X
∗

( 
T I

C
+ X
∗

X
∗

( 
T

 
− 1

T.

(26)

4. Results and Discussion

'e proposed model was simulated using Python 3.6.5 tool
on a benchmark CXR image dataset [25]. 'e results were
investigated under varying sizes of training and testing
datasets. Figure 2 illustrates a few sample images considered
for the study.

Figure 3 portrays the confusion matrices generated by
the QSGOA-DL technique on test data with different
training/testing data. Figure 3(a) depicts the confusion
matrix produced by the proposed QSGOA-DL technique on
training/testing of 80 : 20. 'e figure exhibits that the
QSGOA-DL technique classified 3218 images as COVID-19
and 3219 images as healthy samples. Meanwhile, Figure 3(b)
showcases the confusion matrix developed by QSGOA-DL

Figure 2: Sample images.
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manner on training/testing of 70 : 30. 'e figure shows that
the QSGOA-DL algorithm outperformed compared to
others and classified 3214 images as COVID-19 and 3215
images as healthy ones. Eventually, Figure 3(c) illustrates the
confusion matrix generated by the QSGOA-DL algorithm
on training/testing of 60 : 40. 'e figure demonstrates that
the proposed QSGOA-DL methodology classified 3209
images as COVID-19 and 3212 images as healthy.

Table 1 shows the overall classification results
attained by the QSGOA-DL technique under different
training/testing data sizes. 'e results demonstrate that
the proposed QSGOA-DL technique accomplished the
maximum classification outcomes on all training/testing

sizes. For instance, with a training/testing data size of 80 :
20, the QSGOA-DL technique resulted in a precision of
0.9984, sensitivity of 0.9981, specificity of 0.9984, ac-
curacy of 0.9983, F-score of 0.9983, and MCC of 0.9966.
Moreover, with a training/testing data size of 70 : 30,
QSGOA-DL manner resulted in a precision of 0.9972,
sensitivity of 0.9969, specificity of 0.9972, accuracy of
0.9971, F-score of 0.9971, and MCC of 0.9941. Fur-
thermore, with a training/testing data size being 60 : 40,
the proposed QSGOA-DL method produced a precision
of 0.9963, sensitivity of 0.9953, specificity of 0.9963,
accuracy of 0.9958, F-score of 0.9958, and MCC of
0.9916.
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Figure 3: Confusion matrix analysis results of the QSGOA-DL model.

Table 1: Results of the analysis of QSGOA-DL model against different training/testing datasets.

Measures Precision Sensitivity Specificity Accuracy F-score MCC
Training/testing (80 : 20) 0.9984 0.9981 0.9984 0.9983 0.9983 0.9966
Training/testing (70 : 30) 0.9972 0.9969 0.9972 0.9971 0.9971 0.9941
Training/testing (60 : 40) 0.9963 0.9953 0.9963 0.9958 0.9958 0.9916
Average 0.9973 0.9968 0.9973 0.9971 0.9971 0.9941
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Figure 4 illustrates the accuracy graph plotted based on
the results from the QSGOA-DL technique on the applied
training/testing data size of 80 : 20. 'e figure reports that
both training and testing accuracies got increased with an
increase in epoch count. It got saturated after a maximum
epoch count. It is also observed that the training accuracy got
considerably higher than the testing accuracy.

Figure 5 exemplifies the loss graph plotted on the basis of
results from the QSGOA-DL technique on the applied
training/testing data size of 80 : 20.'e figure states that both
training and testing losses got heavily reduced with an in-
crease in epoch count and got saturated after a maximum

epoch count. It is noticed that the training loss is lower than
the testing accuracy.

Figure 6 showcases the accuracy graph plotted based on
QSGOA-DL method results on the applied training/testing
of 70 : 30. 'e figure describes that both training and testing
accuracy values got increased with an increase in epoch
count and got saturated after a maximal epoch count. It is
also detected that the training accuracy got significantly
enhanced to the testing accuracy.

Figure 7 demonstrates the loss graph plotted based on
the analysis results of QSGOA-DL method on the applied
training/testing of 70 : 30. 'e figure indicates that both
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Figure 4: Accuracy graph analysis of the QSGOA-DL model on training/testing (80 : 20).
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Figure 5: Loss graph analysis of the QSGOA-DL model on training/testing (80 : 20).
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training and testing losses got increased with a higher epoch
count and got saturated after a superior epoch count. It is
also observed that the training loss was lesser than the testing
accuracy.

Figure 8 demonstrates the results from accuracy graph
analysis of QSGOA-DL algorithm on the applied training/
testing of 60 : 40. 'e figure states that both training and
testing accuracy values get enhanced with an increase in
epoch count and attained saturation after a high epoch
count. From the results, it can be inferred that the training
accuracy is noticeably superior to the testing accuracy.
Figure 9 represents the loss graph analysis plot for the

presented QSGOA-DL technique on applied training/testing
of 60 : 40.'e figure showcases that both training and testing
losses turn into minimum value with a superior epoch count
and gets saturated after an increased epoch count. It can be
observed that the training loss got established and was lesser
than the testing accuracy.

Finally, a detailed comparative study was conducted
between the proposed QSGOA-DL technique and other
recent approaches, and the results are shown in Table 2 and
Figures 10 and 11 [26]. By examining the results in terms of
precision, it is evident that DHL-2, ResNet-1, and ResNet-2
techniques attained a minimal precision of 97%, 97%, and
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Figure 6: Accuracy analysis results of the QSGOA-DL model on training/testing (70 : 30).
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Figure 7: Loss analysis results of the QSGOA-DL model on training/testing (70 : 30).
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97%, respectively. Likewise, DHBL, DHL-1, and TL-ResNet-
2 techniques accomplished moderate precision values of
98%, 98%, and 98%, respectively. 'ough TL-RENet-1
produced a near-optimal precision of 99%, the proposed
QSGOA-DL technique gained a high precision of 99.80%.

Besides, with respect to sensitivity, it is clear that the
models such as TL-RENet-1, ResNet-1, and ResNet-2 have
obtained the least possible sensitivity of 97%, 97%, and 97%,
respectively. Likewise, DHL-1, TL-ResNet-2, and DHL-2
techniques have accomplished moderate sensitivity values of
98%, 98%, and 99%, respectively. However, DBHL produced
a near-optimal sensitivity of 99%, whereas the presented
QSGOA-DL methodology attained a superior sensitivity of
99.80%. At the same time, by examining the results in terms

of specificity, DHL-2, ResNet-1, and ResNet-2 techniques
attained the least specificity values, namely, 97%, 97%, and
97%, respectively. In line with this, DHBL, DHL-1, and TL-
ResNet-2 systems accomplished moderate specificity values
of 98%, 98%, and 98%, respectively. TL-RENet-1 achieved a
near-optimal specificity of 99%, while the projected
QSGOA-DL algorithm reached the maximum specificity of
99.80%.

On the other hand, by inspecting the results in terms of
accuracy, ResNet-1, ResNet-2, and TL-RENet-1 methods
attained the least accuracy values of 97.21%, 97.21%, and
98.06%, respectively. Likewise, TL-ResNet-2, DHL-1, and
DHL-2 methodologies too accomplished moderate accuracy
values of 98.14%, 98.14%, and 98.29%, respectively. 'ough
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Figure 8: Accuracy graph analysis of the QSGOA-DL model on training/testing (60 : 40).
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Figure 9: Loss graph analysis of the QSGOA-DL model on training/testing (60 : 40).
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DBHL resulted in a near-optimal accuracy of 98.53%, the
proposed QSGOA-DL manner accomplished a superior
accuracy of 99.83%. 'e abovementioned results imply that

the proposed QSGOA-DL technique outperformed the
existing methods with a maximum precision of 99.80%,
sensitivity of 99.80%, specificity of 99.80%, accuracy of
99.83%, F-score of 99.80%, and MCC of 99.70%. 'erefore,
the proposed model can be utilized as a proper tool to di-
agnose COVID-19 using CXR images.

5. Conclusion

In this study, a novel QSGOA-DL technique is presented to
detect and classify COVID-19 using CXR images. 'e pro-
posed QSGOA-DL technique encompasses different opera-
tional stages such as preprocessing, EfficientNet-B4-based
feature extraction, QSGO-based hyperparameter optimiza-
tion, and MELM-based classification. 'e design of QSGO
technique assists in the optimal selection of hyperparameter
values of EfficientNet-B4 model. In order to showcase the
supremacy of the proposed QSGOA-DL technique, a wide
range of experimental analyses was conducted on benchmark
test CXR dataset. 'e results were assessed under several
aspects. 'e simulation results demonstrate the promising
performance of QSGOA-DL technique than the existing
approaches. In future, the performance of QSGOA-DL
technique can be validated using computed tomography (CT)
scan images in the diagnosis of COVID-19.
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Table 2: Comparative analysis results of the QSGOA-DL model with different measures.

Methods Precision Sensitivity Specificity Accuracy F-score MCC
DBHL 98.00 99.00 98.00 98.53 98.00 97.00
DHL-2 97.00 99.00 97.00 98.29 98.00 97.00
DHL-1 98.00 98.00 98.00 98.14 98.00 96.00
ResNet-2 97.00 97.00 97.00 97.21 97.00 94.00
TL-ResNet-2 98.00 98.00 98.00 98.14 98.00 96.00
ResNet-1 97.00 97.00 97.00 97.21 97.00 94.00
TL-RENet-1 99.00 97.00 99.00 98.06 98.00 96.00
QSGOA-DL 99.80 99.80 99.80 99.83 99.80 99.70
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Figure 10: Comparative analysis results of the QSGOA-DL model
under different measures.
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