
Research Article
Machine Learning for PredictingHyperglycemic Cases Induced by
PD-1/PD-L1 Inhibitors

Jincheng Yang ,1 Ning Li,2 Weilong Lin,1 Liming Shi,1 Ming Deng,1 Qin Tong,3

and Wenjing Yang 1

1O�ce for Cancer Diagnosis and Treatment Quality Control, National Cancer Center,
National Clinical Research Center for Cancer, Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
2Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer,
Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
3Department of Acupuncture and Moxibustion, Wuhan Xinzhou District Hospital of Traditional Chinese Medicine, Wuhan,
Hubei, China

Correspondence should be addressed to Wenjing Yang; wenjing86824@126.com

Received 8 March 2022; Accepted 28 June 2022; Published 19 August 2022

Academic Editor: Kuruva Lakshmanna

Copyright © 2022 Jincheng Yang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. Immune checkpoint inhibitors, such as programmed death-1/ligand-1 (PD-1/L1), exhibited autoimmune-like dis-
orders, and hyperglycemia was on the top of grade 3 or higher immune-related adverse events. Machine learning is a model from
past data for future data prediction. From post-marketing monitoring, we aimed to construct a machine learning algorithm to
e�ciently and rapidly predict hyperglycemic adverse reaction in patients using PD-1/L1 inhibitors. Methods. In original data
downloaded from Food and Drug Administration Adverse Event Reporting System (US FAERS), a multivariate pattern clas-
si�cation of support vector machine (SVM) was used to construct a classi�er to separate adverse hyperglycemic reaction patients.
With correct core SVM function, a 10-fold 3-time cross validation optimized parameter value composition in model setup with R
language software. Results. �e SVM prediction model was set up from the number type/number optimization method, as well as
the kernel and type of “rbf” and “nu-regression” composition. Two key values (nu and gamma) and case number displayed high
adjusted r2 in curve regressions (nu � 0.5649 × e(− (case/6984)), gamma � 9.005 × 10− 4 × case − 4.877 × 10− 8 × case2). �is SVM
model with computable parameters greatly improved the assessing indexes (accuracy, F1 score, and kappa) as well as coequal
sensitivity and the area under the curve (AUC). Conclusion. We constructed an e¤ective machine learning model based on
compositions of exact kernels and computable parameters; the SVM prediction model can noninvasively and precisely predict
hyperglycemic adverse drug reaction (ADR) in patients treated with PD-1/L1 inhibitors, which could greatly help clinical
practitioners to identify high-risk patients and perform preventive measurements in time. Besides, this model setup process
provided an analytic conception for promotion to other ADR prediction, such ADR information is vital for outcome im-
provement by identifying high-risk patients, and this machine learning algorithm can eventually add value to clinical
decision making.

1. Introduction

Diabetes mellitus and cancer are among the leading causes of
death worldwide. As a major contributor to neoplastic
transformation and an important prediabetes index, hy-
perglycemia (high blood glucose) is also in¦uenced by
cancer treatment. Higher blood glucose level, dealing with or

without insulin, may lead to serious complications of dia-
betes, such as ketoacidosis, and is correlated with cancer risk,
progression, and mortality at a higher degree [1–3].

Recently, immunotherapy is a vast improvement among
anticancer therapies [4]. In 2018 and 2019, JAMA Oncology
reported treatment-related adverse events from pro-
grammed death-1 (PD-1) inhibitors, programmed death
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ligand-1 (PD-L1) inhibitors, and immune checkpoint in-
hibitor regimens in clinical trials. Among the endocrine
dysfunctions, hyperglycemia was the third (after hypothy-
roidism and hyperthyroidism) at all-grade immune-related
adverse events (irAEs) and the first at grade III or higher irAEs
[5, 6]. Our previous research indicated that Nivolumab and
Pembrolizumab were positive hyperglycemia-causing drugs
[7, 8]. In 2021, JAMA Oncology reported that risks of chronic
irAEs should be integrated into treatment decision making [3].
Prolonged exposure to hyperglycemia can epigenetically
modify gene expression profiles in human cells, and this effect
is sustained even after blood glucose is therapeutically con-
trolled. Cancer cells exposed to hyperglycemia would grow
permanently and aggressively, even after euglycemia returned.
,is metabolic phenomenon is called hyperglycemic memory,
which contributes substantially to the pathology of various
diabetic complications [9, 10].

Worldwide public database on adverse events could
provide many drug-usage information [11, 12], having be-
come a new information source in drug post-marketing
phase. US Food and Drug Administration (FDA) is re-
sponsible for protecting the public health by ensuring the
safety, efficacy, and security of drugs, biological products, and
medical devices. ,e reports of Food and Drug Adminis-
tration Adverse Event Reporting System (FAERS) are eval-
uated by clinical reviewers to monitor the safety of products
after they are approved. FAERS is such a database that
contains adverse event reports, medication error reports, and
product quality complaints resulting in adverse events. ,e
database is designed to support the FDA’s post-marketing
safety surveillance program for drug and therapeutic biologic
products. ,e informatic structure of the FAERS database
adheres to the international safety reporting guidance issued
by the International Conference on Harmonization [13].

Machine learning (ML) “learns” a model from past data
in order to predict future data. ,e key process is the
learning which is one of the artificial intelligences [14].
Artificial intelligence-based solutions can improve medi-
cation safety with minimal overhead for patients and health
professionals [15]. Machine learning focuses on how com-
puters learn from data, using its emphasis on efficient
computing algorithms [16, 17]. In health record field, ma-
chine learning techniques have been a hot spot in data
mining; trajectory data mining has become an important
research direction [18]. Modeling this big data information
requires managing overfitting, model interpretability, and
computational cost [19]. It offers a lot of advantages for
assimilation and assessment of complex health big data,
including flexibility and scalability, which is widely used in
risk stratification, diagnosis, classification, and survival
predictions. Health data’s diversity trait calls for machine
learning at demographic records, laboratory findings, im-
ages, or doctors’ records, as well as predictions for disease
risk, diagnosis, prognosis, and appropriate treatments [20].

Many different statistical, probabilistic, and optimization
techniques can be implemented as learning methods such as
the logistic regression, artificial neural networks, K-nearest
neighbor, decision trees, and Näıve Bayes [14]. However,
traditional biostatistical methods (e.g., logistic regression or

linear regression) could not provide higher precision in
health-data prediction, especially in real-world research.
Support vector machine (SVM) is widely used as a type of
supervised learning algorithm which analyzes data and
recognizes patterns, mainly used for binary classification and
regression by linear or nonlinear decision boundary [21]. It
aims to divide samples into worthy bifurcations that enable
the prediction of labels from one or more feature vectors.
,is decision boundary, through a line or plane called the
maximum margin hyperplane in multidimensional feature,
is orientated in such a way that it is as far as possible from the
closest data points from each of the classes. ,ese closest
points are called support vectors. SVM is powerful at rec-
ognizing subtle patterns in complex datasets, being used to
recognize handwriting, recognize fraudulent credit cards,
and identify a speaker, as well as detect face [14].

SVM-based approach performances well in managing
sparse data in high dimensions, in that it overcomes the
other state-of-the-art competitors providing the best com-
promise between prediction and computation time [19]. It
has been applied to seizure prediction, detection, and
classification [22]. One advantage of SVM is its classification
of small number of training samples; another is solving
linear and nonlinear regression problems [23].

To date, the correlation of hyperglycemic occurrences
and personal-related features, or which kinds of special
features could mostly correlate with hyperglycemia, has
become an urgent problem, for which all of these predictions
have not been reported yet. Predicting and avoiding terrible
ADR can provide better guidance for clinical decision
making. In this study, we aimed to construct an effective
SVM-basedmachine learningmodel with high accuracy, low
computational costs, and computable parameters to predict
hyperglycemia in PD-1/PD-L1–treated patients.

2. Methods

2.1. Data Sources. Original data was downloaded from US
FAERS public dashboard [13] (data retrieval date: Dec 31, 2021).

2.1.1. Inclusion Criteria

Inclusion criteria were as follows:

(i) Drugs: Camrelizumab (cam, PD-1), Cemiplimab
(cem, PD-1), Avelumab (avel, PD-L1), Durvalumab
(dur, PD-L1), Atezolizumab (atez, PD-L1), Pem-
brolizumab (pem, PD-1), Nivolumab (nivo, PD-1),
and Ipilimumab (ipi, CTLA-4).

(ii) Positive cases: Items in “Reaction” variable including at
least one of the following: “Diabetes Mellitus,” “Dia-
betic,” “Hyperglycaemia,” “Hyperglycinaemia,” “Glu-
cose Tolerance Impaired,” and “Blood Glucose
Increased.”

2.1.2. Exclusion Criteria

Exclusion criteria were as follows:
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(i) Cases with wrong report year.
(ii) Variables with no healthcare information (Step 1.1).
(iii) Cases with missing value(s), excluded in complete

data (Step 1.2).

2.2. Procedure. ,e procedure comprises data download,
algorithm selection, key parameter regression, and model
prediction performance (Figure 1).

Step 1. Data Version

Step 1.1. Variable primary screening
Variables (13 columns) were obtained from the
downloaded Excel files: Case ID, Reason for Use,
Reactions, Serious, Outcomes, Sex, Event Date, Case
Priority, Patient Age, Patient Weight, Reporter Type,
Report Source, and Country where event occurred.
Variables (11 columns) with no more healthcare infor-
mation were excluded: Suspected Product Names, Sus-
pected Product Active Ingredients, Latest FDA Received
Date, Sender, Concomitant Product Names, Latest
Manufacturer Received Date, Initial FDA Received Date,
Reported to Manufacturer, Manufacturer Control
Number, Literature Reference, and Compounded Flag.
Step 1.2. Raw data and complete data
Original data were fixed into two versions: raw data
(cases withmissing values) and complete data (deleted
cases with missing value(s)). ,e two versions of data
contained above 13 variables.

Step 2. Core SVM algorithm
Positive and negative cases could be substituted as 2-
category factor type (“Yes” and “No”) or number type
(“1” and “0”) in SVM model setup.
,ere are two parameter optimization methods:
number optimization and R-function optimization. In
number optimization, the best values were defined by
the composition of parameters, according to the best
range of each parameter. In R-function optimization,
the parameter range was input to a built-in function (R
library: tune.svm). If the best values were close to range
boundary, the new range would be adjusted for opti-
mization again. ,e factorized data were optimized via
both number and function methods.

Step 2.1. Number/factor
Each drug with 600 cases (positive and negative cases
proportionally) was extracted from raw data and
complete data. All the type-optimization compositions
were tested. In raw data, the results of factor number
were very close to those of factor tune, so they are only
displayed as “f_raw” and “n_raw.” As R-tune optimi-
zation needs variables in form of factor, there were no
results of “nr” (number type/R-tune optimization), but
only “nn” (number type/number optimization).
,e data version was also determined at this step.
Step 2.2. Variables
,e key to construct an SVM model that can screen
the active markers accurately is to select the

appropriate variables. Variable selection was
according to two methods: near zero variance method
(R library: nearZeroVar; “T” means deletable) and
model assessment (R library: varImp; “0” means
deletable).
Step 2.3. Type and kernel
Parameter selection: parameters from R language li-
brary SVM (e1071) official Arguments are as follows:
SVM-Type (C-classification, “C”; one-classification,
“one”; eps-regression, “eps”; nu-regression, “nu”) and
SVM-Kernel (linear, “l”; poly, “p”; radial basis (rbf),
“r”; sigmoid, “s”).
Selection is also based on data types (number and
factor). “eps” and “nu” regression need numeric de-
pendent variables, while “one” and “C” classification can
accept both numeric and factorial dependent variables.

Step 3. Key parameters
With complete data, the general modeling set was from
stratifying random-split cross validation into training
data (70% data) and testing data (30% data), containing
proportional positive and negative cases, respectively.

Step 3.1. Parameter composition
Parameters (e.g., gamma, nu, cost, degree, coef0)
optimized separately: their value ranges were deter-
mined by the best outputs.
Parameters’ best composition (e.g., gamma, nu, cost):
parameters were set by training data through 10-fold
3-time cross validation. Accuracy (total precise rate),
F1 score, kappa (consistence), and sensitivity (positive

Cross validation

Step 1

Step 2

Step 3

Step 4

Data from FAERS

Core SVM Algorithm

num/factor type/kernel variables

Key SVM Parameters

Regression (gamma, nu)

Model Prediction Performance 

A, F1, K, S ROC

Single parameter range

Figure 1: Flow chart of study process. Step 1: original data fixed
into raw data and complete data. Step 2: core SVM algorithm
selection. Step 3: adjustment of parameters in 70% complete data to
set up model using 3×10 cross validation and parameter com-
position. Analysis optimizing parameters (gamma and nu values)
in curve regression. Step 4: model prediction performances in four
indexes and ROC curves.
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precise rate) values were selected as evaluation
indicators.
Parameter value determination (e.g., gamma, nu,
cost): gamma and cost were set as the minimal values;
nu was set as the mean value in parameter
composition.
Step 3.2. Regressions for selected parameters
Regression analysis of parameters (gamma, nu) and
corresponding case number were tested for com-
putable correlations.

Step 4. Model prediction performance
,emodel prediction was performed on testing data and
other testing drugs. Four indexes (accuracy, F1, kappa,
and sensitivity) and ROC were checked for its effect.

2.3. Statistical Analysis. Descriptive analysis was used to
summarize patient demographic characteristics, with mean
values for continuous variables and ratios for categorical vari-
ables. To explain the impacting factors in hyperglycemia, “Re-
action” is defined as a dependent variable and others as response
variables. T-test was performed for comparing normal distri-
butions and defining 95% confidence intervals, and Wilcoxon
rank test was used for comparing other unknown distributions.
R language (version 4.2.0 for Windows) was used for statistics,
and its library of e1071 was used for SVM model buildup.

3. Results

A demographic summary of complete data for analysis is
provided in Table 1. Due to the limited number (only 1) of
positive cases in the complete data, cam and cem were not

included inmodel setup.,e two drugs as well as ipi were set
as testing drugs.

Pilot assay was used for algorithm selection based on
proportional 600 cases of each drug. Positive and negative
cases were classified as number type (“1,” “0”) or factor type
(“Yes,” “No”). Optimization methods were combined as
number and R-tune. Accuracy (total precise rate), F1 score,
kappa (consistence), and sensitivity (positive precise rate or
recall) values were evaluated as indicators of performance.
Confusion matrix was calculated according to Table2.
Compositions of “fn” and “nn” in complete data displayed
best performances in Figure 2.

One key to constructing an SVM model that can ac-
curately screen the active markers is to select the appropriate
variable indexes [23]. Classical variable selection methods
were near zero variance method and model assessment.
,ree variables (Nos. 9–11, Table 3) as well as “ID” and
“Outcomes” were deleted in the following analysis. “Source”
and “Reporter” introduced where the ADR came from,
without more clinical information in ADR control; “Out-
comes” did not influence “Reactions.” ,e other 8 variables
(Nos. 1–8, Table 3) were selected for model setup.

SVMmodel is determined by its kernel (“l,” “p,” “r,” “s”)
and type (“C,” “one,” “eps,” “nu”). ,e five PD-1/L1 drugs
were test by the 4× 4 kernel-type cross compositions. As the
index range span is too long, y-axis values were logged in the
boxplots. In number type, “r-nu” (“rbf” and “nu-regres-
sion”) displayed better performances, especially at the im-
portant indexes of F1 score and kappa. In factor type, “p-C”
displayed better performances, except for being lower at
sensitivity. Moreover, “r-nu” performed better than “p-C” at
F1 score and kappa (Figure 3).

Table 1: Main characteristics of cases in complete data.

Drugs TCN (PCN) PCN (%) Age (year) Male (%) Weight (kg) Year range
Cam 37 (1) 2.7 55.6± 13.2 64.9 59.5± 12.4 2017–2021
Cem 52 (1) 1.9 73± 13 82.7 76.9± 15.8 2018–2021
Avel 1074 (22) 2 65.1± 11.6 61.6 75.3± 20.8 2014–2021
∗Dur 1715 (46) 2.7 65.9± 10.3 67.6 69.7± 18.1 2011–2021
Atez 7073 (133) 1.9 64.2± 11.6 56 70.5± 18.4 2012–2021
∗Pem 9416 (310) 3.3 65.8± 11.5 63 68.6± 20.7 2000–2021
∗Nivo 15629 (708) 4.5 63.3± 12.8 64.3 73.7± 22.1 2010–2021
Ipi 7907 (378) 4.8 61.7± 13 63.7 77.3± 21.4 2007–2021
TCN: total case number. PCN: positive case number. ∗Cases reported with wrong year were deleted: dur (1979), pem (1921), nivo (2022).

Table 2: Confusion matrix and index formula.

Real Y Real N
Predicted Y True positive (TP) False positive (FP)
Predicted N False negative (FN) True negative (TN)
Index Formula
Precision (TP)/(TP + FP)

Accuracy (TP + TN)/(TP + FP + FN + TN)

Sensitivity (recall) TP/(TP + FN)

P(e) ((TP + FP)∗(TP + FN) + (FN + TN)∗(FP +

TN))/(TP + FP + TN + FN)2

Kappa ((accuracy – P(e))/(1 – P(e)))
F1 score (2/(1/precision) + (1/sensitivity))
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As “eps” and “nu” regression need numeric dependent
variables, “r-nu” and number type/number optimization
were selected for SVM model setup.

Generally, modeling set was from stratifying random-
split cross validation into training data (70% data) and

testing data (30% data), containing proportional positive
and negative cases, respectively.

Parameters of SVM mainly included degree, cost,
gamma, nu, coef0. From pilot study, nu was defined by the
mean value and cost (=1) and gamma by the minimal value

1.00

0.98

0.96

0.94

0.92
f_raw n_raw fr fn nn

type
f_raw

n_raw

fr

fn

nn

(a)

1.00

0.75

0.50

0.25

0.00

f_raw n_raw fr fn nn

type
f_raw

n_raw

fr

fn

nn

(b)

1.00

0.75

0.50

0.25

0.00

f_raw n_raw fr fn nn

type
f_raw

n_raw

fr

fn

nn

(c)

type
f_raw

n_raw

fr

fn

nn

1.00

0.75

0.50

0.25

0.00
f_raw n_raw fr fn nn

(d)

Figure 2: Performance for data version and algorithm classification. In raw data: f_raw: factor type; n_raw: number type. In complete data:
nn: number type, number optimization; ft: factor type, R-tune optimization; fn: factor type, number optimization. To compare the effect of
missing values, raw data and complete data (filtered from raw data) were both checked in the pilot test.,e positive cases were marked in the
form of factor type (“yes” and “no”) or number type (“1” and “0”); the optimization methods were number and tune. According to SVM
model options, there were 5 compositing types. ,e assessing indexes of tested drugs were checked for the more optimized algorithm. All
four indexes in raw data displayed lower scores, while these in algorithms (fn, nn) of complete data displayed highest scores. (a) Accuracy.
(b) F1 score. (c) Kappa. (d) Sensitivity.

Table 3: Variable selection in two methods.

Drugs Avel Dur Atez Pem Nivo
No. Variable nzv Overall nzv Overall nzv Overall nzv Overall nzv Overall
1 Reactions F 1 F 1 F 1 F 1 F 1
2 Reason F 0.771 F 0.434 F 0.549 F 0.374 F 0.229
3 Country F 0.033 F 0.005 F 0.004 F 0.004 F 0.009
4 Age F 0.007 F 0.004 F 0 F 0 F 0
5 Weight F 0.007 F 0.013 F 0.002 F 0 F 0.001
6 Sex F 0 F 0 F 0 F 0 F 0
7 Year F 0 F 0 F 0 F 0.002 F 0
8 Priority T 0 F 0 T 0.001 F 0.004 T 0.001
9 Reporter T 0 F 0 T 0 F 0 F 0
10 Serious T 0 T 0 T 0 T 0 T 0
11 Source T 0 T 0 T 0 T 0 T 0
nzv: near zero variance. Overall: overall value of model assessment. T: true. F: false (“T” or “0” means this variable should be deleted in each method).
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in the best prediction range (1∼10); while other parameters
did not need to be adjusted.,emainmodel setup algorithm
is shown in Algorithm 1.

Main model setup indicated the critical points depended
on the patterns of nu and gamma. In regression analysis, we
found out that the nu values (0<nu≤ 1) were exponential
and gamma values (1≤ gamma≤ 10) were quadratic to case
number, regression formula, and curves as in (1) and (2) and
Figure 4.

y � 0.5649 × e
(− x/6984)

.(y � nu, x � case), (1)

y � 9.005 × 10− 4
x − 4.877 × 10− 8

x
2
.(y � gamma, x � case).

(2)
,e setup model with optimized parameters (type: nu-

regression; kernel: rbf; parameter: nu and gamma from
formulas (1) and (2)) was applied on testing-part (5 testing
data and 3 drugs). ,ree indexes (accuracy, F1 score, and
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Figure 3: Performance of kernel and type compositions. SVM algorithm is based on its kernel (“l,” “p,” “r,” “s”) and type (“C,” “one,” “eps,”
“nu”). Drugs were tested by the 4× 4 kernel-type cross compositions. In number type, “r-nu” (“rbf” and “nu-regression”) displayed highest
score in (b) and (c) and were still in the top class in (a) and (d). In factor type, “p-C” displayed highest scores in (e)–(g) but lower scores in
(h). Comprehensively, “p-C” (the best in factor type) performed weaker than “r-nu” (number type). (a) Accuracy (log Y). (b) F1 score (log
Y). (c) Kappa (log Y). (d) Sensitivity (log Y). (e) Accuracy (log Y). (f ) F1 score (log Y). (g) Kappa (log Y). (h) Sensitivity (log Y).
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kappa) were greatly improved in model than in initial
prediction (Figure 5).

Receiver operating characteristic (ROC) analysis was
used to describe the discrimination accuracy of a diagnostic
test or predictionmodel [24].,e diagnostic values from this
model prediction and single variables (“Reactions,” “Rea-
son,” “Country,” “Weight,” “Year,” “Age,” “Priority,” and
“Sex”) on the testing parts were evaluated by ROC curves,
whereas the predictive performances were much better from
model than single variables in Figure 6.

4. Discussion

,e application of machine learning in healthcare delivery
presents unique challenges that require data preprocessing,
model training, and refinement of the system with respect to
the actual clinical problem [20]. In this study, we have
developed a machine learning algorithm with correct cores
and computable parameters.

Hyperglycemia is a serious ADR in cancer treatment
[25], and it is urgent to predict occurrence among cancer

library(cvTools)
library(foreach)
library(doParallel)
myfun� function (l) {
library(e1071)
#svm
svm.fit� svm(reac∼., data� train, nu� l, cost� i, gamma� j, kernel� “radial,” type� “nu-regression”)
svm.pre� ifelse(predict(svm.fit,train[, − 9])>mean(predict(svm.fit,train[, − 9])), 1, 0)
reac� as.numeric(train[,“reac”])
n� ifelse(svm.pre � � train[, 9], 1, 0)
#result
t� table(pred� svm.pre, true� train[, 9])
A� as.vector(t)
ac� (A[1] +A[4])/sum(A[1 : 4]) #Accuracy
s�A[4]/(A[3] +A[4]) #Sensitive
p�A[4]/(A[2] +A[4]) #precision
f� 2/(1/p+ 1/s) #F1 score
pe� ((A[4] +A[2]) ∗ (A[4] +A[3]) + (A[3] +A[1]) ∗ (A[2] +A[1]))/(sum(A[1 : 4])̂2)
k� (ac − pe)/(1 − pe) #Kappa
#output
c(l, ac, s, f, k, sum(n))

}
set.seed(80)
R� 3
K� 10
cost.r� 3
gamma.r� 10
nu.r� seq(0.01, 1, 0.01)
cv� cvFolds(NROW(d.train), K�K, R�R)
af� foreach(r� 1: R,.combine� rbind) %do% {
library(foreach)
bf� foreach(k� 1: K,.combine� rbind) %do% {
validation.idx� cv$subsets[which(cv$which� � k),r]
train� d.train[-validation.idx,]
validation� d.train[validation.idx,]
cf� foreach (i� 1:cost.r,.combine� rbind) %do% {
df� foreach (j� 1:gamma.r,.combine� rbind) %do% {
library(snowfall)
library(parallel)
sfInit(parallel�T, cpus� detectCores() − 1)
sfExport(“train,” “myfun,” “j,” “i,” “K,” “R”)
a� sfLapply(nu.r, myfun)
b�matrix(unlist(a), ncol� 6, byrow�T)
sfStop()
cbind(rep(j, nrow(b)), b)
}

cbind(rep(i,nrow(df )), df )
} } }

ALGORITHM 1: Key model setup algorithm.
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patients. Hyperglycemia influences the outcome of cancer
therapy via various mechanisms such as inflammation
sponsoring [1], immune destruction [26]. In inclusion cri-
teria, “Diabetic” is set as an item to include diabetic com-
plications such as ketoacidosis and coma. As PD-1 joint
therapies (e.g., nivo combined with ipi, and pem combined
with chemotherapy [27]) have been approved by the FDA,
ipi is also included for better testing hyperglycemic ADR
prediction in drug usage. To the best of our knowledge, this
is the first time that hyperglycemia is predicted from real-
world clinical practice via machine learning model.

SVM is a kind of structural dependence model to find
maximum margin hyperplane with ADR and reported
features. To train the algorithm, new cases are projected in
the same situation to test which side of the hyperplane they
are located on [22]. As the adverse events may have occurred
in a small fraction of patients, for class-imbalance, data were
split into proportional and random training, and testing
parts were performed by R library: createDataPartition.
SVM is powerful in data mining for better classification;
however, it is greatly influenced by the parameters. It is
inefficient to use traditional grid search, learning curve, and

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

Tr
ue

 p
os

iti
ve

 ra
te

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

(a) (b) (c) (d)

(e) (f) (g) (h)

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

Tr
ue

 p
os

iti
ve

 ra
te

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

Variables
prediction
reason
reactions
sex
year
priority
age
weight
country

0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Predictive evaluations in terms of ROC curves. in ROC curves, prediction from single items (“reactions,” “reason,” “country,”
“weight,” “year,” “age,” “priority” and “sex”) “stay” around diagonal with low area under curve (AUC), while prediction from model (red
line) nearly at top in (a∼f ). In (g∼h), the single variable did not “stay” around diagonal, maybe because of the influence by limited positive
case (only 1); but red lines were still at the top. ,e predictive performances were much better improved from this model than any single
variables. (a) Avel (test part). (b) Dur (test part). (c) Atez (test part). (d) Pem (test part). (e) Nivo (test part). (f ) Ipi. (g) Cem. (h) Cam.

Journal of Healthcare Engineering 9



other parameter adjustment methods [28]. SVM is usually
used as control algorithm in diabetic prediction [29], while
our model has obtained the optimal parameters effectively
considering the key parameters as well as their large space
and enhanced the prediction precision, where we discussed
its parameter tuning and provided a new conception of
parameter adjustment.

In raw data, the high-performance accuracy was from
the data itself, as the low hyperglycemic incidence and high
negative-case number pushed up its accuracy. In complete
data, number optimization performed better than R-tune
optimization, in that R-tune leans toward various minor
compositions other than the comprehensive adjustment in
number optimization (Figure 2).

Variable selection depended on both statistical and
clinical significance. Due to omission values and duplicated
cases, variables should be filtered in machine learning.
Variable importance was tested by twomethods: in near zero
variance method, variables displayed “T” as deletable; in
overall value of model assessment, variables displayed “0” as
deletable. Compared the two methods and considered
clinical implications, variables of “reactions,” “reason,”
“country,” “age,” “weight,” and “year” are included. ,ough
“Sex” is deletable in overall method, “nzv” method indicated
it as meaningful. Furthermore, “Sex” was an important
parameter clinically, so it was included in variables. For the
clinical and algorithmic assessment, “Serious,” “Source,” and
“Reporter” were not included in model setup (Table 3).

SVM model is usually based on kernel and type kinds.
From crossing composition, “r-nu” in number type showed
better value than average in accuracy and sensitivity, and top
values in F1 score and kappa, and it is better than “p-C” of
factor type (Figure 3). Furthermore, “eps” and “nu” re-
gression did not accept factorial variables. ,e number type/
number optimization and kernel and type of “r-nu” com-
position were selected for SVM model setup. Since SVM-
Type of nu-classification did not work in both factor and
number here, it was not checked in type and kernel (Step
2.3).

Five parameters (degree, cost, gamma, nu, and coef0)
were adjusted in parameter selection (Step 3.1). As no results
changed in regulating degree and coef0, the two parameters
were set as the function default. To avoid overfitting, cost
value was defined as “1” (the function default number).
Adjusting the other two parameters (nu and gamma) could
improve model performance in 3×10 (10-fold 3-time) cross
validation. ,en, nu was defined by the mean value and
gamma by the minimal value frommodel. Because the whole
range of nu (0∼1) had been checked in cross validation, its
mean value could cover entire situations. However, gamma
determines distribution of new feature space, meaning that
the smaller the gamma value, the more the support vectors.
So, the choice of gamma on smallest value would not be
effected by its primeval testing range. Different from pre-
viously published preprint [30], model results from 5 drugs
were included because of imported new cases and new
positive case criteria. In regression test, we found that if nu
was chosen after minimizing gamma value, the prediction
performances were not well either at small or big case

volume (in linear, partially linear, or nonlinear regression).
For balance, we chose gamma from 1∼10, while we chose nu
from 0∼1 in this study; Figure 5 displays their good pre-
diction performances.

In the exponential curves (1), the constant value (6984)
was iterated from more and more narrow ranges in linear
regression between nu value and e(− case number/constant)

(iterated highest r2).
,e positive hyperglycemic ADR case ratio is relatively

low (<5%, Table 1), so the mass of negative cases pushed up
sensitivity values in initial prediction (Figure 5). ,e other
three indexes could also support this model’s good per-
formance. ,e graphical ROC curve is produced by plotting
sensitivity (true positive rate) on the y-axis against
1–specificity (false positive rate) on the x-axis for the various
values tabulated [31]. Areas under the ROC curves (AUC)
from single variables were far less than those from model
prediction (the uppermost red line in Figure 6). ,e pre-
diction of composite variable was powerful, since that of
every single item is close to the diagonal line separately. In
cam and cem, low positive case (only 1 case) influenced
single variable prediction, but they were also lower than
model prediction (the uppermost red line in Figure 6).

One SVM’s downside is that finding the best model
requires testing of various compositions of kernels and
model parameters. ,e success or failure of machine
learning approaches on a given problem may vary strongly
with the expertise of the user [14]. Our model process set up
an efficient kernel and composite parameter and improved
the prediction for positive cases.

,ough SVMs are extremely powerful classifiers and
there are no medicolegal implications, clinicians’ under-
standing, or privacy and security on public database, several
limitations must be addressed. One thing that needs to be
clear is that pharmacovigilance databases can just be used to
predict correlations rather than causality. FAERS (including
spontaneous reporting systems) declares no certainty that
the reported event was due to the product, insufficient
details, incomplete reports, and duplicate reports [13]. Other
drug factors (e.g., doses, frequency) and biological factors
(e.g., genomic data, personal habits) were not included in the
development of the present algorithm, which might prevent
accuracy and F1 score from rising up to 100%. It should be
clear from the narrative examples used in this paper that
choice, tuning, and diagnosis of machine learning appli-
cations are far from mechanical [32]. Furthermore, (1) and
(2) could only function in given case range; if the case
number is too huge or small, the model should be re-set up.

Despite the limitations described above, this algorithm
has provided meaningful information in order to adjust care
goals for these patients or provide signs for further well-
organized clinical studies.

ADR is one of the pharmacovigilance keys during drug
post-marketing phase. On the one hand, it is challengeable to
find out the effective and fast means from clinical hetero-
geneity results. On the other hand, interestingly, ADR
prediction is more important in that its occurrence is usually
unknown in clinical treatment, since real time monitoring is
expensive and inconvenient for discovering ADRs. ,is
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algorithm model from clinical available features at the time
of presentation was proved robust and generalizable in later
testing-part sequence. ,is noninvasive and precise pre-
diction could greatly help clinical practitioners to distinguish
high-risk patients. ,erefore, this study provided an ori-
entation to predict hyperglycemic ADR with these drugs.

5. Conclusion

In summary, the SVM model established here can non-
invasively and precisely predict hyperglycemic ADR in
patients treated with PD-1/PD-L1 inhibitors from given
personal-related features and given case number. An SVM
model was set up based on compositions of correct kernels
and computable parameters. ,e SVM model showed good
prediction performance in testing data, which proved that
this model is robust and generalizable in this field. ,is
model setup process provided an analytic conception for
promotion to other ADR prediction.We also believe that the
availability of medical and personal information will further
facilitate this model. Such information from prediction is
vital for preventing or even overcoming ADR and to im-
prove patient outcomes by distinguishing high hypergly-
cemia-risk patients, and this machine learning algorithm can
eventually add value to clinical decision making.
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,e data used to support the findings of this study are
available from FAERS public dashboard; and algorithm(s)
are available from the corresponding author on reasonable
request.

Disclosure

A preprint of this paper has previously been published [30].

Conflicts of Interest

All the authors declare that there are no conflicts of interest.

Authors’ Contributions

Jincheng Yang and Ning Li contributed equally to this work.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (grant number: 81603218).

References

[1] P. Ramteke, A. Deb, V. Shepal, and M. K. Bhat, “Hypergly-
cemia associated metabolic and molecular alterations in
cancer risk, progression, treatment, and mortality,” Cancers,
vol. 11, no. 9, p. 1402, 2019.

[2] J. Yang, B. Jia, Y. Qiao, W. Chen, and X. Qi, “Variations of
blood glucose in cancer patients during chemotherapy,”
Nigerian Journal of Clinical Practice, vol. 19, no. 6, pp. 704–
708, 2016.

[3] J. R. Patrinely, R. Johnson, A. R. Lawless et al., “Chronic
immune-related adverse events following adjuvant anti-PD-1
therapy for high-risk resected melanoma,” JAMA Oncology,
vol. 7, no. 5, pp. 744–748, 2021.

[4] I. P. D. Silva, S. Lo, C. Quek et al., “Site-specific response
patterns, pseudoprogression, and acquired resistance in pa-
tients withmelanoma treated with ipilimumab combined with
anti-PD-1 therapy,” Cancer, vol. 126, no. 1, pp. 86–97, 2020.

[5] Y. Wang, S. Zhou, F. Yang et al., “Treatment-related adverse
events of PD-1 and PD-L1 inhibitors in clinical trials: a
systematic review and meta-analysis,” JAMA Oncology, vol. 5,
no. 7, pp. 1008–1019, 2019.

[6] R. Barroso-Sousa, W. T. Barry, A. C. Garrido-Castro et al.,
“Incidence of endocrine dysfunction following the use of
different immune checkpoint inhibitor regimens: a systematic
review and meta-analysis,” JAMA Oncology, vol. 4, no. 2,
p. 173, 2018.

[7] J. Yang, Q. Gu, W. Wang, Z. Chen, and N. Li, “Analysis of
hyperglycemic adverse drug Reactions of Nivolumab and
Pembrolizumab based on FAERS database,” Chin J Phar-
macoepidemiol, vol. 30, no. 2, pp. 95–100, 2021.

[8] J. Yang, B. Zhao, H. Zhou, B. Jia, and L. Chen, “Blood glucose
related adverse drug reaction of antitumor monoclonal an-
tibodies: a retrospective analysis using Vigibase,” Brazilian
Journal of Pharmaceutical Sciences, vol. 58, Article ID e18893,
2022.

[9] C. Lee, D. An, and J. Park, “Hyperglycemic memory in
metabolism and cancer,” Hormone Molecular Biology and
Clinical Investigation, vol. 26, no. 2, pp. 77–85, 2016.

[10] A. Vasconcelos-dos-Santos, R. M. D. Queiroz,
B. D. C. Rodrigues, A. R. Todeschini, and W. B. Dias, “Hy-
perglycemia and aberrant O-GlcNAcylation: contributions to
tumor progression,” Journal of Bioenergetics and Bio-
membranes, vol. 50, no. 3, pp. 175–187, 2018.

[11] J. Yang, Y. Wang, K. Liu, W. Yang, and J. Zhang, “Risk factors
for doxorubicin-induced serious hyperglycaemia-related ad-
verse drug reactions,” Diabetes 5erapy, vol. 10, no. 5,
pp. 1949–1957, 2019.

[12] J. Yang and J. Yang, “Hyperglycemic ADR distribution of
doxorubicin from VigiBase,” American Journal of 5era-
peutics, vol. 26, no. 3, pp. e428–e430, 2019.

[13] US. Food&Drug Administration: 2020, https://www.fda.gov/.
[14] S. Huang, N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang, and

W. Xu, “Applications of support vector machine (SVM)
learning in cancer genomics,” Cancer Genomics &amp;amp;
Proteomics, vol. 15, no. 1, pp. 41–51, 2018.

[15] M. Zhao, K. Hoti, H. Wang, A. Raghu, and D. Katabi, “As-
sessment of medication self-administration using artificial
intelligence,” Nature Medicine, vol. 27, no. 4, pp. 727–735,
2021.

[16] R. C. Deo, “Machine learning in medicine,” Circulation,
vol. 132, no. 20, pp. 1920–1930, 2015.

[17] K. Lakshmanna and N. Khare, “FDSMO: frequent DNA se-
quence mining using FBSB and optimization,” International
Journal of Intelligent Engineering and Systems, vol. 9, no. 4,
pp. 157–166, 2016.

[18] H. Li, J. Liu, K.Wu, Z. Yang, R.W. Liu, and N. Xiong, “Spatio-
temporal vessel trajectory clustering based on data mapping
and density,” IEEE Access, vol. 6, pp. 58939–58954, 2018.

[19] M. Bernardini, L. Romeo, P. Misericordia, and E. Frontoni,
“Discovering the type 2 diabetes in electronic health records
using the sparse balanced support vector machine,” IEEE
journal of biomedical and health informatics, vol. 24, no. 1,
pp. 235–246, 2020.

Journal of Healthcare Engineering 11

https://www.fda.gov/


[20] K. Y. Ngiam and I. W. Khor, “Big data and machine learning
algorithms for health-care delivery,” 5e Lancet Oncology,
vol. 20, no. 5, pp. e262–e273, 2019.

[21] M. Wang, Z. Pang, Y. Wang et al., “An immune model to
predict prognosis of breast cancer patients receiving neo-
adjuvant chemotherapy based on support vector machine,”
Frontiers Oncology, vol. 11, Article ID 651809, 2021.

[22] J. Zhang, X. Han, H. Zhao et al., “Personalized prediction
model for seizure-free epilepsy with levetiracetam therapy: a
retrospective data analysis using support vector machine,”
British Journal of Clinical Pharmacology, vol. 84, no. 11,
pp. 2615–2624, 2018.

[23] S. Li, L. Wang, Z. Du et al., “Identification of the lipid-
lowering component of triterpenes from Alismatis rhizoma
based on the MRM-based characteristic chemical profiles and
support vector machine model,” Analytical and Bioanalytical
Chemistry, vol. 411, no. 15, pp. 3257–3268, 2019.

[24] N. A. Obuchowski and J. A. Bullen, “Receiver operating
characteristic (ROC) curves: review of methods with appli-
cations in diagnostic medicine,” Physics in Medicine and
Biology, vol. 63, no. 7, p. 07TR01, 2018.

[25] J. Yang, B. Jia, J. Yan, and J. He, “Glycaemic adverse drug
reactions from anti-neoplastics used in treating pancreatic
cancer,” Nigerian Journal of Clinical Practice, vol. 20, no. 11,
p. 1422, 2017.

[26] L. Li, Y. Chen, C. Chenzhao, S. Fu, Q. Xu, and J. Zhao,
“Glucose negatively affects Nrf2/SKN-1-mediated innate
immunity in C. elegans,” Aging, vol. 10, no. 11, pp. 3089–3103,
2018.

[27] J. Tang, J. X. Yu, V. M. Hubbard-Lucey, S. T. Neftelinov,
J. P. Hodge, and Y. Lin, “,e clinical trial landscape for PD1/
PDL1 immune checkpoint inhibitors,” Nature Reviews Drug
Discovery, vol. 17, no. 12, pp. 854-855, 2018.

[28] J. Zhang, X. Qiu, X. Li, Z. Huang, M. Wu, and Y. Dong,
“Support vector machine weather prediction technology
based on the improved quantum optimization algorithm,”
Computational Intelligence and Neuroscience, vol. 2021,
pp. 1–13, 2021.

[29] C. C. Olisah, L. Smith, and M. Smith, “Diabetes mellitus
prediction and diagnosis from a data preprocessing and
machine learning perspective,” Computer Methods and Pro-
grams in Biomedicine, vol. 220, Article ID 106773, 2022.

[30] J. Yang, W. Lin, L. Shi, M. Deng, and W. Yang, “A Machine
Learning Algorithm to Predict Hyperglycemic Cases Induced
by PD-1/PD-L1 Inhibitors in the Real World,” Mapping In-
timacies, 2020.

[31] Z. H. Hoo, J. Candlish, and D. Teare, “What is an ROC curve?”
Emergency Medicine Journal, vol. 34, no. 6, pp. 357–359, 2017.

[32] A. L. Tarca, V. J. Carey, X. W. Chen, R. Romero, and
S. Draghici, “Machine learning and its applications to biol-
ogy,” PLoS Computational Biology, vol. 3, no. 6, p. e116, 2007.

12 Journal of Healthcare Engineering


