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Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal carcinoma, which is not sensitive to both radiotherapy
and chemotherapy. �e objective response rate of metastatic renal cancer to targeted drugs and immunotherapy is unsatisfactory.
Pyroptosis, proven as an in�ammatory form of programmed cell death, could be activated by some in�ammasomes, while could
create a tumor-suppressing environment by releasing in�ammatory factors in the tumor. To explore indicators predicting the
prognosis of ccRCC and the e�ect of antitumor therapy, we constructed a pyroptosis risk model containing 4 genes after 11
pyroptosis-related genes of 516 ccRCC cases in the TCGA database were scanned. Based on the risk score, 516 ccRCC cases were
divided into two groups for functional enrichment analysis and immune pro�le to seek functional pathways and potential
therapeutic targets. Besides, those results were veri�ed in GSE29609 and single-cell transcriptomic data. �e study suggests that
the conducted pyroptosis model could predict the prognosis of ccRCC and re�ect the immune microenvironment, which may
help in immune checkpoint inhibitor treatment.

1. Introduction

Renal cell carcinoma (RCC), which originates from renal
proximal convoluted tubule epithelial cells, accounts for
about 90% of all primary renal malignancies. RCC is one of
the most prevalent malignant tumors of the genitourinary
system. In recent decades, the incidence of RCC continues to
rise [1]. According to histological classi�cation, clear cell
renal cell carcinoma (ccRCC) is the most common type of
renal carcinoma (about 75–80%), followed by papillary
carcinoma (15%) and chromophobe cell carcinoma (5%) [2].
�e onset of RCC is insidious and lacks speci�c clinical
manifestations and features at the early stage. About 20–30%
of RCC has been found with metastasis at the time of initial
diagnosis [3]. RCC is not sensitive to both radiotherapy and
chemotherapy, which currently mainly relied on surgical
resection. Despite the development of targeted drugs and
immunotherapy in recent years, the objective response rate
of metastatic renal cancer is only about 30% [4]. Although
some clinical indicators and pathological results have been
used to predict the treatment and prognosis of ccRCC, their

predictive ability is insu¦cient [5]. Consequently, it does
make sense to explore indicators predicting the prognosis of
ccRCC.

Pyroptosis is an in�ammatory form of programmed cell
death. It is triggered by caspase-1/4/5/11, which is activated
by some in�ammasomes. Pyroptosis causes cell swelling,
dissolution of the plasma membrane, fragmentation of
chromatin, and freeing of in�ammatory content of intra-
cellular proteins [6]. Gasdermin superfamilies are the main
e�ectors of pyroptosis. Gasdermin superfamily members
discovered so far include GSDMA, GSDMB, GSMDC,
GSDMD, GSDME, DFNB59, and so on [7]. �e cleavage of
the gasdermin by caspases is the key to activating gasdermin
to form permeable pores, but not all gasdermin could be cut
by caspases [8, 9]. �e endurance to cell death is one of the
six hallmarks of cancer. Cell death particularly breaks down
into necrosis and programmed cell death, and the latter
includes apoptosis, pyroptosis, and autophagy [10]. Pro-
moting pyroptosis of cancer cells could validly inhibit tu-
morigenesis and tumor progression. It can also raise the
e�ect of antitumor therapy [11]. It has been reported that
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pyroptosis could create a tumor-suppressing environment
with released inflammatory factors in different tumor types.
However, pyroptosis can also debilitate the own immune
response to cancer cells and quicken tumor growth [12–15].

ccRCC with metastasis is usually incurable by surgical
resection and requires systemic treatment [16]. However,
metastatic RCC shows insensibility to radiotherapy and
systematic treatment in the later stages of treatment, in-
cluding hormone therapy, chemotherapy, and interleukin-
2-based immunotherapy [17]. /e study of the Cancer-
Genome Atlas has significantly advanced the molecular clas-
sification of renal cell carcinoma to guide the treatment and
prognosis. Among them, the activation of protein kinase B
(PKB/Akt), the mammalian target of the rapamycin (mTOR)
pathway is a key driver of RCC. /e expression and activity of
mTOR downstream effectors in RCC are unbalanced, which
lays a theoretical foundation for the clinical application of
ccRCC-targeted therapy [18]. In the last few years, with the in-
depth study of cytotoxic T cell inhibitory molecules such as
cytotoxic T lymphocyte-associated protein 4, programmed cell
death receptor 1 (PD-1), and programmed cell death ligand-1
(PD-L1), the immunomodulators have been applied in clinical
practice. Although these treatments improved the prognosis of
ccRCC, drug resistance and recurrence still occurred [19, 20].
Due to the lack of a well-established subgroup classification of
ccRCC, there is still a lack of molecular subtypes to guide
clinical practice. Consequently, it is urgent to construct an
effective genetic signature to guide subgroup classification and
predict prognosis.

In view of the important part of pyroptosis in the devel-
opment and treatment of ccRCC, we constructed a pyroptosis
risk model to classify ccRCC in the present study to predict
prognosis and treatment. 11 pyroptosis-related genes were
selected, and survival analysis and GSVA analysis were per-
formed on 516 ccRCC cases in TCGA database./e pyroptosis
risk model containing 4 genes was constructed by the mul-
tivariate COX regression analysis. Using the risk score, 516
ccRCC cases were grouped into two groups for functional
enrichment analysis and immune profile. /ose results were
verified in GSE29609 and single-cell transcriptomic data. Our
findings suggest that the pyroptosis model could predict the
prognosis of ccRCC and reflect the immune microenviron-
ment. Figure 1 shows the flowchart of the study.

2. Materials and Methods

2.1. Database. /e patients’ characteristics and renal cell
carcinoma patients with level 3 gene expression profiles were
downloaded from the TCGA database (June 2020) (https://
cancergenome.nih.gov) [21]. We selected the 516 cancer cases
whose pathological diagnosis is clear cell renal cell carcinoma
(ccRCC). Cases without pathological or clinical information
were excluded. GSE29609 dataset [22], as a validation cohort,
was obtained from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo). /e limma
package in R was used to normalize the gene expression.

Single-cell transcriptome profiling data for analyses were
downloaded from the supplemental data in the published

article [23]./e Seurat package in R (version 4.0.4) was applied
to process the single-cell RNA-seq data. Cell clusters were
recognized by Uniform Manifold Approximation and Pro-
jection (UMAP) with a resolution of 0.5 [24]. /e function
FeaturePlot and VlnPlot of the Seurat package were used for
visualization of the expression profiling of the genes.

2.2. Identification of Pyroptosis-Related Genes. We selected
11 genes as crucial pyroptosis-related genes which were
proved by reliable literature published in the past. /e 11
identified genes including CASP1 [25], CASP3 [26], CASP4
[27], CASP5 [28], CASP8 [29], GSDMB [30], GSDMC [31],
GSDMD [27], GSDME [26], GZMA [30], and GZMB [32].

2.3. Construction of a Risk Model. /e heatmaps of pyrop-
tosis-related genes were generated by the pheatmap package in
R. Pyroptosis pathway enrichment was performed based
on the pyroptosis-related signatures and Gene Set
Variation Analysis (GSVA) [33]. R package survival was
used for the Kaplan–Meier survival analysis of these 11
pyroptosis-related genes. /e function coxPH of the survival
package was utilized to generate the Cox proportional
hazards regression model. We selected the prognosis-
related genes and formed the formula: risk
score� β1gene1× expression of gene1+β2gene2× expression
of gene2+. . .+βngenen× expression of genen. /e R package
survival and ROCR were applied to form the Kaplan–Meier
analysis and the receiver operating characteristic (ROC) curves.
/e predictive value of the new risk model was validated using
the GSE29609 dataset downloaded from the GEO database.

2.4. Identification of Differentially Expressed Genes and
Functional EnrichmentAnalysis. Cancer cases were grouped
into two groups, the high-risk group, and the low-risk group,
following the median value of the risk score calculated. /e
differentially expressed genes (DEGs) between the two
groups were identified using the limma package in R with the
fold change (|fold change|≥ 1.5) and adj. P< 0.05. /e
functional enrichment analysis and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathway analysis were
conducted using the clusterProfiler package in R.

2.5. Assessment of ImmuneCell Type Fractions. /e analytical
web server tool CIBERSORT (https://cibersort.stanford.edu/)
was applied to estimate the immunologic cell abundances in
the cancer immune microenvironment [34]. /e leukocyte
gene signaturematrix termed LM22was used to distinguish the
22 immune cell types between the high-and low-risk score
groups. /e 22 immune cell types including CD8 Tcells, naive
CD4 T cells, resting memory CD4 T cells, activated memory
CD4 T cells, naive B cells, memory B cells, plasma cells, fol-
licular helper T cells, T cells regulatory (Tregs), gamma delta
T cells, resting NK cells, activated NK cells, monocytes,
macrophages M0, macrophages M1, macrophages M2, resting
dendritic cells, activated dendritic cells, resting mast cells,
activated mast cells, eosinophils, and neutrophils.
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2.6. Assessment of Immunomodulators and Immunosup-
pressive Cytokines’ Expression Profile. We quantified a group
of key immunomodulators and tumor immunosuppressive
cytokines. /e t-test was utilized to compare the different
expressions between the high-and low-risk score groups. /e
key immunomodulators include LAG-3, TIM-3, CTLA-4, IFN-
c, ICOS, ICAM-1, TIGIT, PD-1, PDL-1, NKG2A, and VISTA.
Statistically, significance was considered when 2-sided P< 0.05.

3. Results

3.1. Overview of Pyroptosis-Related Genes in ccRCC. /e
selected 516 cancer cases from the TCGA database were
pathologically diagnosed as ccRCC. /e basic patient infor-
mation and characteristics were shown in Table 1. Based on the

Kaplan–Meier survival curves, the 11 pyroptosis-related genes
were all significantly related to the overall survival (OS) out-
come of the cancer cases with the log-rank test P< 0.05
(Figure 2). /e distinct gene expression patterns of the
11pyroptosis-related genes in these cancer cases were presented
in the heatmap (Figure 3(a)). Pyroptosis activity was calculated
based on the pyroptosis signatures and GSVA. As shown in
Figure 3(b), cancer cases with T staging III/IV, according to
tumor node metastasis (TNM) classification, had higher GSVA
scores than cancer cases with T staging I/II (P< 0.001).
Figure 3(c) exhibited that no significant difference was observed
in GSVA scores when the cancer cases were grouped according
to with or without regional lymph node metastasis. When
compared to cancer cases withoutmetastasis (M0), cancer cases
with distant metastasis (M1) had significantly higher GSVA

TCGA
ccRCC

Gene expression
RNA-seq (n = 516)

Literature

Pyroptosis-related
genes (n = 11)

Heatmap, survival
analysis, and GSVA analysis
of pyroptosis-related genes

Multivariate Cox regression

GSE29609
ccRCC
(n = 39)

Heatmap and Functional
enrichment analysis

of DEGs

Estimation of
pyroptosis model

Immune landscape

Validation in GSE29609 and
single-cell transcriptomic data

single-cell
transcriptomic

data (cells = 37726 )

4 Genes Pyroptosis model and risk score

Figure 1: /e workflow of the study.

Journal of Healthcare Engineering 3



scores (Figure 3(d), P< 0.001). /e cancer cases were divided
into low-and high-GSVA score groups, based on the optimal
cut-off value calculated by the survminer package in R. As
shown in Figure 3(e), the cancer cases in the high-GSVA score
group had a poorer prognosis, while cancer cased in low-GSVA
score group had better OS (log-rank test P< 0.001).

3.2. Construction andEvaluation of the Pyroptosis RiskModel.
Multivariate Cox regression analyses were used for the
pyroptosis risk model establishment (Supplementary
Table S1). Using the genes with a P value less than 0.1 within
the supplementary table, the pyroptosis risk model was

established. /e risk score� 0.507955∗Expression
(CASP3)+0.404610∗Expression (CASP4)+0.292399∗Expression
(GSDMB)+ (−0.220535)∗Expression (GZMA).

Following the median value of risk score (P< 0.05), all
516 ccRCC cases were divided into low- and high-risk
groups. /e whole of the 11 pyroptosis-related genes was
upregulated in the high-risk score group (Figure 4(a)).
ROC curves and Kaplan–Meier analysis were applied to
assess the pyroptosis risk model. /e risk model had an
accuracy of 0.674 (95% CI: 0.624–0.724) in the TCGA
cohort (Figure 4(b)). /e cancer cases in high- risk score
group had significantly poor OS (P< 0.001) (Figure 4(c)).
To reveal the independent predictability of the risk model

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP5

CASP5=high CASP5=low

p = 0.0028

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP1=high CASP1=low

CASP1

CASP3=high CASP3=low

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

CASP3

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP4=high CASP4=low

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP4

p = 0.0003

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GSDMC

CASP8=high CASP8=low DFNA5=high DFNA5=low GSDMB=high GSDMB=low GSDMC=high GSDMC=low

p = 0.0012

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

CASP8

p = 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

DFNA5

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GSDMB

GSDMD=high GSDMD=low DZMA=high DZMA=low GZMB=high GZMB=low

p = 0.0002

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GSDMD

p = 0.029

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GZMA

p < 0.0001

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000

Time in days

Su
rv

iv
al

 p
ro

ba
bi

lit
y

GZMB

Figure 2: Survival analysis of pyroptosis-related genes in ccRCC. Kaplan–Meier curves for overall survival of 11 pyroptosis-related in the
TCGA cohort.

Table 1: /e basic clinical characteristics of the 516 cancer cases from the TCGA database.

Subtype No Percent (%)

Age ≥60 277 53.68
<60 239 46.32

Gender Male 337 65.31
Female 179 34.69

TNM staging

Stage I 254 48.64
Stage II 55 10.66
Stage III 122 23.64
Stage IV 82 15.68

Survival status Alive 343 66.47
Dead 173 33.53

Total 516 100
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in predicting the prognosis of ccRCC, Cox proportional
hazards regression analysis was performed and displayed
in Table 2. /e hazard ratio (HR) was 2.444 (95% CI
1.863–3.205) (P< 0.001).

Using the dataset GSE29609, external validation was
performed. As shown in Figure 4(d), the area under the
ROC curve (AUC) was 0.679 (95% CI: 0.506–0.852).
Figure 4(e) presented the same results that the cancer
cases in high- risk score group had a significantly poor OS
(P � 0.045).

3.3. Functional Enrichment Analyses. DEGs between low-
and high-risk score groups were identified. /e profiles of
DEGs expression for each group were exhibited in the
heatmap (Figure 5(a)). GO and KEGG analyses were taken
to appraise the biological involvement of the DEGs. As
highlighted in Figure 5(b), the top GO terms comprised
acute-phase response, carboxylic acid transport, humoral
immune response, etc. Furthermore, KEGG analysis

exposed that the DEGs were chiefly involved in carbohydrate
digestion and absorption, complement and coagulation
cascades, glycolysis/gluconeogenesis, PPAR signaling
pathway, etc. (Figure 5(c)).

3.4. Immune Microenvironment of Low-and High-Risk Score
Groups. In consideration of the established pyroptosis risk
model that could also reflect the immune microenviron-
ment of ccRCC, the disparate immune cell fraction be-
tween low-and high-risk score groups was studied. /e
diverse immune cell fraction upshot of the 516 ccRCC
cancer cases grouped into different risk score groups was
depicted in Figure 6(a). In spite of the higher multiple
effector immune cells (e.g. plasma cells, CD8+ T cells) in
high-risk score groups, the immunosuppressive cells (e.g.
regulatory T cells) were significantly higher in the same
group (Figure 6(b)) (P< 0.05). /is status may imply the
immunosuppressive microenvironment in high-risk-score
cancer cases.
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Figure 3: Significance of pyroptosis in ccRCC. (a) Heatmap of the pyroptosis-related genes in ccRCC cases. (b) Distribution of GSVA score
of patients with different TNM tumor stages. (c) Distribution of GSVA score of patients with or without lymph node metastasis.
(d) Distribution of GSVA score of patients with or without distant metastasis. (e) Kaplan–Meier curves for overall survival of GSVA score in
TCGA cohort.
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Figure 4: Pyroptosis risk model. (a) Distribution of genes in the pyroptosis riskmodel. (b)–(d) ROC analysis for the pyroptosis risk model in
the TCGA cohort and GSE29609 cohort. (c)–(e) Kaplan–Meier curves for overall survival of risk score in the TCGA cohort and GSE29609
cohort. ROC, receiver operating characteristic. (∗: P≤ 0.05; ∗∗: P≤ 0.01; ∗∗∗: P≤ 0.001; ∗∗∗∗: P≤ 0.0001).
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In addition, we ferreted out the dissimilar expression of
immunomodulators and immunosuppressive cytokines
between low- and high-risk score groups. /e expression of
ICOS, KLRC1, PDCD1, TIGIT, ICAM1, IFNB1, CTLA4,

and LAG3 were all significantly upregulated in the high-risk
score group (Figure 6(c)) (P< 0.05). We discovered that
several immunomodulators (e.g. TGFβ1, IL10) were upre-
gulated in the high-risk score group, while NOS2 and NOS3
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Figure 5: Analyses of DEGs. (a) Cases were divided into high-and low-risk score groups based on the median value. Heatmap of DEGs
between high- and low-risk score groups. (b) Go enrichment analysis of DEGs. (c) KEGG pathway enrichment analysis of DEGs. DEGs,
differentially expressed genes; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.

Table 2: /e univariate analysis and multivariate analysis of the risk score model.

Parameter
Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age 1.789 (1.316, 2.432) < 0.001 1.835 (1.341, 2.510) < 0.001
Gender 0.933 (0.685, 1.272) 0.662 0.959 (0.697, 1.319) 0.797
T staging 3.091 (2.280, 4.189) < 0.001 1.868 (1.335, 2.615) < 0.001
N staging 0.918 (0.681, 1.237) 0.575 0.809 (0.597, 1.096) 0.172
M staging 3.926 (2.884, 5.343) < 0.001 2.565 (1.821, 3.613) < 0.001
Risk score 2.964 (2.271, 3.867) < 0.001 2.444 (1.863, 3.205) <0.001
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Figure 6: Continued.
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were reduced (Figure 6(d)) (P< 0.05). /usly, the cancer
cases with a higher pyroptosis risk score may exist in an
immunosuppressive microenvironment.

3.5. Single-Cell Transcriptomic Analysis of the Four Modeling
Genes. In order to delve into the extra interrelation among
the four modeling genes in ccRCC, single-cell tran-
scriptomic data were exploited for further analysis. We
identified 18 different cell clusters, including cancer cells,
renal tubule cells 1, renal tubule cells 2, renal tubule cells 3,
CD8+ T cells, CD4+ T cells, regulatory T cells (Treg cells),
natural killer cells (NK cells), macrophages/dendritic cells
(MACDC) 1, MACDC 2, B cells, neutrophils, fibroblasts
(FIB), endothelial cells (EC) 1, EC 2, EC 3, collecting duct
cells 1, and collecting duct cells 2 (Figure 7(a)). /e different
expression profiles of the four modeling genes in different
types of cells were scrutinized. FeaturePlot revealed that the
expression of the four modeling genes was higher in cancer
samples than that in adjacent non-neoplastic samples
(Figures 7(b)–7(e)).

4. Discussion

ccRCC is generally insensitive to radiotherapy and che-
motherapy, the response rate of which to the targeted drugs
and immunotherapy is lower, and at least partially resistant
to damage of cell death-related signaling pathways.
Pyroptosis was initially found in monocytes and macro-
phages and mediated primarily by the inflamma-
some–caspase-1 (CASP1) pathway [35]. Besides, caspase-3/
4/5/8/11 (CASP3/4/5/8/11) was also involved in the regu-
lation of pyroptosis [36–38]. /e gasdermin superfamily
protein is the main effector of pyroptosis. At present, the
gasdermin superfamily members including GSDMA,
GSDMB, GSMDC, GSDMD, and GSDME had been found

[7]. In addition, when caspase-3 (CASP3) and granzyme B
(GZMB) cleave gasdermin E (GSDME), granzyme A
(GZMA) cleaves gasdermin B (GSDMB), cell apoptosis
converts into pyroptosis pathway [30, 39, 40]. In the present
study, we selected 11 pyroptosis-related genes including
CASP1, CASP3, CASP4, CASP5, CASP8, GSDMB, GSDMC,
GSDMD, GSDME, GZMA, and GZMB for subsequent
analysis. Previous studies indicated that pyroptosis may be
intimately related to tumorigenesis and tumor progression
[35, 41]. It has been proved that the down-regulation of
GSDMD could promote cell cycle arrest and activate ERK/
STAT3/PI3K/AKT pathway in gastric cancer [42]. GSDMD
could activate the EGFR/Akt pathway and promote the
progression of the lung tumor [43]. In esophageal squamous
cancer, GSDME overexpression indicated a better prognosis
in patients [44]. In our study, the overexpression of 11
pyroptosis-related genes, individually, predicted poor
overall survival of ccRCC. Pyroptosis activity of cases with T
staging III/IV was higher than Tstaging I/II. Besides, ccRCC
with distant metastasis had higher pyroptosis activity. In
addition, higher pyroptosis activity means a poorer
prognosis.

Due to the important role of pyroptosis-related genes in
the occurrence, development, and prognosis of ccRCC, we
constructed a pyroptosis risk model by multivariate COX
regression analysis. /e pyroptosis risk model, containing 4
genes namely CASP3, CASP4, GSDMB, and GZM, had the
independent predictability of ccRCC prognosis in the TCGA
cohort as well as the dataset GSE29609. In the functional
enrichment analyses, the glycolysis signaling pathway was
exhibited. It had been reported that glycolysis could play a
key role in the process of proinflammatory activation during
cell pyroptosis, in which interleukin (IL)-1β and IL-18 are
released from plasma membranes. /e metabolism of
macrophages could switch from oxidative phosphorylation
to glycolysis following proinflammatory activation [45].

group

high risk

low risk

************

−5

0

5

10

ID
O

1

IL
10

TG
FB

1

A
RG

1

N
O

S3

N
O

S2

ex
pr

es
sio

n

(d)

Figure 6: Immune landscapes between high-and low-risk score patients. (a) /e abundance of immune infiltration in high-and low-risk
score patients from TCGA cohort. (b) /e proportions of different immune cells between high-and low-risk score groups in the TCGA
cohort. (c)–(d) /e proportions of immunomodulators and immunosuppressive cytokines between high-and low-risk score groups in the
TCGA cohort. (∗: P≤ 0.05; ∗∗: P≤ 0.01; ∗∗∗: P≤ 0.001; ∗∗∗∗: P≤ 0.0001).
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Besides, the insulin resistance pathway was enriched in our
study. Pyroptosis occurs not only in monocytes and den-
dritic cells but also in nonmacrophage cells [46–48]. It had
been reported that adipose tissue also experiences pyroptosis
[49, 50]. /e intracellular concentration of LPS-inducing
pyroptosis determined the adipocyte death size [51]. /e
adipocyte overexpansion induces a stress state, leading to
obese adipocyte pyroptosis, which in turn recruits macro-
phages into adipose tissue and induces inflammation and
insulin resistance in obese mice [50].

In addition, we explored the immunemicroenvironment
of low pyroptosis and high pyroptosis risk score groups. In
high pyroptosis risk score groups, the multiple effector
immune cells such as plasma cells and CD8+ T cells were
higher, possibly due to stimulation by inflammatory factors
released during pyroptosis. However, the

immunosuppressive cells such as regulatory Tcells were also
higher in the same groups, implying the immunosuppressive
microenvironment induced by pyroptosis. In addition, we
ferreted out the differentially expressed immune check-
points. /e expression of ICOS, KLRC1, PDCD1, TIGIT,
ICAM1, IFNB1, CTLA4, and LAG3 were all significantly
upregulated in the pyroptosis high-risk score group, indi-
cating that pyroptosis could stimulate the activation of
immune systems. In terms of immunomodulators, TGFβ1
and IL10 were upregulated, while NOS2 and NOS3 were
reduced in the pyroptosis high-risk score group. /e dis-
covered phenomenon of tumor immune microenvironment
characterized the multiple impacts of pyroptosis. /e
pyroptosis risk score model may be useful in immuno-
therapy response grading and classification./e ccRCC with
higher pyroptosis risk may benefit from the renovation of
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Figure 7: Pyroptosis-related genes observed at a single-cell level. (a) UMAP clustering of cells by differentially expressed markers.
(b)–(e) Feature plots of CASP3, CASP4, GSDMB, and GZMA. UMAP, uniform manifold approximation, and projection.
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the immunosuppressive condition of the tumor microen-
vironment. /ese may provide ideas for preventing drug
resistance and increasing the efficiency of immunotherapy.

However, there are still some defects in the study. We
cannot avoid the potential for selection bias, since we drew
the results based on the data downloaded from the TCGA
database and GEO database. We cannot obtain additional
detailed clinical information for further analysis. In this
study, we exploited single-cell transcriptomic data to
identify 18 different cell clusters, validating the extra in-
terrelation among the four modeling genes in ccRCC.
Further clinical trials and single-cell transcriptomic-based
analysis should be performed to validate the pyroptosis risk
model. Despite these defects listed above and the lack of
further validation, the presented findings still proved the
predicting ability of the pyroptosis risk model statistically
and its potential application.

5. Conclusion

/e study developed a pyroptosis-related risk model based
on 4 identified pyroptosis-related genes. /e conducted
pyroptosis model could predict the prognosis of ccRCC and
reflect the immune microenvironment, which may help in
prognostic biomarker discovery in ccRCC patients and
immune checkpoint inhibitor treatment in the future.
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