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Objectives. Te diagnosis of leukemia relies very much on the results of bone marrow examinations, which is never generally
performed in routine physical examination. In many rural areas even community hospitals and primary care clinics, the lack of
hematological specialist and facility does not allow a defnite diagnosis of leukemia. Tus, there will be a signifcant beneft if
machine learning (ML) models could help early predict leukemia using preliminary blood test data in a routine physical ex-
amination in community hospitals to save time before a defnite diagnosis. Methods. We collected the routine physical ex-
amination data of 1230 newly diagnosed leukemia patients and 1300 healthy people. We trained and tested 3 machine learning
(ML) models including linear support vector machine (LSVM), random forest (RF), and XGboost models. We not only examined
the accordance between model results and statistical analysis of the input data but also examined the consistency of model
accuracy scores and relative importance order of model factors with regard to diferent input data sets and diferent model
arguments to check the applicability of both the models and the input data. Results. Generally, the RF and XGboost models give
more identical, consistent, and robust relative importance order of factors that is also accordant with the statistical analysis, while
the LSVM gives much diferent and nonsense orders for diferent inputs. Results of the RF and XGboost models show that (1)
generally, themodels achieve accuracy scores above 0.9, indicating efective identifcation of leukemia, and (2) the top three factors
that contribute most to the identifcation of leukemia include red blood cell (RBC), hematocrit (HCT), and white blood cell
(WBC), while the other factors contribute relatively less. Conclusions. Tis study shows a feasible case example for early
identifcation of leukemia using routine physical examination data with the assistance of ML models, which can be conveniently,
cheaply, and widely applied in community hospitals or primary care clinics to save time before defnite diagnosis; however, more
studies are still needed to validate the applicability of more ML models to a larger variety of input data sets.

1. Introduction

Leukemias are a group of life-threatening malignant dis-
orders of the blood and bone marrow [1]. Usually, leukemia
could be either of the myeloid or lymphoid lineages and is
classifed as acute or chronic in nature. Chronic leukemias
(CL) tend to have more mature cells and are rare in pediatric
patients, and acute leukemias (AL), on the other hand, are
typically less mature and commonly occur in patients of all
ages and are potentially rapidly fatal if not readily treated [2].

Te prognosis of AL is poor, and the death rate of AL is
dramatically high. Its complications are usually life-threat-
ening, and its treatment is generally complex [3].

Furthermore, the conditions are rapidly fatal if not treated
although AL is usually initially highly responsive to che-
motherapy [4]. However, physician-related delays in the
diagnosis of leukemia have been shown to contribute to poor
outcomes and higher mortality associated with the disease in
low-income nations [5]. Tere is a high medical need to
improve the outcome of leukemia patients.

Clinical diagnosis of leukemia is generally according to
the cytomorphology, immunophenotyping, cytogenetics,
and molecular genetics of the bone marrow and blood
samples [6], which have specifc requirements on corre-
sponding test equipment and experienced experts. However,
in many rural areas, community hospitals, or primary care
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clinics, qualifed specialists, and test facilities are usually
unavailable, and even in qualifed hospitals, such tests are
usually more expensive and more specifc for suspected
patients already showing symptoms. Tus, leukemia is often
undiagnosed or delayed diagnosed, which consequently
delays the treatment and worsens the outcome of patients.

In this case, early screening and treatment of leukemia
patients in time can be very important. Certainly, a good
solution for this task is to evaluate the health condition of
individuals according to their regular physical examination
data, which is complicated and difcult because it requires
the experiences of physicians and careful subjective judge-
ment of the complex relationships among various test pa-
rameters. In contrast, machine learning (ML) models are
right designed to be expert at this task of determining
complex relationships. Tey can handle even thousands of
parameters, and they are able to detect and utilize their
interactions [7–11], which is highly attractive to clinicians
for disease diagnosis [12].

ML model is a practical and versatile choice for the early
screening of diseases. It has achieved signifcant develop-
ment and is successfully applied to a wide range of data-
related problems [7]. For example, in some studies, an
unsupervised was used to predict the defuorination of per-
and polyfuoroalkyl substances [13], a variety of ML models
were used to make predictions, extract feature importance,
detect anomalies, and discover new materials or chemicals
[14], and also in medicine, ML models are used to help
understanding and overcoming of diseases [8–11]. Tradi-
tionally, diagnostic test data of patients are artifcially
interpreted by experienced clinicians according to their
expertise, whereas ML models try to automatically learn the
expertise of these experiences, for the initial diagnosis [15],
prognosis estimation of treatment complications [16], and
even for the relapse monitoring [17]. ML models have been
shown on par with experts in a variety of tasks in hema-
tologic malignancies [10], including the diagnostic and
therapeutic evaluation of leukemia [18, 19], such as the
image recognition of blood smears for diagnosis and clas-
sifcation of leukemia [20, 21], or the automatic detection of
acute leukemia using blood images [22]. Currently, more
ML applications for the diagnosis of leukemia are using
images of bone marrow or peripheral blood cells [20–27].
Te practical attempts on its application of early screening of
leukemia using preliminary health records, like routine
laboratory blood test results, are much fewer [18]. Leukemia
screening using primary routine physical examination is of
signifcant beneft because no other data are required than
those acquired in a regular physical examination, so large-
scale general screening of leukemia in people is thus possible.

In this study, we aimed to try utilizingMLmodels for the
early diagnosis of leukemia using only the individual routine
medical examination results. Te advantage of doing this is
thus ML models can be conveniently, cheaply, and widely
applied in community hospitals or primary care clinics and
can save time as much as possible before disease progression.
We hope this work could provide a feasible case example of
using ML models to early screen leukemia patients.

2. Materials and Methods

2.1. Data Collection. Te ML models require both training
and test data. In this study, we employed the routine lab-
oratory test results of blood samples of both leukemia pa-
tients and healthy people to train and test the ML models.
Te routine laboratory records of blood samples were col-
lected from the database of the frst afliated hospital of
Chongqing Medical University, including those of the
leukemia patients from the department of hematology ad-
mitted during 2014.4∼2020.6 and those of healthy people
from the physical examination center during 2020.1∼2020.6.
Te data collection was performed under the approval of
their Medical Ethics Committee (Number: 2021-152),
according to the principles of the Declaration of Helsinki.
Besides the blood test records of the leukemia patients, we
collected their personal information and medical histories as
well. As it is very common for leukemia patients to receive
treatment repeatedly, we kept only the blood records at their
frst admission to our hospital but waived those afterwards.
Moreover, we double-checked their medical histories to
exclude those patients who were already diagnosed and
treated before in other hospitals.

After those eforts, we screened out totally 1230 iden-
tifed leukemia patients, and accordingly 1230 blood records,
with totally 284 parameters tested at least once. Te largest
number of tested parameters appearing in a single record is
134, while most records contain around 50 tested param-
eters. Tese blood test records of leukemia patients were
scheduled to be the target group in the ML models.

For the control group of ML models, we randomly se-
lected 1300 blood records of healthy people from the
physical examination center of our hospital. Teir medical
histories were also checked to ensure they were not leukemia
patients, but even so, strictly speaking, we did not exclude
those who had been with leukemia but were not diagnosed
yet. Hopefully, such probability is very limited. Te blood
test records of healthy people contain fewer tested param-
eters than those of the leukemia patients. Terefore, we had
to keep only the intersection of their tested parameters (30
parameters in common) into the following steps (column 2
of Table 1).

2.2. Handling the Missing Values. In the healthy group, all
records contain all the 30 tested parameters, but this is not
true in the patient group, where about 2/3 of the patients’
records are incomplete (Figure 1).

As some ML models can only handle data in form of the
complete matrix, thus for dealing with those blanks in the
record-parameter matrix, we could either fll blanks with
estimations or directly drop those incomplete records. In
order to evaluate the practicability of ML models, we
designed 5 scenarios A–E according to the amount of rec-
ords we kept in modeling (Figure 1). Scenario E keeping the
most records also contains the most uncertainties, while
scenario A with the fewest records is, however, the most
accurate. Te blanks in complete records were estimated as
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the mean of values in all other records containing the
corresponding parameter.

During modeling, the total input data set of each
scenario would contain the data of the leukemia patients of
that scenario, and also, the data of the same number of
healthy people randomly selected from the total 1300
healthy people.

2.3. Statistical Analysis. According to the 1230 records of
patients and 1300 records of healthy people, means and
standard variations (SD) of the 30 tested parameters were
calculated (Table 1), usingmean(), sd(), and t.test() functions
in R language version 4.0.3 for Mac. Parameters were
compared, and the p values show their diferent signifcance.

2.4. Machine Learning Model Selection and Construction.
ML models have signifcant benefts for the preliminary
screening of diseases. However, generally, it is hard to say
which model is absolutely the best, because model appli-
cability depends on specifc data set. Usually, in practice,
various models will be tested, and their results will be ex-
amined to determine which model performs the best.

In this study, we chose 3ML models to be tested and
examined: linear support vector machine (LSVM), random
forest (RF), and XGboost models. Te main reason for
choosing them is because they are relatively much more
popular and have shown good performance in various ap-
plications, and also because they are able to give relative
importance to model input factors as well.

We utilized the very popular scikit-learn (sklearn)
package (version 0.24.2 in Python 3.9 for Mac) [28] for
LSVM and RF models and referred to the ofcial XGboost
code (version 1.5 for Mac in Python) for the XGboost model

Table 1: Statistical analysis of tested parameters in patients and healthy people.

Parameter Mean± SD in healthy people Mean± SD in patients P of t-test Unit Reference value
1 WBC 6.36± 1.64 64.43± 104.56 1.75e− 65 109/L 3.5∼9.5
2 RBC 4.85± 0.51 2.83± 1.03 ∼0 1012/L 4.3∼5.8
3 HGB 148.40± 16.01 87.51± 29.43 ∼0 g/L 130.0∼175.0
4 HCT 44.19± 4.18 26.70± 8.86 ∼0 % 40.0∼50.0
5 MCV 91.34± 5.73 95.66± 9.22 2.98e− 43 f 82.0∼100.0
6 MCH 30.66± 2.31 31.33± 3.31 2.59e− 9 pg 27.0∼34.0
7 MCHC 335.50± 10.80 327.56± 16.83 1.51e− 43 g/L 316.0∼354.0
8 PLT 215.94± 57.70 151.95± 299.73 4.98e− 12 109/L 85.0∼303.0
9 PDW 14.80± 3.03 13.56± 3.47 1.09e− 19 f 10.0∼18.0
10 MPV 11.50± 1.20 10.88± 1.31 3.40e− 31 f 7.6∼13.2
11 PCT 0.25± 0.05 0.20± 0.36 8.64e− 4 % 0.1∼0.5
12 NEUT% 57.10± 8.21 30.65± 25.04 5.09e− 157 % 40.0∼75.0
13 LYM% 33.24± 7.59 23.24± 23.90 1.42e− 34 % 20.0∼50.0
14 MONO% 6.61± 1.74 5.85± 9.92 1.98e− 2 % 3.0∼10.0
15 EO% 2.52± 2.15 1.02± 2.31 7.65e− 61 % 0.4∼8.0
16 BASO% 0.53± 0.30 1.10± 2.81 8.36e− 10 % 0∼1.0
17 NEUT# 3.67± 1.28 20.61± 43.18 2.12e− 30 109/L 1.8∼6.3
18 LYM# 2.07± 0.59 7.48± 25.86 3.78e− 10 109/L 1.1∼3.2
19 MONO# 0.42± 0.15 1.71± 4.42 1.06e− 17 109/L 0.1∼0.6
20 EO# 0.16± 0.15 0.84± 3.09 4.74e− 11 109/L 0.02∼0.52
21 BASO# 0.03± 0.02 1.25± 4.10 1.60e− 18 109/L 0∼0.06
22 RDW-CV 12.90± 1.02 16.53± 2.89 4.41e− 224 % 12.0∼16.0
23 P-LCR 37.00± 9.47 31.14± 10.37 1.40e− 44 % 10.0∼60.0
24 TP 75.47± 4.03 68.62± 8.77 4.75e− 105 g/L 63∼82
25 ALB 48.39± 2.95 38.97± 6.11 2.80e− 279 g/L 35.0∼50.0
26 TBIL 13.44± 5.19 12.96± 10.03 1.44e− 01 μmol/L 3.0∼22.0
27 ALT 24.55± 17.42 40.20± 64.34 3.14e− 14 U/L 21.0∼72.0
28 AST 23.35± 9.45 40.53± 63.63 2.11e− 17 U/L 17.0∼59.0
29 UA 340.79± 88.96 367.93± 162.09 1.87e− 7 μmol/L 208.0∼506.0
30 Cre 67.10± 15.83 77.96± 54.91 9.33e− 9 μmol/L 58.0∼110.0
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Figure 1: Distribution of the number of tested parameters in the
records of patients. Five scenarios were designed containing dif-
ferent amount of records according to the amount of missing
values.
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[29], which was called in sklearn via an API function
XGBClassifer() of package xgboost in Python.

2.5. Model Results Examination. As the applicability of each
ML model depends on specifc data set, their model results
have to be examined to check their applicability. Practically,
frstly, a reliable model should show consistency and ro-
bustness with regard to its input data, and secondly, its result
should be accordant with the results of other analysis
method like statistical analysis as well.

Since the model input data of this study mainly depend
on the scenario selection (see Section 2.2) and the split ratio
which splits the total data into train and test subsets inside
ML models, we prepared various input data sets with regard
to diferent scenarios and diferent split ratios (Rtrain/total-
� 0.25,0.5,0.75), and accordingly, their results, including the
scores of score() function of sklearn which returns the ac-
curacy of the model on input data [28], the area under the
curve score (S

auc
), as well as the relative importance order of

model factors (order of contribution weight of specifc factor
to the model), would all be examined to check their con-
sistency with regard to various input data sets.

3. Results

3.1. StatisticResults. As shown in Table 1, target records have
signifcantly lower mean hematocrit (HCT), hemoglobin
(HGB), red blood cell (RBC), etc., but signifcantly higher
mean white blood cell (WBC), the percentage of neutrophils
(NEUT%), etc., (p< 0.001 for all unadjusted comparisons).
According to the p values, most of the parameters show a
signifcant diference between the two groups, and generally,
the HCT, HGB, and RBC show the most signifcant dif-
ferences among those parameters.

Although the p values of many parameters show sig-
nifcant statistical diferences between patients and healthy
people, for a certain individual, it is hard to diagnose a
person with leukemia or not only according to a single or
even two parameters, because many values of the parameters
of the patients still lie in its reference range. Tus, for di-
agnosis, more parameters need to be taken into consider-
ation, which requires the determination of more
complicated interrelationships behind. Tat’s exactly what
ML models are adept in.

3.2. Model Consistency Examination. During modeling, the
argument lambda of the XGboost model and the argumentC
of the LSVM model were adjusted to suppress overftting,
and the model performance indicators including the accu-
racy scores on both train and test subsets (Strain, Stest) and the
Sauc were collected in Tables 2–4. Te accuracy scores and
Sauc suggest all models have achieved good results because
generally, the accuracy scores are mostly above 0.9 even
when the Rtrain/total is 0.25. Among scenarios, the accuracy
scores are higher under scenario A, indicating the flling of
missing values induces more uncertainties than discarding
incomplete records.

For checking model result consistency, although the
accuracy scores in Tables 2–4 look very consistent, we still
need to look into the relative importance order of model
factors of the models, a typical result of which was shown in
Figure 2. Results show that the importance order of the RF
and XGboost models is generally accordant and insensitive
to the input data and the overftting suppression factor
lambda. However, the importance order of the LSVMmodel
is much diferent and is much more sensitive to the input
data and the overftting suppression factor C.

Moreover, the top 3 important model factors of the RF
and XGboost models are the count of RBC, HCT, WBC,
while the top 3 of the LSVMmodel are absolute lymphocyte
count (LYM#), percentage of monocytes (MONO%), and
NEUT% (Figure 2). Obviously, the results of RF and
XGboost models are more accordant with that of the sta-
tistical analysis (see Section 3.1).

3.3. Top Model Factors Contributing to the Classifcation of
Leukemia. By accepting the results of RF and XGboost
models, the top 3 model factors that contribute most to the
identifcation of leukemia patients are found to be the count
of RBC, HCT, and WBC. Te other factors contribute rel-
atively less to the models.

4. Discussions

Te clinical diagnosis of leukemia is primarily based on
laboratory blood and bone marrow tests, but even the most
skilled hematologist may overlook patterns, deviations, and
relations between the increasing numbers of blood and bone
marrow parameters that modern laboratories measure. In
contrast, ML algorithms can easily handle hundreds of at-
tributes (parameters), and they are capable of detecting and
utilizing the interactions among these numerous attributes,
which makes this feld of medicine particularly interesting
for ML applications [12].

Nowadays, ML has already been proven to be a versatile,
precise, and robust tool in the diagnostic evaluation of
leukemia [18]. Rehman et al. [30] proposed a robust

Table 2: Accuracy scores of model performances on diferent
scenarios, train-set/test-set ratios, and regularizations. (Strain and
Stest are accuracy scores of models on train data subset and test data
subset respectively according to the score() function of sklearn; Sauc
is the area under the curve score of model according to the
roc_auc_score() function of sklearn; Rtrain/total is the ratio of train
data to the total data) for random forest model.

Rtrain/total Scenario A B C D E

0.75
Strain 1 1 1 1 1
Stest 0.9951 0.9878 0.987 0.9834 0.9844
Sauc 0.9855 0.9747 0.9779 0.9797 0.9808

0.5
Strain 1 1 1 1 1
Stest 0.9949 0.9871 0.9855 0.9816 0.9855
Sauc 0.9859 0.9744 0.9745 0.9767 0.9808

0.25
Strain 1 1 1 1 1
Stest 0.9956 0.9851 0.9899 0.9869 0.9822
Sauc 0.9886 0.9692 0.9836 0.9803 0.9755
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segmentation and deep learning techniques with the con-
volutional neural network to train the model on the bone
marrow images to diagnose acute lymphoblastic leukemia
with 97.98% accuracy. Kumar et al. [31, 32] presented an
automated detection system for the diagnosis of acute
leukemia. Te method implemented uses basic enhance-
ment, morphology, fltering, and segmenting techniques to
extract the region of interest using a k-means clustering
algorithm. Te proposed algorithm achieved an accuracy of
92.8% and is tested with the nearest neighbor and Näıve
Bayes classifer on the dataset of 60 samples. Dese et al. [20]
used 250 clinical images of blood smears acquired from
JimmaUniversity Specialized Hospital and a standard online
database to develop an image query system for diagnosing
leukemia, and its type with the accuracy is 97.69%. Loey et al.
[32, 33] proposed an AML classifcation system that en-
hanced image contrast and extracted fve features. An SVM

classifer performed the classifcation. Experiments on a data
set of 50 images produced 93.5% classifcation accuracy.

As most of the ML application on leukemia diagnosis
was dealing with the microscopic images and fow cytometry
of bone marrow or peripheral blood cell, there is a lack of
early prediction ML model for leukemia based on routine
laboratory results. In this study, the required data for the ML
models we used are able to be commonly acquired from the
very primary routine physical examination in the rural area,
community hospitals, or primary care clinics, which could
help the early recognition of leukemia.

As the applicability of a certain ML model depends upon
specifc input data set, in this study, three models including
the LSVM, RF, and XGboost models were selected, and their
results were examined to check their applicability. Te
reason for choosing them is because they are relatively more
popular, and more importantly, the sklearn toolkit we
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Figure 2: Model factor importances of the XGboost and random forest models (a) and linear SVMmodel (b) when Rtrain/test � 0.75/0.25 on
scenario A.
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employed could look into the relative importance (or say
contribution weight) of each model factor to the model,
from which we could both examine the most model details
and fnd the top factors that play key roles in the recognition
of leukemia. Another consideration is that these three
models require relatively much less input argument during
the model construction because more arguments usually
lead to higher model sensitivity to these input arguments.
Specifcally, for the LSVM model, only the overftting
suppression factor C (adjusted during modeling) is specifed,
and for the RF model, only the number of trees (we set
n_estimators� 200) is set, and for the XGboost model, only
the learning rate (we set learning_rate� 0.05) and the
overftting suppression factor lambda (adjusted during
modeling) are required. Results show that the RF and
XGboost model achieved very good consistency and ro-
bustness because their results turned out consistent and are
accordant with the statistical analysis. As for the bad result of
the LSVMmodel, we would like to regard the reason relevant
to the limitation of its linear kernel to its applicability in this
case of our study, but we did not check further into it.

In order to deal with themissing values of the incomplete
records, we checked the diference between rather discarding
the incomplete records and flling the missing values with an
estimated average of existing values. Results show that the
flling of missing values using estimations tends to introduce
more uncertainties than directly discarding these incomplete
values. Tis is interesting because, in other literature, many
authors follow the flling method without any discussion or
examination. We believe that the diference between flling
and discarding should be case-dependent, and we should
pay more attention to dealing with missing values.

Te results of the RF and XGboost models also show that
in this study, the accuracy scores are generally at least above
0.9 on both the train and test subsets even when the train
data are a quarter of the total input. Tis might be partly
relevant to the capability of the RF and XGboost models and
partly be relevant to the accuracy and specifcity of the input
data as well, because the data we collected are from either
very healthy people or from relatively severe patients.
Terefore, about the methodology of this study, more fur-
ther work is actually still needed to check the applicability of
more ML models including SVM and other ML models to a
larger variety of data sets.

Te top 3 model factors that contribute most to the
recognition of leukemia are the count of RBC, HCT, and
WBC. Te other factors contribute relatively less to the
models.

Te result about the WBC’s count sounds reasonable
that, as leukemia is a blood cancer that usually begins in the
bone marrow and leads to the overproduction of abnormal
WBC [34], the inspection of blood cells under a microscope
allows for the evaluation and diagnosis of diseases like
leukemia [35]. WBC, as one of the main cell types in pe-
ripheral blood, plays important role in the immune system
and is a main defense of the body against infections and
diseases [27]. Normally, WBC grows in accordance with the
body’s need, but in the case of leukemia, they have generated
abnormally and inefciently [27]. As early as the early 1800s,

the excess WBC count had been observed with the presence
of leukemia [36]. However, leukocytosis is neither sufcient
nor necessary for the diagnosis of leukemia, because on the
one hand, leukocytosis is very common in infections, and on
the other hand, leukemia patients sometimes have normal or
even lower total WBC counts [3]; thus, leukemia cannot be
judged only by the counts of WBC.

It also makes sense about the count of RBC and HCT.
Te RBC, transporting oxygen and carbon dioxide [27, 37],
may probably modulate the activity of immune cells within
their microenvironment as well [38, 39] and is known highly
correlated to the HCT [40]. Because leukemia is the over-
excessive proliferation of abnormal cells in the bone marrow
and then inhibits the normal hematopoietic cells, it can be
inferred the RBC and HCT might be normal in the early
stage of leukemia and then decrease with the progression of
RBC breakdown. Terefore, the count of WBC, RBC, and
HCTmight be potential indication markers associated with
the development of leukemia and is probably also associated
with other parameters like thrombocytocrit (PCT). But it
does not mean only these three factors indicate leukemia,
and the other factors are negligible, and actually, the other
factors also contribute and should be taken into consider-
ation as well in the ML modeling.

Good results have theMLmodels get. Although it should
also be emphasized that the results of MLmodels can only be
an auxiliary reference but have no opportunities to replace
the defnite diagnosis by physicians, the real advantage of
ML models is that the ML models can be conveniently and
widely applied in the routine physical examination in
community hospitals or primary care clinics without much
extra expense and can save much of the time before disease
progression, because if the routine physical examination
result of somebody was classifed by ML models as potential
leukemia in time, he would be suggested to visit specialized
hematology physicians as soon as possible for a specialized
examination.

5. Conclusions and Limitations

In this study, we conducted a retrospective case study of
utilizing the ML models to help early diagnosis of leukemia
using only preliminary blood test data from the routine
physical examination at community hospitals or primary
care clinics. We collected data of preliminary blood test of
both newly diagnosed leukemia patients and healthy people
to construct the train and test data sets for ML models. We
selected three models including LSVM, RF, and XGboost
models according to their popularity, application conve-
nience, and their ability to tell the relative importance or
contribution weight of each factor to the model. We ex-
amined the sensitivity of model results, including the ac-
curacy score, the area under the curve score, and the
importance order, to the model input data and model ar-
gument including the scenario selection, split ratio, and the
overftting suppression coefcient.

Results show that although the LSVM expressed very bad
applicability to the input data of this study, the RF and
XGboost turned out of good consistency and robustness
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with regard to the input data and model argument, and their
results are also accordant to the result of statistical analysis of
the collected data. Generally, the RF and XGboost models
could achieve an overall accuracy score above 0.9 for all the
input data we used in this study. Te top three model factors
that contribute most to the recognition of leukemia are the
count of WBC, HCT, and RBC, and the other factors
contribute relatively less.

Tis study is a feasible case example to show that leu-
kemia can be early predicted using preliminary blood test
data from routine physical examination with the assistance
of ML models. Te advantage of doing this is thus ML
models can be conveniently, cheaply, and widely applied in
community hospitals or primary care clinics and can save
time as much as possible before disease progression. Nev-
ertheless, the results of ML models cannot replace but still
require the defnite diagnosis of hematology physicians.

Technically, there are still a few limitations of this study
that afect the confdence of our models: (1) the details about
the applicability of ML models to our input data set are still
not fully understood; (2) all records were retrospectively
collected from the First Afliated Hospital of Chongqing
Medical University, whichmay cause selection bias; (3) there
are potential uncertainties, including uncertainties of lab-
oratory measurements or the possibility of undetected
leukemia patient in the healthy group; (4) only 30 param-
eters are kept in the modeling procedure, while some other
parameters dropped might also be a potential indicator of
leukemia. Terefore, the result of this study shows a good
case for early predicting leukemia using preliminary blood
test data from routine physical examination with the as-
sistance of ML models; however, further investigation and
prospective studies are still needed in the future to validate
the applicability of more ML models to a larger variety of
input data sets.
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[12] G. Gunčar, M. Kukar, M. Notar et al., “An application of
machine learning to haematological diagnosis,” Scientifc
Reports, vol. 8, no. 1, p. 411, 2018.

[13] A. Raza, S. Bardhan, L. Xu et al., “A machine learning ap-
proach for predicting defuorination of per- and poly-
fuoroalkyl substances (PFAS) for their efcient treatment and
removal,” Environmental Science and Technology Letters,
vol. 6, no. 10, pp. 624–629, 2019.

[14] S. Zhong, K. Zhang, M. Bagheri et al., “Machine learning: new
ideas and tools in environmental science and engineering,”
Environmental Science & Technology, vol. 55, no. 19, Article
ID 12741, 2021.

[15] R. Chandradevan, A. A. Aljudi, B. R. Drumheller et al.,
“Machine-based detection and classifcation for bone marrow
aspirate diferential counts: initial development focusing on
nonneoplastic cells,” Laboratory Investigation, vol. 100, no. 1,
pp. 98–109, 2020.

[16] S. Tang, G. T. Chappell, A. Mazzoli, M. Tewari, S. W. Choi,
and J. Wiens, “Predicting acute graft-versus-host disease
using machine learning and longitudinal vital sign data from
electronic health records,” JCO Clinical Cancer Informatics,
vol. 4, pp. 128–135, 2020.

[17] L. Pan, G. Liu, F. Lin et al., “Machine learning applications for
prediction of relapse in childhood acute lymphoblastic leu-
kemia,” Scientifc Reports, vol. 7, no. 1, p. 7402, 2017.
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