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Horner syndrome is a clinical constellation that presents withmiosis, ptosis, and facial anhidrosis. It is important as a warning sign
of the damaged oculosympathetic chain, potentially with serious causes. However, the diagnosis of Horner syndrome is operator
dependent and subjective. Tis study aims to present an objective method that can recognize Horner sign from facial photos and
verify its accuracy. A total of 173 images were collected, annotated, and divided into training and testing groups. Two types of
classifers were trained (two-stage classifer and one-stage classifer). Te two-stage method utilized the MediaPipe face mesh to
estimate the coordinates of landmarks and generate facial geometric features accordingly. Ten, ten machine learning classifers
were trained based on this. Te one-stage classifer was trained based on one of the latest algorithms, YOLO v5. Te performance
of the classifer was evaluated by the diagnosis accuracy, sensitivity, and specifcity. For the two-stage model, the MediaPipe
successfully detected 92.2% of images in the testing group, and the Decision Tree Classifer presented the highest accuracy (0.790).
Te sensitivity and specifcity of this classifer were 0.432 and 0.970, respectively. As for the one-stage classifer, the accuracy,
sensitivity, and specifcity were 0.65, 0.51, and 0.84, respectively. Te results of this study proved the possibility of automatic
detection of Horner syndrome from images.Tis tool could work as a second advisor for neurologists by reducing subjectivity and
increasing accuracy in diagnosing Horner syndrome.

1. Introduction

Horner syndrome is a clinical constellation of signs and
symptoms, typically consisting of the triad of miosis, ptosis,
and facial anhidrosis. Tis syndrome was frst compre-
hensively described by a Swiss ophthalmologist named
Johann Friedrich Horner in 1869 [1]. Horner syndrome
occurs when the sympathetic innervation of the eye is
interrupted. Because of the long, circuitous anatomical
pathway of the oculosympathetic eferent chain, the cause of
Horner syndrome could be various. As the literature re-
ported, Horner syndrome often does not have an identifable
cause, but 35%–60% cases of Horner syndrome were as-
sociated with neoplasms [2]. Considering the potentially
life-threatening event, researchers recommended taking this
syndrome as a “red fag” warning and deserving sufcient

attention from all clinicians [3]. However, the diagnosis of
Horner syndrome is often challenging due to the incon-
sistency of symptoms [3]. In addition, although the diag-
nosis could be improved by using clinical history, physical
examination, and pharmacologic testing, it is still operator-
dependent because of the subjectivity of pupillometry.
Terefore, an objective diagnostic tool might be benefcial to
clinicians.

Computer version methods have been widely applied to
process medical images for providing object predictions in
these years. Recent studies have achieved outstanding ac-
curacy in the classifcation of skin lesions from dermoscopic
images [4], malignancy detection on mammography [5], the
diagnosis of acute lymphoblastic leukemia [6], the detection
of retinopathy in retinal fundus photographs [7], as well as
the detection of COVID-19 from CT scans [8, 9] and X-ray
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images [10]. However, this technique is rarely used to detect
clinical signs, such as the Horner sign.

Tis study presents an objective method for detecting
Horner syndrome from face images. Here, we proposed two
methods for this task: the two-stage and the one-stage
methods. Te two-stage method contained two steps: the
frst step was landmark extraction by MediaPipe face mesh
[11], and the second step was the construction of conven-
tional machine learning classifers. Te one-stage method
transferred Horner syndrome recognition into an object
detection task that can directly recognize Horner syndrome
from facial photos. Here, we utilized one of the latest and
most powerful algorithms in this feld, YOLO v5 [12], which
can carry out regional proposal and classifcation simulta-
neously for this task. Our method may provide a possibility
for the detection of Horner syndrome.Tese classifers could
act as reliable assistants for neurologists in the near future.

2. Materials and Methods

2.1. Data Sources. Our dataset was acquired from the image
dataset of patients with brachial plexus injury in our de-
partment. Te acquisition was performed following relevant
regulations and proved by the ethics committee of our in-
stitution. Images that fulflled the following criteria were as
follows: (1) images containing both eyes and at least 2/3 face
of the subject; (2) images shot in sufcient light and had an
adequate resolution for pupil observation. Te exclusion
criteria were as follows: (1) the face in the image had ap-
parent tilt or rotation; (2) images contained more than one
person. Te whole process of this study is illustrated by a
fow chart (Figure 1).

2.2. Annotation Procedure. Image annotation greatly in-
fuences the quality of the dataset, which could impact the
accuracy of the fnal model. For that, we had two experts
with 14 and 26 years of experience, respectively, to label the
data together. Images and necessary information, including
case history and EMG and MRI scan results, were provided
to them to get a precise diagnosis. Te label was obtained on
the consensus of the two experts. In cases with confict, they
thoroughly re-evaluated and discussed to reach a fnal di-
agnosis. Te image would be excluded if the agreement
cannot be reached after reviewing all available information.

2.3. Dataset Splitting. Te images in the dataset were ran-
domly split into two parts: the training set and the testing set.
Te splitting scheme was 75/25. Te training set was used to
train and validate the model, while the testing set was used to
evaluate the model’s performance.

2.4. Data Augmentation. To overcome the issue of insuf-
cient training data and increase the robustness of the model,
we applied data augmentation by using the albumentations
library [13]. Images were expanded by ten times after adding
Gaussian and multiplicative noise, RGB shifting, contract/
brightness/scale changes, fipping, and cropping.

2.5. Model Construction

2.5.1. Two-Stage Detection Classifer. Te two-stage detec-
tion classifer contained two main steps. Te frst step was
extracting facial landmarks and the second was the con-
struction of machine learning classifers using the extracted
features. In this work, we used the facial landmark detector
from the MediaPipe library [11] to generate landmarks on
the face images. Tis model is able to output the 3D position
of 468 face landmarks from an image, containing infor-
mation on various facial areas such as the cheeks, forehead,
mouth, and eyes. Considering Horner signsmainly infuence
the appearance of the eyes and the periocular regions, we
selected 32 landmarks to generate geometric features for the
classifer. To represent the geometric features efciently, we
converted the coordinates of landmarks to distances be-
tween points and angles between edges. A total of 22 (11 for
each side) parameters were selected to characterize the
geometric features of the interest area (shown in Figure 2).
Each parameter was estimated in two manners (the
MediaPipe face mesh could estimate the coordinate of
landmarks in both 2-dimension and 3-dimension manners).
Ten, to eliminate individual diferences, we generated ratios
of these parameters between the left and right sides. All the
ratios were calculated by dividing the smaller value into the
larger value to prevent the efect caused by the side.

After data standardization, we performed feature decom-
position using principal component analysis (PCA). Ten, the
features were fed to classifers. In this work, logistic regression,
K-neighbors, decision tree, support vector machine (SVM),
Bernoulli näıve Bayes, Random Forest, GradinetBoosting,
AdaBoost, LightGBM, andXgBoostwere used for classifcation.
Te grid-search method [14] was used to identify the optimal
hyperparameters and structure of the classifer. In addition, the
fve-fold cross-validation was also employed to assess the
combination of hyperparameters to avoid overftting. In this
procedure, the training set was further split into fve subsets.
Four subsets were used to train the classifer, while the
remaining one was used to validate the accuracy. Te optimal
confgurations in this stage were applied in the testing set.

2.5.2. One-Stage Detection Classifer. YOLO (you only look
once) family is one of the most powerful and fastest deep
learning object detection algorithms. Unlike the other object
detection techniques that sendmultiple patches to the classifer,
the YOLOs send the whole image to a single convolutional
neural network (CNN).Tis CNNpredicted the bounding box,
as well as the class possibilities at the same time. It was frst
presented by Redmon et al. in 2016 [15]. In this study, we
utilized the latest version, YOLO v5 [12], to detect Horner
syndrome. Te region of interest (ROI) was the portion of the
image containing the eyes and periocular areas. Since the data
were insufcient in this work, we chose to freeze the convo-
lution layers and retrain the fully connected layer rather than
start from scratch.Te pretraining weights (yolov5s) were used
as the initial weights. Te YOLO classifer was trained through
2000 epochs, with a batch size of 32, a learning rate of 0.01, a
weight decay of 0.005, and a momentum of 0.937.
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Figure 1: Te process of model construction and evaluation.
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2.6.Model Evaluation. Te performance of the classifer was
evaluated by assessing the diagnosis accuracy, sensitivity,
and specifcity. Te receiver operating characteristic (ROC)
curve was used to illustrate the capacity of two-stage clas-
sifers. Te precision-recall curve with mean average pre-
cision at IoU (Intersection-Over-Union)� 0.5 (mAP@0.5)
was used to show the performance of the one-stage classifer.
In addition, confusion matrices were employed to present
whether the predictions of classifers were discordant with
the gold standard.

2.7. Statistical Analysis. Experiments were performed on
three Intel(R) Xeon(R) CPUs with 8GB RAM and a NVI-
DIA RTX 3090GPU with 24GB RAM. Python 3.7 was used
as the development environment. OpenCV was used for
image preprocessing, and albumentations was used for data
augmentation. Te MediaPipe library was used for facial
landmarks extraction. Scikit-learn was used for constructing
the machine learning classifers and compute the evaluation
metrics. NumPy, Pandas, OS, and Matplotlib were also used
in this procedure.

3. Results

3.1. Clinical Characteristics. In total, 173 images of patients
were collected in our dataset. Sixty-nine images of patients
were diagnosed with Horner (+), while the remaining ones
were Horner (−). Te included images were split into
training and testing sets, then the data augmentation was
performed. Te training and testing sets had 1350 (510
positives and 840 negatives) and 380 (140 positives and 240
negatives) images, respectively. Te resolution of included
images ranged from 455∗ 837 to 2848∗ 4288.

3.2. Descriptive Statistics of Extracted Features. With a
minimum detection confdence of 0.7, the MediaPipe face
mesh failed to detect human faces in 40 and 27 images in the

training and testing sets. Terefore, only 1310 images
(478 positives and 832 negatives) were entered into
feature extraction, and 353 images (118 positives and
235 negatives) were used for model evaluation. Te
detection rate was 97.03% and 92.9%, respectively. Ten,
the ratios of selected geometric features were calculated
(shown in Figure 2). Te distribution of data in training
and testing sets is summarized in Table 1. Principal
component analysis identifed 11 components that
explained 98.22 percent of the variance between the
positive and negative cases (Figure 3(a)). Te compo-
sition of each principal component is presented in
Figure 3(b). Te optimal hyperparameters of each
classifer were identifed by the grid-search method and
shown in Table 2.

All the features were presented as ratio, and the gen-
eration process is shown in the methods’ part. sd: standard
deviation.

3.3. Model Performance

3.3.1. Two-Stage Classifer. Te performances of the ma-
chine learning classifers are sorted from high to low
according to the prediction accuracy (shown in Table 3).Te
decision tree classifer held the highest accuracy (0.790),
followed by KNN, XgBoost, gradient boost classifer, logistic
regression, support vector classifer, LGBM, random forest
classifer, AdaBoost classifer, and Bernoulli NB. Te sen-
sitivity, specifcity, positive predictive value, and negative
predictive value are also presented in Table 3. Confusion
matrices in Figure 3(c) present the number of true positive,
false positive, true negative, and false negative. In addition,
the visual comparison between the classifer was also gen-
erated by using the receiver operating characteristic curve
(Figure 3(d)). Te gradient boost classifer produced the
highest AUC (0.830), while the decision tree classifer
produced the lowest (0.628).

α angle_1
β angle_2
γ angle_3
δ angle_4

a dis_1
b dis_2
c dis_3
d dis_4
e dis_5
f dis_6
g dis_7

Figure 2: Examples of the facial landmarks generated by MediaPipe and the parameters used to characterize the face.

4 Journal of Healthcare Engineering



3.3.2. One-Stage Classifer. Te performance of the one-
stage classifer was summarized in Figure 4(a), which shows
the change of accuracy and losses during the training
process. Te accuracy, sensitivity, and specifcity of the
classifer were 0.65, 0.51, and 0.84, respectively. Te classi-
fcation performance of this classifer was also presented by
the confusion matrix (Figure 4(b)) and the precision-recall
curve (Figure 4(c)). Te average precision of negative,
positive, and all classes were 0.702, 0.838, and 0.770,
respectively.

4. Discussion

Tis work presented two approaches for automatic Horner
syndrome detection from facial images. Te two-stage
method integrated an automatic face landmark generator
MediaPipe with machine learning classifers. Te one-stage
method utilized an object detection algorithm, YOLO v5.
Both methods achieved adequate accuracy in this task. To
the best of our knowledge, this is the frst study trying to
detect Horner syndrome automatically, and the results
proved that the computer output could act as a second
adviser for neurologists and contribute to doctors before
making the fnal decisions.

Horner syndrome arises from a lesion or a disruption
along the oculosympathetic eferent chain, which a variety of
etiologies can cause. Te typical triad of Horner syndrome is
ipsilateral ptosis, pupillary miosis, and facial anhidrosis [16].
However, all three symptoms are not consistently present
and are always subtle. According to a report of 318 patients,
less than 2% of patients presented with anhidrosis, and
ptosis was recorded in only 34% of patients [17]. Although
the occurrence rate of miosis was relatively high (91%) [17],

the observation of it is signifcantly impacted by light [18].
Usually, miosis is more apparent in the dark, and the so
called “dilation lag” is only apparent within the frst few
seconds [18, 19]. Te actual degree of miosis could also be
impacted by several factors including the resting size of
pupil, alertness of the patients, and sympathetic drive [18].
Terefore, the presence of Horner syndrome can easily be
overlooked in clinical practice. Although ptosis and miosis
of Horner syndrome are not likely to cause any functional
disturbance, the detection of Horner syndrome is still
critical, as its cause can be very threatening or sometimes
lethal. Previous studies have indicated that Horner syn-
drome should be considered a “red fag” warning, and thus,
the recognition and evaluation are important to all clinicians
[3].

Typically, the diagnosis of Horner syndrome was con-
frmed by several pharmacological agents such as cocaine,
apraclonidine, and hydroxyamphetamine. However, the use
of these agents has many drawbacks. First, some of the
agents are controlled drugs and rarely available. It is im-
practical to use them in general departments. Second, the
construction of pharmacological tests and the pupillometry
after drug use require the experience of the operator, and
therefore, it is hard to normalize and generalize. Tird, the
sensitivity of pharmacological tests needs further validation
because there are several reports of false negative cases
[20, 21]. In addition, the results of these tests could be
infuenced by the time from the onset of damage [22, 23], as
well as the use of other drugs [19]. Terefore, a diagnostic
tool other than drugs may beneft clinical practice.

In this study, we present a method to detect Horner
syndrome from digital images. Actually, the image is the
most commonly used method for the recording of Horner

Table 1: Summary of the dataset distribution.

Features (ratio)
Training set (x± sd) Testing set (x± sd)

Positive Negative Whole Positive Negative Whole
Distance_1 1.164± 0.137 1.081± 0.137 1.111± 0.103 1.169± 0.085 1.073± 0.060 1.105± 0.083
Distance_2 1.154± 0.129 1.078± 0.129 1.105± 0.098 1.165± 0.095 1.070± 0.053 1.102± 0.083
Distance_3 1.148± 0.124 1.077± 0.124 1.103± 0.096 1.160± 0.099 1.072± 0.050 1.102± 0.082
Distance_1_3d 1.159± 0.131 1.079± 0.131 1.108± 0.100 1.167± 0.084 1.071± 0.058 1.103± 0.081
Distance_2_3d 1.150± 0.124 1.076± 0.124 1.103± 0.095 1.164± 0.094 1.069± 0.052 1.101± 0.082
Distance_3_3d 1.144± 0.120 1.075± 0.120 1.100± 0.093 1.159± 0.097 1.070± 0.048 1.100± 0.080
Distance_4 1.112± 0.100 1.117± 0.100 1.115± 0.092 1.079± 0.051 1.065± 0.043 1.069± 0.046
Distance_5 1.079± 0.069 1.068± 0.069 1.072± 0.059 1.096± 0.073 1.062± 0.041 1.074± 0.057
Distance_6 1.112± 0.102 1.094± 0.102 1.100± 0.088 1.034± 0.024 1.032± 0.023 1.033± 0.023
Distance_7 1.046± 0.040 1.044± 0.040 1.045± 0.036 1.051± 0.039 1.041± 0.029 1.044± 0.033
Distance_4_3d 1.065± 0.049 1.072± 0.049 1.070± 0.050 1.128± 0.097 1.096± 0.068 1.107± 0.080
Distance_5_3d 1.068± 0.058 1.057± 0.058 1.061± 0.049 1.107± 0.081 1.075± 0.052 1.085± 0.064
Distance_6_3d 1.034± 0.026 1.033± 0.026 1.034± 0.025 1.153± 0.117 1.087± 0.062 1.109± 0.090
Distance_7_3d 1.045± 0.039 1.043± 0.039 1.044± 0.035 1.052± 0.040 1.042± 0.029 1.046± 0.033
Angle_1 1.109± 0.086 1.077± 0.086 1.089± 0.074 1.109± 0.104 1.063± 0.051 1.079± 0.076
Angle_2 1.130± 0.109 1.071± 0.109 1.092± 0.087 1.144± 0.110 1.078± 0.053 1.100± 0.083
Angle_3 1.142± 0.154 1.098± 0.154 1.114± 0.110 1.140± 0.075 1.063± 0.051 1.089± 0.071
Angle_4 1.138± 0.125 1.086± 0.125 1.105± 0.095 1.160± 0.099 1.066± 0.045 1.097± 0.082
Angle_1_3d 1.110± 0.091 1.083± 0.091 1.093± 0.077 1.100± 0.097 1.060± 0.046 1.073± 0.070
Angle_2_3d 1.131± 0.111 1.077± 0.111 1.096± 0.088 1.144± 0.101 1.075± 0.053 1.098± 0.079
Angle_3_3d 1.135± 0.110 1.068± 0.110 1.093± 0.086 1.159± 0.125 1.070± 0.049 1.100± 0.093
Angle_4_3d 1.131± 0.109 1.068± 0.109 1.091± 0.085 1.169± 0.138 1.069± 0.050 1.102± 0.101
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signs previously. Our method may provide a new way to
diagnose without additional burdens. Te two types of
classifers all showed adequate accuracy. For the two-stage
method, we usedMediaPipe for the face landmark extraction
and trained machine learning models according to the co-
ordinates of landmarks. Tis cooperation has been utilized
in several previous studies. Siam et al. [24] used facial
landmarks to generate geometrical features for human
emotion classifcation and demonstrated superior perfor-
mance. In the report of Gomez et al. [25], they analyzed the
evoked facial gestures in patients with ’Parkinson’s Disease
from the video of patients and indicated that the detection
rate signifcantly improved (from 75.00% to 88.46%) by
using the 17 facial features derived from the landmark
detection algorithm. In addition, similar attempts have also
been applied in the assessment of cerebral palsy [26], pose
evaluation in sports [27, 28], and human activity recognition
[29]. Te combination of pose estimation methods and
machine learning classifers presented superior perfor-
mances in these works. In our study, we utilized landmarks
around the eyes to generate parameters for this task because
Horner syndromemainly infuences the geometrical features
around the eyes. However, as mentioned above, ptosis is not
consistently present in Horner (+) patients [17], and it is
common to observe asymmetry in eyes among healthy in-
dividuals. Terefore, it is not hard to understand the rela-
tively high specifcity and low sensitivity of these models.

As for the one-stage classifer, the YOLO v5 is the latest
version of the most powerful and fastest object detection
algorithms. Te YOLO family has been utilized in many

medical tasks including the detection of lung nodules [30],
breast abnormalities [31], and lymphocytes [32] and
achieved high accuracy. However, in this paper, the pre-
dictive accuracy was slightly lower than the two-stage
classifers. We assumed that it was due to the insufcient
data volume, although we have used data augmentation and
transfer learning technology. At present, data defciency in
medical imaging is a common problem for all researchers.
Tis is extremely obvious in our task because the incidence
of Horner syndrome is not so high, and there was no existing
database of this syndrome. Future studies with more images
are needed to develop this model.

Te lack of powerful computers is an inevitable problem in
most clinical settings [33]. Terefore, for medical use, the
running speed of the model is just as important as its accuracy.
In this study, both deep learning models are characterized by
fast running speed and well performance [11, 34]. Te
MediaPipe face mesh (BlazeFace) [11] showed super-real-time
performance (200–1000+ frames per second) on mobile de-
vices and achieved an average precision (AP) of 98.61% in the
testing dataset. Similarly, YOLO v5 was presented as an ef-
cient and powerful object detection model [34] and achieved
state-of-the-art performance with a speed of 140 frames per
second on Tesla P100, which performs twice faster as the
previous version [35]. Without the requirement of excessive
computational power support, thesemethods aremore suitable
for application in real clinical settings. As for the model per-
formance in this study, the specifcities of classifers were much
higher than the sensitivities. Tis characteristic indicates that
these proposed models can help rule out patients with ocu-
losympathetic pathway problems. Tese detectors can curtail
the necessity for examination for all patients, thereby saving
time and resources. In addition, the automatic detection can
also beneft primary hospitals, where there are no available
experts to rule out those high-risk patients.

Tis study also has some limitations. Firstly, due to the
rarity of Horner (+) patients, the study only involved a limited
number of samples. Future studies with larger sample sizes
may help to enhance robustness and improve the accuracy of
this method. Secondly, all the diagnoses of Horner syndrome
were derived from patients with brachial plexus injury. Te
diverse prevalence in diferent diseases might afect the
sensitivity and specifcity of detectors, which could also im-
pact the potential generalizability of the results. Tirdly, al-
though facial images are the most convenient and commonly

Table 2: Te optimal hyperparameters of machine learning classifers.

Models Hyperparameters
Decision tree {Max depth: 3, max leaf nodes: 4, min samples leaf: 5, and min samples split: 165}
K-neighbors {n neighbors: 30}
XgBoost {Learning rate: 0.01, max depth: 3, n estimators: 100, and subsample: 0.3}
Gradient boosting {Learning rate: 0.05, max depth: 1, n estimators: 30, and subsample: 0.3}
Logistic regression {C: 0.1, l1 ratio: 0.01, max iter: 10000, and solver: Liblinear}
Support vector classifer {C: 0.5, degree: 1, kernel: “Linear”}
Light GBM {Learning rate: 0.2, max depth: 3, n estimators: 15, and subsample: 0.3}
Random forest {Max depth� 2, max features� 3, and n estimators� 5}
AdaBoost {Learning rate: 0.2, n estimators: 20}
Bernoulli naı̈ve bayes {Default}

Table 3: Te performances of machine learning classifers.

Classifers Sen Spe PPV NPV Acc
Decision tree 0.432 0.970 0.879 0.773 0.790
K-neighbors 0.483 0.940 0.803 0.784 0.788
XgBoost 0.39 0.983 0.920 0.762 0.785
Gradient boosting 0.373 0.987 0.936 0.758 0.782
Logistic regression 0.364 0.987 0.935 0.756 0.779
Support vector classifer 0.356 0.987 0.933 0.753 0.776
Light GBM 0.322 0.979 0.884 0.742 0.759
Random forest 0.254 0.996 0.968 0.727 0.748
AdaBoost 0.237 0.996 0.966 0.722 0.742
Bernoulli naı̈ve Bayes 0.331 0.902 0.629 0.729 0.711
Sen: sensitivity, Spe: specifcity, PPV: positive predictive value, NPV:
negative predictive value, and Acc: accuracy.
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used method for recording Horner syndrome, videos can
provide dynamic information and have great potential to
achieve better results. To solve these problems, we will es-
tablish the Horner syndrome database with various patients
caused by diferent primary diseases. In addition, we will also
attempt to investigate the possibility and accuracy of video
detection.

5. Conclusions

In summary, we proposed two pipelines to detect Horner
syndrome from facial images and evaluated their perfor-
mance. Both the methods presented adequate accuracy
compared with human experts. Our results have proved the
possibility of automatic Horner detection, which could work
as a second advisor to rule out high-threatening patients.
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