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Objective. Infectious diseases usually spread rapidly. �is study aims to develop a model that can provide �ne-grained early
warnings of infectious diseases using real hospital data combined with disease transmission characteristics, weather, and other
multi-source data. Methods. Based on daily data reported for infectious diseases collected from several large general hospitals in
China between 2012 and 2020, seven common infectious diseases in medical institutions were screened and amulti self-regression
deep (MSRD) neural network was constructed. Using a recurrent neural network as the basic structure, the model can e�ectively
model the epidemiological trend of infectious diseases by considering the current in�uencing conditions while taking into account
the historical development characteristics in time-series data. �e �tting and prediction accuracy of the model were evaluated
using mean absolute error (MAE) and root mean squared error. Results. �e proposed approach is signi�cantly better than the
existing infectious disease dynamics model, susceptible-exposed-infected-removed (SEIR), as it addresses the concerns of dif-
�cult-to-obtain quantitative data such as latent population, over�tting of long time series, and considering only a single series of
the number of sick people without considering the epidemiological characteristics of infectious diseases. We also compare certain
machine learningmethods in this study. Experimental results demonstrate that the proposed approach achieves anMAE of 0.6928
and 1.3782 for hand, foot, and mouth disease and in�uenza, respectively. Conclusion. �e MRSD-based infectious disease
prediction model proposed in this paper can provide daily and instantaneous updates and accurate predictions for
epidemic trends.

1. Introduction

Infectious diseases are usually characterized by rapid
transmission, high morbidity, and high uncertainty and are
extremely dangerous. �e global health sector is currently
working to promote early warning and surveillance capa-
bilities for infectious disease outbreaks. Medical institutions
are the frontline units for detecting, reporting, and treating
patients with infectious diseases, and they are also re-
sponsible for the routine diagnosis and treatment of non-
communicable diseases to ensure a harmonious society [1].
China has established a relatively well-developed national
infectious diseases information monitoring system
(NIDIMS), owing to which the earlier practice of cascading

reporting of infectious diseases has been changed to direct
reporting to the government [1].

�rough the NIDIMS, infectious diseases are reported
directly to the government [1, 2]. A total of 40 types of
infectious diseases are covered, including two types of class
A infectious diseases, 27 types of class B infectious diseases,
and 11 types of class C infectious diseases [1]. As early as the
end of 2006, the direct reporting network covered 100% of
disease control centers, 95% of medical and health insti-
tutions at the county level and above, and 70% of rural health
centers nationwide [2], making the reporting of infectious
diseases 10 times faster [3]. In 2020, COVID-19 exposed the
disadvantages of the system: it was not equipped with active
alerting and intelligent analysis of predetermined warnings
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[4], which impedes the timeliness of diagnosis and the ac-
curacy of risk prevention and control, resulting in the
possibility of underreporting or delayed reporting [3]. 'e
existing infectious disease warnings are also mostly gov-
ernment warnings regarding the national situation. It is
difficult to provide actual feedback on the prevailing situ-
ation in local medical institutions as it develops, and there is
a lack of efficient early warning based on the data obtained
from medical institutions. As a result, the existing system
cannot support the deployment of hospitals for epidemic
prevention and control, which will substantially weaken the
role of general hospitals as frontlines for epidemic pre-
vention and control.

2. Related Work

To address these issues, most of the existing studies adopt
polynomial fitting, mathematical statistical models, SEIR
methods, and machine learning. Dette et al. [5] applied a
polynomial function to fit the curve, which is a traditional
statistical method that uses only the data series of the
number of confirmations. By increasing the number of
polynomials, it is possible to fit a more complex function
curve that cannot be predicted flexibly in practice according
to the current time. At present, infectious disease dynamics
models are also widely applied, such as SEIR model, sus-
ceptible-exposed-infected-recovered-die-hard-infected
(SEIRD) model, and their variants. For example, Ghostine
et al. [6], Wangping et al. [7], Wei et al. [8], Yang et al. [9],
and Youssef et al. [10] adopted the SEIR method to predict
the spread of COVID-19. Despite the small number of
parameters in the kinetic model, the actual meaning of the
parameters is explicit, and the level of interpretability is high.
However, there must be multiple types of data available,
including the latent population, the number of recovered
patients, and other group data that are difficult to obtain. For
example, Feng et al. [11] obtained the latent data by esti-
mation, which affects accuracy, thus restricting the scope of
application. In some studies, the autoregressive integrated
moving average (ARIMA) model [12, 13], linear regression
[14], moment estimation [15], hidden Markov model [16],
and grey self-memory coupling model [17] were adopted.
However, there is a limit to the scope of application for each
of these mathematical models, which means they are often
suited to a single or certain type of disease. Not only does the
data used in the research have a single dimension, but it is
also heavily reliant on the information obtained from epi-
demiological retrospective surveys. Erraguntla et al. [18] and
Telarolli et al. [19] treated the data series of developmental
trends exhibited by infectious diseases as random ones, and
the autoregressive model was adopted to analyze the in-
terdependence and autocorrelation between various random
variables. However, stable time series are required for this
method. In the modeling process, only the number of deaths
and that of people who have recovered are used, while the
information other than the numerical sequence is ignored.

Since the outbreak of the COVID-19 pandemic, there are
many scholars [20–24] from various countries who have
studied machine learning and neural network to predict the

developmental trend of COVID-19 and other infectious
diseases. However, this method is disadvantaged by long-
time series and the lack of data regarding important
influencing factors in the developmental trend of infectious
diseases, such as environment and climate. As a result, the
prediction results can only be obtained on a monthly basis
and are prone to overfitting. Gu et al. [25] used three-layer
long short-term memory (LSTM) to model the develop-
mental trend of hand, foot, and mouth disease, taking into
account various external factors such as wind speed and
temperature, with the root-mean-square error (RMSE)
reaching 0.71. However, for children with obvious group
characteristics, factors such as opening and closure of
schools is not considered. Liao et al. [26] applied a neural
network to learn the parameters in the dynamic model,
which accelerates the adjustment of the parameters used in
the dynamic model. However, in the process of parameter
learning, only the product coefficient can be learned when
there are multiple coefficients used in the dynamic model.
'erefore, it is difficult to decompose multiple coefficients,
which affects the interpretability. Bedi et al. [27] used the
SEIR dynamic model and LSTM to study COVID-19, with
satisfactory prediction results. However, constraints such as
difficult access to population and limited data dimensions
are yet to be addressed.

Considering the advantages and disadvantages of
existing methods, an MSRD-based approach is proposed in
this study to predict the developmental trend of infectious
diseases. While incorporating the information on multi-
dimensional epidemiological features closely associated with
infectious diseases, the proposed model simultaneously
adopts LSTM as the building block to construct a recurrent
neural network. In addition, temporal modeling and cal-
culation are performed for the time-series data organized by
means of self-regression learning, which addresses the
challenges facing existing studies, such as the difficulty in
obtaining quantitative data such as latent population, the
overfitting of long time series, and the lack of consideration
given to the epidemiological features of infectious diseases
and only a single series of the number of patients. In ad-
dition, compared with the SEIR model, machine learning
model, and neural network model in existing studies, the
MSRD-based approach proposed in this study achieves
better performance.

3. Methods

3.1. Sources of Data. 'e data comes from two sources. One
is the official monthly public health scientific data of the
national center for disease control and prevention (CDC)
from 2012 to 2017. 'e second is the daily data of inpatient
and outpatient medical records from Peking University
'ird Hospital from 2012 to 2020. 'e hospital data was
obtained from the hospital data center. 'e hospital data
center adopts Hadoop architecture and integrates a Hadoop
distributed file system, HBase column database, and Hive
data warehouse, which can easily perform data storage and
analytical computations [28]. After in-depth mining of
110,000 historical data points on infectious diseases
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accumulated in a large hospital over eight years, big data
technology is applied to collect and clean the clinical data
and then store and manage them in a centralized way, which
provides the necessary basis for the training and application
of an early-warning model for infectious diseases. In ad-
dition to the data from the data center, this study collected
the daily temperature, humidity, wind, and other climate
data from the website of the national meteorological data
department, given the close relationship between some in-
fectious diseases and climate factors [29, 30]. In addition to
the aforementioned number of infectious diseases and en-
vironmental factors, the spread of infectious diseases is
closely related to human activities. For example, infectious
diseases are more likely to spread widely in human aggre-
gated activities. 'erefore, this factor is also used as a data
feature for prediction in this study, which is reflected in the
study of some infectious diseases.

'e study was approved by theMedical Science Research
Ethics Committee of Peking University 'ird Hospital
(serial number: IRB00006761-M2020318). All methods were
performed in accordance with the relevant guidelines and
regulations.

3.2. MSRD Model. In this study, we constructed an MSRD
model using an LSTM neural network and a sliding window
as the core structure, as shown in Figure 1.'eMSRDmodel
takes the time-series data of multiple elements frommultiple
days as inputs to predict the number of confirmed infectious
diseases on the next day.'e trend of this number confirmed
that infectious diseases can be generated through continuous
prediction. LSTM consists of an input gate, a forgetting gate,
and an output gate, which can be used to preserve infor-
mation and calculate the features of data with time-series
characteristics.'is study uses daily data as the experimental
metadata. Each metadata is anm× 1 vector that includes the
number of confirmed infectious diseases on a particular day,
the current date, current climate data, and the expected
social activities. 'e data in the experiment includes D-Day.
'e total data occupies an m∗D matrix. MSRD uses a
window of size m∗w to slide to the right within the total
data of m∗D. Each slide extracts fragment data of size
m∗w as the input data and takes the confirmed number of
infectious diseases in the first column of the m× 1 vector
outside the window as the label data. At the end of sliding,
D − w pieces of m∗w input data matrix and D − w label
data can be obtained, as shown in the sliding window in
Figure 1. 'en, the D − w pieces of m∗w data are fed into
the LSTM neural network, and the LSTM can learn the
mapping function between the m∗w segment data and the
corresponding label. Next, to make use of the output of the
LSTM neural network and the characteristic information of
the original data simultaneously, the input data of m∗w is
expanded in a one-dimensional form and horizontally
spliced with the output of the LSTM neural network, fol-
lowed by the prediction result of the diagnosis number being
output through the feedforward neural network with a
rectified linear unit (ReLU) function as the activation
function. Based on the original fragment data containing

multi-day data, the MSRD model uses the unique structural
characteristics of LSTM to extract the time-series features in
the data. It can simultaneously use the historical time-series
data and the multi-dimensional feature data outside the
series to predict the epidemic trend of infectious diseases.
Compared with the typical LSTM that uses only the output
of the last time step, MSRD makes full use of the output of
each time step of the sequence structure based on the use of
time windows to extract data and feeds the original first-
order data (not computed by LSTM neurons) and second-
order data (computed by LSTM) together into a feedforward
neural network with multiple hidden layers, enhancing the
crossover capability of the features as well as the model
fitting ability. In addition, the introduction of the time
window concept improves the flexibility of the model in
predicting infectious diseases and avoids the overfitting
problem caused by using long series to train the model,
allowing the model to make more accurate predictions for
the future using data from different date spans according to
different application scenarios.

3.3. EvaluationMetrics. We evaluate the performance of the
proposed MSRD method and compared it with the three
other models using the MAE, which is the simplest measure
of fitting and prediction accuracy describing the mean value
of the difference between the model prediction results and
the true results at each time in terms of the series as a whole.
In addition, we also use the RMSE to measure the deviation
of the observed values from the ground truth, which is
calculated as follows:
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3.4. Statistical Software. We used Microsoft Excel 2016 to
construct the original database and used Python v3.6.4,
PyTorch v1.6.0, Numpy v1.14.1, and Scikit-Learn v0.19.1 for
model building.

4. Experimental Results

4.1. Trends in the Incidence of Real Infectious Diseases in
Hospitals. Based on real hospital outpatient data collected
from the Peking University 'ird Hospital from 2012 to
2020, we analyze seven common infectious diseases, in-
cluding hand-foot-and-mouth disease (HFMD), influenza,
viral hepatitis, infectious diarrheal disease, scarlet fever,
syphilis, and tuberculosis during in this study, as shown in
Figure 2. Among them, influenza and viral hepatitis have a
trend of slow growth year by year, while HFMD, infectious
diarrheal disease, scarlet fever, syphilis, and tuberculosis
have decreased year by year, which sufficiently demonstrates
the effectiveness of overall infectious disease prevention and
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control, but there is a trend of slow growth for in�uenza and
viral hepatitis, and the government should take preventive
measures in advance. �e year 2020 is more a�ected by the
COVID-19 epidemic, and the actual number of hospital
visits has also decreased signi�cantly. Based on the analysis
of data between 2012 and 2020, we construct an MSRD
model, where we tested multiple parameter combinations:
the sliding window length w candidates (3, 5, 7, 9, 14), the
number of LSTM neurons candidates (6, 8, 16, 32, 64, 128),
the number of feedforward neural network neurons can-
didates (32, 64, 128, 256, 512), and multiple learning rates.
�e optimal values of the above parameters are as follows:
the sliding window length is 7, the number of LSTM neurons
is 16, the feedforward neural network neuron is 128, and the
learning rate is 0.001. It was observed that as the sliding
window length, the number of LSTM neurons and the
number of feedforward neurons increased and the perfor-
mance of the MSRD model in the training data improved,
but the performance in the test set �rst increased and then
decreased. �e results demonstrate that the model com-
plexity and the number of days of historical data used are

positively correlated with the �tting ability of the model,
while the generalization ability varies, into a trend of �rst
increasing and then decreasing. Figure 3 shows the model
trained using the optimal parameters described above to
predict the prevalence of infectious diarrhea in 2021. �e
model predicts a continuous decrease in the number of
infectious diarrheas in 2021. See Supplementary Material 1
for the prediction results of other infectious diseases.

4.2. Comparison of MSRD and SEIR Models. In the research
of infectious disease prediction, SEIR kinetic model is quite
common. �e main idea is to divide the whole population
into di�erent groups in a closed system and design the
population transfer coe¦cients among di�erent groups
according to the infectious disease transmission mechanism,
so as to form the di�erential equations. According to the
National Data Center for Public Health Sciences, we build
the SEIR model for HFMD. As shown in Figure 4, the model
has monthly granularity. We observe that the number of
HFMD cases in the national data shows a consistently
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increasing trend every year.�e prediction trend after model
learning is identical to the historical development trend.
�erefore, it is feasible to use national data modeling.
However, the national data alone has no daily data per
month, while the �ne-grained data are insu¦cient.

Based on the data of a hospital, here, we take HFMD as
an example and use the “monthly granularity” for modeling,
as shown in Figure 5. It is di¦cult to obtain the data of the
exposed persons, which is necessary for SEIR. �e SEIR
model is used to model by stages, the results of which are
given below. Figure 6 shows the daily data of real HFMD
cases in the hospital.

It is clear that the SEIR model is poorly �tted to the
infectious disease data of medical institutions for the fol-
lowing reasons: (1) there is an evident lack of continuity of
infectious diseases in medical institutions. In the data of daily
granularity, there are many months in which there are zero
cases of HFMD. (2) �e SEIR model requires population
information such as susceptible groups, latent groups, isolated
groups, infected groups, recovered groups, and dead groups,
among which susceptible groups can be estimated; however,
infected groups and recovered groups are very important, and
these data are di¦cult to obtain in medical institutions. (3)
For the infectious disease data of medical institutions with a
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small magnitude, the “daily granularity,” according to the
single-digit change, leads to significant fluctuations in the
data curve. 'erefore, the SEIR model is suitable for trend
forecasting with a large order of magnitude and compre-
hensive population information and is not applicable to
forecasting on the basis of medical institutions.

4.3. Prediction Effect of MSRD. Based on the MRSD model
and careful feature engineering, it is eventually applied to the
training of the model. Feature engineering is the processing
of data for the purpose of maximizing the extraction of
effective features from the raw data for use in algorithms and
models. For the current study, the number of daily con-
firmed cases of each infectious disease from January 1, 2012,
to December 31, 2019, was first counted from the hospital
data center. After that, the current year, month, and season
are extracted from them to identify the current year, month,
and season based on the date. 'e year and month are
characterized by numerical type, and the season is repre-
sented in the form of a unique heat code. Next, the collected
climate data are processed to calculate the diurnal tem-
perature difference of the day. Finally, considering that
infectious diseases are closely related to human group ac-
tivities, another feature of social factors is incorporated into
the training data. For example, HFMD is a prevalent in-
fectious disease among children and students, and the main
group activity of adolescents is studying at school, so the
feature of whether they are currently on vacation is added to
the features to characterize the social gathering activity.

'e features for training include the daily number of
confirmed cases of the target infectious disease, the current
year, the current month, the current season, the highest
temperature of the day, the lowest temperature of the day, the
temperature difference of the day, whether the students are
currently on vacation, and so on. 'e above features are then
constructed as time-based series data.'e features we selected
are based on the literature review [6, 18, 19, 25, 29, 31–33] and
expert knowledge. 'e highest and lowest temperatures
within a single day in conjunction with the season can de-
scribe the climate. 'e development trend of certain infec-
tious diseases is clearly known to be related to the
environment and climate change. Consequently, the intro-
duction of these features can represent the prevalent envi-
ronmental climate to a certain extent and thus correlate with
the development trend of infectious diseases. 'e feature
“intraday temperature difference” is introduced based on the
disease characteristics of infectious diseases. For example,
when the intraday temperature difference is large, people are
more vulnerable to influenza. 'e feature “students are on
holiday” represents social activity factors, in order to account
for the fact that socializing can lead to the spread of infectious
diseases. 'e features used in this study combine the climatic
environment, the characteristics of infectious diseases, and
social activity factors. In addition, in light of epidemics of
infectious diseases that occurred in the past, comprehensive
consideration from multiple perspectives can better help
improve the prediction effect of the prediction model.

Finally, for the training of the MSRD model and the
validation and evaluation of the model’s effectiveness in
predicting future infectious disease epidemic trends, data
from October 28, 2013, to December 31, 2018, with a total
of 1,890 time-series samples, accounting for 82.7% of the
total time-series sample data, were used as training data in
the study; a total of January 1, 2019, to January 31, 2020,
395 time-series samples were used as the test data. Figure 7
shows the test results of applying the MSRD model to
predict the epidemic trends of HFMD and influenza. 'e
MSRDmodel is selected with a sliding window length of 7;
the number of LSTM neurons is 32; the number of
feedforward neural network neurons is 128; and the model
is trained at a learning rate of 0.001. 'e predicted in-
fectious disease epidemic trends from the multi-dimen-
sional autoregressive neural network model shown in the
figure broadly match the actual trends. 'e MAE was used
to evaluate the results in the regression prediction. In this
study, the number of confirmed cases of HFMD and in-
fluenza were of different orders of magnitude, and the
MAE of the multi-dimensional autoregressive neural
network was 0.6928 and 1.3782 cases lower for the test
data in the training of both, which means that the average
difference between the number of diseases predicted by
the model at each time and the real number of diseases on
a corresponding day were 0.6928 and 1.3782 cases, re-
spectively. 'e difference between the prediction results of
HFMD and the trend of influenza is mainly attributable to
the magnitude of the total number of cases being different
and a higher number of breakpoints in the real data of
HFMD. 'e highest number of single-day influenza cases
is nearly 50, while that of HFMD is only 10. At the same
time, there is not only a substantial discrepancy between
the data of HFMD and influenza but also a large number of
zero cases in the time series of HFMD data. As a result, the
continuity of data is poor, thus making it more difficult for
the model to capture the regularity of data.

5. Discussion

5.1.Analysis ofModelMethods. 'eMSRDmodel proposed
in this paper provides a better prediction result than the
SEIR model. 'e SEIR dynamic model is suitable for the
prediction of large orders of magnitude and the entire
population, and the influence coefficient in the model
needs to be set manually, so it is difficult to tune the
parameters. Consequently, it cannot be used to flexibly
predict based on the actual conditions. In addition, SEIR
struggles to fit infectious diseases without obvious regu-
larity. During the prediction of the hospital’s own data,
the proposed MSRD method is set to “day,” and the
features of multiple high correlation dimensions, in-
cluding multiple infectious diseases, current environ-
mental conditions, and transmission factors, are
calculated with better nonlinear fitting ability. 'e MSRD
model can flexibly predict real infectious diseases
according to current conditions and factors at any time
while obtaining better prediction results.
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5.2. Model Performance Comparison. To verify the perfor-
mance of the MSRD model, we compared the MSRD
method with a variety of commonly used regression pre-
diction models, such as support vector machine (SVM) [34],
Lasso regression (lasso) [35], and Bayesian method
(Bayesian) [36–38] aiming at the trend prediction of in-
�uenza and HFMD. Among them, the Bayesian regression
method is less common, and this model assumes that the
prior probability, likelihood function, and posterior prob-
ability are normally distributed. In this calculation, we need
to maximize the marginal likelihood function to estimate the
model parameters and regression coe¦cients. �e above
comparison models can be found in Python’s scikit-learn
library. In addition, the deep learning models that are used
in the prediction of infectious disease trends are also
compared: deep neural network (DNN) [11, 26], LSTM [20],
bi-directional long short-term memory (Bi-LSTM), and
gated recurrent unit (GRU). Among them, the MSRDmodel
selects a sliding window length of 7, the number of LSTM
neurons as 32, and the number of feedforward neural
network neurons as 128. �e model is trained at a learning
rate of 0.001, with 223 epoch iterations being performed.�e
process of getting the best parameters of MSRD is provided
in Supplementary Material 2. From Figure 8, it can be found
that the performance of the proposed MSRD method in the
two diseases is the best, making it an excellent model for
practical applications. As can be seen from Table 1, the
MSRD prediction results for di�erent diseases had signi�-
cant di�erences, and the data used in each model were
identical. �e reason is that the models have di�erent
learning and �tting ability to the data, and the essence is that
each model has a di�erent structure, complexity, and
computational principle.

5.3. Impact of Infectious Disease Data Sources on Model
Prediction. For hospitals, the probability of infectious dis-
eases is lower than that of noninfectious diseases, and the
amount of data is smaller. �erefore, this study found that
determining the amount of disease data that can support
model training requires attention to zero diagnosis days.
Furthermore, the disease data set needs to satisfy the re-
quirement that in the overall data, the number of days with
zero con�rmed cases is less than 40%. For example, 3 years of
data consist of 1,095 days, so for any disease, if for at least
1,095× 60%� 657 days, the number of con�rmed cases is not
0, then the disease can be selected as a model study object.�e
fewer days with zero con�rmed cases should be better to
represent the disease as more common and easy to capture its
epidemic trend. �is means that when a disease is more
common, its epidemic trend is easier to predict. Extreme cases
are similar to cholera. During 2012–2020, only one patient
was con�rmed to have cholera, while the other months had
zero cases. �us, the model for cholera cannot be learned and
predicted. �erefore, this study used tuberculosis, viral
hepatitis, syphilis, scarlet fever, other infectious diarrhea,
in�uenza, and HFMD. Various model characteristics will
directly a�ect the rationality and accuracy of the prediction
results.�erefore, e�ective features should be selected �exibly
as per the characteristics of di�erent infectious diseases. For
example, HFMD is an infectious disease among children and
students [31].�emain group activity of teenagers is to attend
school, so the feature of whether they are on holiday is added
to describe social gathering activities. �e main mode of
transmission of tuberculosis is person-to-person respiratory
transmission, so the feature of whether January and February
contain Chinese New Year needs to be included in the in-
fectious disease trend prediction consideration [32]. During
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Figure 7: (a) Comparison of the real and predicted trends of in�uenza and (b) comparison of real and predicted trends in HFMD.
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Figure 8: Continued.
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the Spring Festival, on account of the increased concentration
of family gatherings, infection and transmission of tuber-
culosis potentially increase, and more patients tend to delay
their treatment [33].

5.4. Limitations. �e limitations of this study are mainly due
to the small amount of data and the fact that the characteristics
of the diseases were not considered in the modeling. On the
one hand, this study focuses on early warning of trends in
common and highly prevalent infectious diseases in hospitals.
However, since some diseases such as plague, cholera, and
Middle East respiratory syndrome are relatively rare (i.e., their

annual incidence is less than 10 cases), their trends in indi-
vidual hospitals are incidental and unpredictable. In the future,
methods for predicting various types of infectious diseases can
be developed based on real hospital medical record data in
conjunction with the National Data Center for Public Health
Sciences. Early warning andmonitoring of emerging unknown
infectious diseases are also worth exploring. On the other hand,
it is important to note that the MSRD model in this study can
calculate data characteristics such as the number of con�rmed
diagnoses, date, and temperature. However, the MSRD model
cannot model the characteristics of the infectious disease itself
or the characteristics of the infection, which still needs to be
further explored.
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Figure 8: (a) MSRD model results, (b) SVM model results, (c) Lasso model results, (d) Bayesian model results, (e) DNN model results,
(f ) LSTM model results, (g) Bi-LSTM model results, and (h) GRU model results.

Table 1: Comparison of trend prediction results of infectious disease.

Comparison of trend prediction MAE results of infectious disease
In�uenza HFMD Viral hepatitis Tuberculosis Syphilis Scarlet fever Infectious diarrhea

MSRD 1.6252 0.5650 7.6897 1.2754 0.4974 0.2198 0.9564
Bi-LSTM 1.8185 0.6018 8.6141 1.4270 0.5565 0.2459 1.0701
DNN 1.9585 0.6403 9.2669 1.5369 0.5894 0.2734 1.1525
LSTM 1.8859 0.6402 8.9231 1.4999 0.5771 0.2550 1.1098
GRU 1.8731 0.6075 8.8633 1.4698 0.5732 0.2533 1.1022
SVM 1.7034 0.8923 8.1596 1.3367 0.5213 0.2303 1.0024
Lasso 1.9342 0.8864 9.1515 1.5178 0.5920 0.2615 1.1382
Bayes 2.0652 0.6759 9.7713 1.6206 0.6320 0.2792 1.2152

Comparison of trend prediction RMSE results of infectious disease
In�uenza HFMD Viral hepatitis Tuberculosis Syphilis Scarlet fever Infectious diarrhea

MSRD 3.8607 0.6069 9.1090 1.5705 1.7066 0.4459 1.253
Bi-LSTM 3.8588 0.8079 9.1744 1.5897 1.7177 0.4556 1.2663
DNN 3.8899 0.9209 9.3685 1.5924 1.7315 0.4492 1.2665
LSTM 3.8958 0.9170 9.2826 1.6048 1.7241 0.4499 1.2684
GRU 3.8763 0.8043 9.2361 1.5868 1.7155 0.4677 1.2620
SVM 3.8667 1.0531 9.4132 1.5829 1.8112 0.4565 1.2589
Lasso 4.5932 1.0859 10.9443 1.8903 2.0327 0.5305 1.4954
Bayes 3.9344 0.8462 9.3746 1.6106 1.7412 0.4544 1.2809
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It is also necessary to explain that the prediction of
each day is based on the number of confirmed cases on the
previous day and the meteorological forecast data for the
next day. To predict results for Day T + 1, we need to use
the actual number of confirmed cases on Day T and the
climate data of Day T + 1. 'e mean value of historical
temperature in the same period is used to replace the
meteorological data of long-span continuous prediction.
If we make a continuous prediction for the future, each
prediction depends on the prediction results of the
number of cases in the previous round. However, there are
inevitable errors in each prediction. 'us, the continuous
prediction will lead to error accumulation, and the longer
the time span of continuous prediction, the larger the
error accumulation and the lower the accuracy. In order to
alleviate the issue of error accumulation, the historical
average temperature of the same period is used in the
prediction of a long-time span in the future because the
actual temperature characteristics cannot be obtained,
resulting in an a priori error. An alternative method with
higher accuracy could be adopted to estimate the tem-
perature. However, error accumulation occurs because the
diagnosis case predicted in a certain time step needs to be
used in the succeeding time step. As an alternative, the
importance of the characteristics of the diagnosis number
in the model construction could be reduced so that a
minor fluctuation in the diagnosis number will not have a
large impact on the prediction results.

6. Conclusions

In this study, we proposed an MSRD model to predict in-
fectious disease trends in hospitals. Experimental results
show that the proposed approach outperforms the SEIR
model. 'e shortcomings of the SEIR model in hospital
infection prediction were also elucidated. We also compare
several neural network methods, such as DNN, LSTM, GRU,
Bi-LSTM, and machine learning methods, such as SVM,
Lasso regression, and Bayesian, and demonstrate that the
MSRD method outperforms the above approaches. MSRD
extracts the features of training data through a time window,
avoiding the overfitting problem caused by long time series
and the practical application of nonflexibility. In addition,
the fitting ability of the model is improved by combining the
output of each time step with the corresponding original
input. 'e impact of common infectious diseases predicted
by the model is consistent with the actual high prevalence of
infectious diseases. 'e model combines hospital data with
data from external data sources using a combination of
medical record information, climate, and crowd gathering to
provide information support for rapid response and deci-
sion-making and to assist hospitals in early warning and
prediction of infectious diseases. 'e model can be extended
to all types of hospitals for infectious disease surveillance,
helping to advance infectious disease surveillance and
prediction, promoting the standardization of infectious
disease management, and contributing to dynamic early
warning of infectious diseases.
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