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retinal image is a crucial window for the clinical observation of cardiovascular, cerebrovascular, or other correlated diseases.
Retinal vessel segmentation is of great bene�t to the clinical diagnosis. Recently, the convolutional neural network (CNN) has
become a dominant method in the retinal vessel segmentation �eld, especially the U-shaped CNN models. However, the
conventional encoder in CNN is vulnerable to noisy interference, and the long-rang relationship in fundus images has not been
fully utilized. In this paper, we propose a novel model called Transformer in M-Net (TiM-Net) based on M-Net, diverse attention
mechanisms, and weighted side output layers to e�caciously perform retinal vessel segmentation. First, to alleviate the e�ects of
noise, a dual-attention mechanism based on channel and spatial is designed.�en the self-attention mechanism in Transformer is
introduced into skip connection to re-encode features and model the long-range relationship explicitly. Finally, a weighted
SideOut layer is proposed for better utilization of the features from each side layer. Extensive experiments are conducted on three
public data sets to show the e�ectiveness and robustness of our TiM-Net compared with the state-of-the-art baselines. Both
quantitative and qualitative results prove its clinical practicality. Moreover, variants of TiM-Net also achieve competitive
performance, demonstrating its scalability and generalization ability.�e code of our model is available at https://github.com/ZX-
ECJTU/TiM-Net.

1. Introduction

Arti�cial intelligence (AI) models have promoted the in-
teractions between humans and computers greatly [1–3].
�is phenomenon is more evident in the computer-aided
diagnosis �eld. Recently, owing to the unhealthy living
habits and growing pressure of life, the probability of people
su�ering from cardiovascular or cerebrovascular or other
diseases has generally increased. From the medical per-
spective, the human eye is the only organ of the body that
can directly observe the blood vessels and nerves. �e retinal
circulation has the same anatomical and physiological
characteristics as the brain and coronary circulation. Hence,
the retina of the human eyes has become an important
window to diagnose cardiovascular, cerebrovascular, or

other correlated diseases more e�ciently. Traditionally,
ophthalmologists make clinical diagnoses manually, which
needs su�cient diagnostic experience and time. So the
traditional diagnostic method is time-consuming and low
e�cient, which extends the corresponding diagnostic cycle
with much �nancial and mental pressure on the patients.
With the rapid development of AI technologies, more and
more doctors began to use computer-aided diagnosis (CAD)
methods to alleviate this problem. �e realization of the
CAD-based retinal vessel segmentation method helps the
ophthalmologists more accurately and e�ciently observe
retinal diseases [4] and also allows the patients to receive
higher quality treatments. Since 2012, deep learning
methods, such as convolutional neural network (CNN) [5]
and recurrent neural network, have greatly promoted the
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development of the computer vision (CV) field. More and
more CV tasks using specific CNN structures can obtain
state-of-the-art performance. Recently, fully connected
networks [6], U-Net [7], and U-Net++ [8] have become the
dominant methods in medical image segmentation. *e
U-Net and U-Net++ models, usually use a symmetric en-
coder-decoder framework with skip connections to enhance
the quality of detail retention. U-Net is simple, but it builds a
firm foundation for the subsequent correlated research.
Hence, many methods based on U-shaped networks were
proposed to complete medical image segmentation, and they
achieved great success in numerous tasks, such as retinal
vessel segmentation [9–12], heart segmentation [13], and
organ segmentation [10, 14].

Recently, deep learning models have played a very im-
portant role in retinal vessel segmentation [15, 16] owing to
their high practicality. Fu et al. [17] added a multiscale input
layer to U-Net as well as a side output layer. However,
feature filtering was not implemented in the skip connec-
tions of theM-Net model, and each side output layer uses the
same weight. Guo et al. [18] placed the spatial attention
module behind the encoder to extract significant features.
Only using spatial attention loses the key information across
different feature channels. Fu et al. [19] used parallel channel
and spatial attention to suppress the negative influence of
noisy features. Zhang et al. [20] absorbed a gate attention
mechanism into the skip connection for filtering noisy in-
formation. Wang et al. [21] designed a hard attention
network (HA-Net) consisting of three decoders for retinal
vessel segmentation. Li et al. [22] adopted the weight-sharing
and skip-connection features to facilitate training. *e
pyramid U-Net [23] acquires aggregated features at higher,
current, and lower levels in its encoder and decoder. Re-
cently, owing to the great success of Transformer in the CV
field, TransUNet [24] and TransFuse [25] have been pro-
posed by combining Transformer and U-Net. Similarly,
Chen proposed the patches convolution attention-based
Transformer U-Net (PCAT-UNet) [26] model that inserts a
modified Transformer module into U-Net. Although better
performance can be observed, these Transformer-based
models are complex and time-consuming, which will affect
their practicalities to some degree.

Based on the above analysis, we found the following
difficulties of previous work: (1) it is difficult to obtain the
best performance on each evaluation metric; (2) it is difficult
to combine the Transformer module and U-Net model
owing to the high complexity; (3) feature maps are prone to
noise interference; (4) it is difficult to effectively model the
long-range relationships in the fundus images; and (5) the
output layers only use one single layer, which did not exploit
the utility of other layers.

*is study focuses on the (3), (4), and (5) problems. We
first design a novel dual-attention mechanism and then
apply it to our model. *e dual-attention mechanism can
effectively alleviate the interference of noisy information.
Second, we explicitly model the long-rang relationship in the
fundus images by using a pure Transformer module. Both
the proposed dual-attention mechanism and Transformer
module are plug-and-play, making our model simple and

easy to implement. Finally, we assign a suitable weight to
each side output layer based on its real importance. We are
striving to make full use of the complementarity of multiple
output layers. Conceptually and empirically, the main
contributions of this paper can be summarized as follows:

(1) We propose a novel model called Transformer in
M-Net (TiM-Net), which is simple but effective for
retinal vessel segmentation. TiM-Net takes multi-
scale input, feature refinement strategies, and long-
range relationship into account, which can
strengthen the discriminative abilities of image
features. TiM-Net achieves satisfactory segmentation
results, which provides firm technical support for
clinical human-computer interaction diagnosis.

(2) Extensive experiments were conducted on three
public benchmark data sets. *e corresponding re-
sults demonstrate the superior segmentation per-
formance of TiM-Net over other state-of-the-art
methods. *e code of our model is available at
https://github.com/ZX-ECJTU/TiM-Net.

(3) Owing to a relatively flexible structure, TiM-Net has
several model variants. *ese model variants also
obtain competitive segmentation performance,
demonstrating the powerful scalability and gener-
alization ability of TiM-Net.

(4) We complete both coarse- and fine-grained ablation
analysis to evaluate the real contribution of each
module in TiM-Net, which provides a new idea for
evaluating the segmentation model
comprehensively.

*e remainder of this paper is organized as follows:
Section 2 presents related work and our research motiva-
tions. TiM-Net is described in Section 3. Experiments on
three well-known retinal image data sets and the corre-
sponding results are discussed in Section 4. Finally, Section 5
provides the conclusions and our future work.

2. Related Work

2.1. Medical Image Segmentation. In the traditional U-sha-
ped segmentation models, the encoders usually employ two
methods, including superimposed convolutional layers and
continuous down-sampling, to generate a sufficiently large
receptive field, thus improving the efficiency of global
context modeling. However, these methods bring the fol-
lowing drawbacks: (1) *e features extracted from the en-
coders contain many noises, which affect the final
segmentation performance, and (2) their models using too
many parameters are prone to overfitting when the corre-
sponding medical image data set is relatively small. To
address these problems, some researchers used additional
expansion paths to better extract both coarse- and fine-
grained features for segmentation. For example, Zhang et al.
[27] introduced three different dense connections in mul-
tiscale densely connected U-Net to combine the features
from different scales. Feature fusion was carried out, in turn,
to strengthen the discriminative ability of the features and
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reduce the risk of overfitting. Chen et al. [28] proposed a
bridging method to connect two U-Net structures, which
can make full use of the features extracted from the two
networks. Devi et al. [29] embedded a multiscale dilated
convolution module in the decoders to fuse multiscale
features for automatic instrument segmentation. In sum-
mary, the U-shaped model is the mainstream model in the
medical image segmentation field.

2.2. Attention Mechanism. Owing to noisy interference,
some important edge information is ignored by the seg-
mentation model. And the corresponding performance is
unsatisfactory, especially for retinal vessel segmentation. To
address this problem, more and more researchers added the
well-known attention mechanism [30] to U-Net. *ey want
to capture the most correlated features for effective medical
image segmentation. Li et al. [31] inserted a gate attention
mechanism to the skip connection of U-Net. It focuses on
the position of the encoded features in the target area. Unlike
the single attention mechanism, the dual-attention mech-
anism [19, 32, 33] has been proposed to choose the most
significant channel features and suppress irrelevant spatial
features.Wang et al. [34] used the dual-attentionmechanism
combined with residual connection in the encoder and
decoder structures. Experiments demonstrate that the
combination of channel and spatial attention outperforms a
single attention mechanism. Fu et al. [17] used parallel
channel and spatial attention to suppress the negative in-
fluence of noisy features. Amer et al. [35] proposed a
multiscale spatial attention module in which the spatial
attention graph is derived from a hybrid hierarchical dilated
convolution module. *is module can capture multiscale
context information for lung image segmentation. Sum-
marily, extensive experiments have validated the effective-
ness of the attention mechanism in medical image
segmentation.

*e Transformer uses another kind of attention mech-
anism. It has pioneered new technologies in the fields of
machine translation [36] and natural language processing
[37]. Evident performance improvement can be observed on
numerous tasks. Notably, lots of studies have demonstrated
that Transformer is also suitable for CV tasks. Dosovitskiy
et al. [38] implemented the well-known vision Transformer
(ViT), directly applying the Transformer and the global self-
attention mechanism to classify full-size images. Ye et al.
[39] proposed a cross-modal self-attention mechanism that
incorporates image and text features for query, key, and
value. Yang et al. [40] proposed a cross-scale feature inte-
gration module that learns more powerful feature repre-
sentations by stacking multiple texture Transformers. Liu
et al. [41] proposed a hierarchical Transformer that limited
self-attention computing to nonoverlapping local windows
while allowing the cross-window connection.

Recently, some researchers began to introduce Trans-
former into the medical image segmentation field and ob-
tained satisfactory performance. *e Transformer converts
each image into a one-dimensional sequence and focuses on
modeling the global context. Chen et al. [24] proposed the

TransUNet model that replaces the encoder of the U-Net
model with a Transformer structure. Zhang et al. [25]
designed the TransFuse method that fuses Transformer with
CNN. *e two models obtained evident performance im-
provement in medical image segmentation. However, the
two models are very complex.

2.3. Retinal Image Segmentation. *is study focuses on
retinal vessel segmentation. For this task, Fu et al. [17] added
a multiscale input layer into U-Net as well as a side output
layer, which solves the segmentation problem of the optic
disc and optic cup. Wang et al. [42] proposed a double-
coded U-Net model and placed the channel attention on the
skip connection to choose effective features. Ma et al. [43]
proposed a multitask CNN with a spatial activation
mechanism, which can simultaneously segment retinal
blood vessels, arteries, and veins. Guo et al. [18] put a spatial
attention module at the bottom-most layer of an encoder for
adaptive feature refinement. *is attention module can
suppress the uncorrelated features to some degree. Zhang
et al. [20] absorbed a gate attention mechanism to the skip
connection. Wang et al. [21] designed the HA-Net model
consisting of three decoders. *e first decoder can dy-
namically analyze the “hard” and “easy” regions of the
image, while the other two decoders are responsible for
distinguishing the “hard” and “easy” regions of the retinal
blood vessels. Tong et al. [44] proposed a side attention
network that integrated side-attention and dense atrous
convolutional blocks, preserving more features of the en-
coder and contextual information of the fundus image,
respectively. Li et al. [22] adopted the weight-sharing and
skip-connection features to facilitate training. Jiang et al.
[45] used both multiscale dilated convolution and skip
connection to reduce the loss of feature information. Zhai
et al. [46] used multiple pyramid pooling modules to
combine more contextual information in the decoding
process. Zhang et al. [47] proposed a structure-texture
demixing network for separating structure and texture
components, which can better handle structure and texture
in different ways. Cao [48] proposed a pure Transformer
network to classify and segment images with great success.
Chen et al. [26] proposed the PCAT-UNet model that ab-
sorbs a modified Transformer module into U-Net. However,
due to the lack of the ability to capture the long-range re-
lationship, noisy features are obtained after multiple con-
volutions, which affects the final performance.

2.4. Motivations. Reviewing the work of [17, 18, 24–26], we
found the following problems: (1) most studies use complex
structures, which may lower their practicalities; (2) tradi-
tional encoders cannot model long-range relationships and
are prone to noisy interference; and (3) the side output layer
only uses a single-layer output, which cannot make full use
of the complementarity of different layers. *e comple-
mentarity helps recover the feature maps well.

Hence, our motivations are threefold. First, to lower
complexity, we consider a plug-and-play approach that only
adds a Transformer to skip connection. Second, unlike the
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M-Net model, we incorporate diverse attention mecha-
nisms, including the self-attention of Transformer and dual-
attention mechanism, into two different positions of our
model. On the one hand, we absorb the Transformer module
into the skip connection to re-encode the image features
extracted from the encoder. *is can refine the encoded
features to a certain degree. More importantly, this helps
explicitly model the long-range relationship in the fundus
images. On the other hand, we propose the dual-attention
mechanism including spatial attention and channel atten-
tion to reduce the negative effect of the noisy features. Lastly,
we make full use of each side layer through a suitable weight
assignment strategy. All these modifications are easy to
implement and cannot increase the complexity of the seg-
mentation model, which also contributes to promoting the
practicality of TiM-Net.

3. Method

Problem definition: Our goal is to predict the corresponding
label map with the size of H×W×C of an arbitrary retinal
image. H is the height of the image. W is the width of the
image. C is the corresponding channel number. Our model
is illustrated in Figure 1.

First, TiM-Net uses multiscale images as its input. *is
can leverage the multiscale information for retinal vessel
segmentation. Second, TiM-Net incorporates the Trans-
former module into its skip connection. *e built-in self-
attention mechanism of the Transformer models the long-
range relationship in the fundus images and makes effective
feature refinement. *is builds a firm foundation for the
subsequent upsampling. *ird, the dual-attention module
including spatial and channel attention is placed behind the
last encoder layer to prevent gradient degradation and make
another kind of feature refinement. Finally, we make full use
of each side layer to complete the final segmentation. We
introduce each component as follows.

3.1. Transformer in Skip Connection. *e traditional atten-
tion mechanism uses different input sources and output
targets, which has a certain negative influence on feature
decoding. Moreover, it cannot model the long-range rela-
tionship in the fundus images. As we know, the Transformer
employs the self-attention mechanism, which has the same
target and source. More importantly, this self-attention
mechanism can better model the long-range relationship
across a whole image. Hence, we absorb the Transformer
module into the skip connection at a suitable position. *e
corresponding structure of the Transformer is shown in
Figure 2.

In Figure 1, the second layer features extracted from the
encoder are input into the Transformer to implement self-
attention computing. *e corresponding results are trans-
ferred into the decoder. Hence, we absorb the Transformer
module into the skip connection. *e Transformer divides
the input feature maps (256× 256) into 16 patches, namely
pi, averagely, and each patch size is P× P. *en these patches
are serialized and passed into the embedding layer to obtain

the original embedding sequence.*ey are linearly projected
to a D-dimensional embedding space in turn.

To learn specific spatial information about these patches,
position embeddings are first added to the patches to pre-
serve position information. *en the built-in self-attention
mechanism in the Transformer module calculates the cor-
relation between each patch pair. Finally, the spatial cor-
relation of given patches is obtained through a multilayer
perceptron (MLP) layer. Position embeddings are used as
follows:

z0 � p
1X; p

2X; . . . ; p
16X􏽮 􏽯 + Xpos, (1)

where X ∈ R(P×P×C)×D denotes the matrix that implements
the corresponding linear projection as illustrated in
Figure 2(a). piX(i ∈ 1,&, 16{ }) denotes a linear projection
result of pi. Xpos represents the corresponding position
embedding of the given patches, so the position information
of each patch is reserved by marking the original position
serial number of pi. *is contributes to learning global long-
range relationships in the fundus images. According to
equation (1), the Transformer makes a linear projection of pi

and forms a D-dimensional z0 together with position em-
bedding.*is can also be regarded as a kind of preprocessing
step for the subsequent self-attention computing. It builds a
foundation for capturing long-range relationships in the
fundus images.

*e projections are input into the encoder layer of the
Transformer, which contains n layers of multihead self-at-
tention (MSA) and MLP. *e detailed structure of the en-
coder layer is illustrated in Figure 2(b).*erefore, the output
of the n-th layer can be calculated as follows:

zn
′ � MSA LN zn−1( 􏼁( 􏼁 + zn−1, (2)

zn � MLP LN zn
′( 􏼁( 􏼁 + zn
′, (3)

where zn denotes the encoded image sequence and LN
denotes the normalization layer. Finally, the output feature is
reshaped to its original size. Owing to MSA and MLP, the
Transformer can model the long-range relationship well and
further refine the extracted features. Summarily, equation
(3) makes the MLP projection of the results of self-attention
computing and generates the refined image features for the
subsequent upsampling operations.

3.2. Dual-Attention Mechanism in Encoder. Deep learning
features acquired through multiple convolutions inevitably
mix numerous noisy features. Meanwhile, gradient degra-
dation usually occurs when the segmentation model is too
deep. Hence, we need to make feature refinement and
strengthen the feature propagation procedure. To resolve the
two problems, we place the dual-attention mechanism be-
hind the encoder layer to suppress the noises and promote
model optimization. *e proposed dual-attention module is
shown in Figure 3.

As shown in Figure 3, channel attention focuses on
“what” is meaningful in the input image, whereas spatial
attention focuses on “where” is the most informative region.
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*e two attentions complement each other. Experiments in
[33] have demonstrated that sequential channel attention
and spatial attention are effective. Unlike [33], we add the
residual links after the convolution layer rather than before.
*is strategy has two evident advantages: First, it ensures the
same number of channels. Second, it makes the whole
procedure more efficient. Hence, each kind of attention
mechanism captures the most important features from its
perspective. And they complement each other to make more
effective feature refinement.

Here, we give the formal description of the dual-at-
tention mechanism. It first obtains the feature map
F ∈ RC×H×W through a 1× 1 convolution and then gets the
channel attention feature map Fc ∈ R

C×1×1. After Fc mul-
tiplying F, the spatial attention feature map Fs ∈ R

1×H×W is
acquired. Finally, we get the last feature map F′ ∈ RC×H×W.
It represents the final output of the dual-attention mecha-
nism. *e detailed equation of the dual-attention mecha-
nism is shown as follows:

F′ � F + F × Fc(F) × Fs F × Fc(F)( 􏼁. (4)

Equation (4) represents the output of the dual-attention
mechanism, which can suppress the noisy information in the
encoded features. *e following two subsections present
channel attention and spatial attention, respectively.

3.2.1. Channel Attention. In this subsection, we mine the
relationship between different channels to obtain channel
attention. We intend to find the channels that contain more
valuable information for retinal vessel segmentation. Hence,
the channel attention mechanism can retain the key in-
formation to the most extent.*e channel attention employs
the global average pooling and global max-pooling layers to
squeeze the featuremaps in the spatial dimension.*e global
average pooling layer captures the overall information of
image features, whereas the global max-pooling layer obtains
the difference information of these features. Figure 4 il-
lustrates the core idea of channel attention.

As shown in Figure 4, we implement global max-pooling
(Maxpool) and global average pooling (Avgpool) on the
input feature map F ∈ RC×H×W, respectively. Two feature
maps, namely Fc

avg and Fc
max, are obtained. *e two feature

maps are input into a two-layer MLP.*e neuron number of
the first layer in theMLP is C/r, where r is the decay rate.*e
neuron number of the second layer in the MLP is C. *e
MLPmodel uses RELU as its activation function. Finally, the
element-wise summation is implemented based on the two
outputs of the MLP model, namely F1 and F2. Sigmoid is
chosen to generate the final channel attention feature maps
Fc. Hence, the whole procedure of the channel attention can
be formulated as follows:

Fc � σ(MLP(Avgpool(F)) + MLP(Maxpool(F))) � σ W1 W0 F
c
avg􏼐 􏼑􏼐 􏼑 + W1 W0 F

c
max( 􏼁( 􏼁􏼐 􏼑, (5)

where Fc
avg and Fc

max represent the output of the two
pooling layers, respectively. σ is the Sigmoid activation
function. W0 ∈ R

C/r×C and W1 ∈ R
C×C/r represent the

corresponding weights of the MLP model, which are
shared for each output of the pooling layer. Fc represents
the acquired channel attention feature map, which mainly
depicts the valuable information in different feature
channels.

3.2.2. Spatial Attention. As described above, the channel
attention module focuses on capturing the key information
among different channels. As illustrated in Figure 5, unlike
the channel attention module, spatial attention emphasizes
the key segmentation information hidden in the spatial
dimension more.

We implement global max-pooling and global
average pooling on the input feature maps F′ generated
by the channel attention module. Two feature maps,
namely Fs

avg and Fs
max, are obtained in turn.*ey pay more

attention to the local key regions in the fundus images.
We concatenate the two feature maps and implement a
7 × 7 convolutional operation named f7×7, where the
padding is 3. *e sigmoid function is chosen to generate
the final spatial attention feature maps. Hence, the whole
procedure of the spatial attention can be formulated as
follows:

Fs � σ f
7×7 Avgpool F′( 􏼁􏼂 􏼃

Maxpool F′( 􏼁􏼂 􏼃
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� σ f
7×7

F
s
avg; F

s
max􏽨 􏽩􏼐 􏼑􏼐 􏼑,

(6)

where Fs
avg and Fs

max represent the output of the two pooling
layers. σ is the Sigmoid activation function. Fs represents the
feature map generated by spatial attention, which mainly
highlights the key spatial information hidden in feature
maps for blood vessel segmentation.

3.3. TiM-Net. TiM-Net derives from M-Net [17]. Hence, it
consists of the M-Net architecture, a new encoder combined
with the dual-attention mechanism (left side), the Trans-
former-based skip connection that transfers the refined
features to the decoder, and a new decoder combined with a
group of weighted side output layers. Please refer to Figure 1
to get the detailed structure of TiM-Net.

In our encoder, we first use max-pooling to downsample
the retinal vessel images and construct multiscale inputs for
encoding. *is strategy has two advantages: (1) multiscale
images offer more sufficient information to depict vessel
details and (2) it avoids the large growth of parameters and
makes TiM-Net prone to reproduce.*en we place the dual-
attention mechanism behind the encoder to suppress noisy
information. *e dual-attention mechanism is made up of
the channel and spatial attention modules. *ey
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complement each other and adaptively reassign suitable
weights to the corresponding encoded features.

Unlike TransUNet and TransFuse, we need not modify
the whole encoder. We only absorb the Transformer module
to the skip connection. We intend to re-encode feature maps
and capture the long-range relationship in the fundus im-
ages. Multiple image blocks are extracted and input into the
modi�ed skip connection to complete feature re-encoding.
Wemake full use of the MSAmechanism of the Transformer
module to further re-encode these feature maps. Owing to
the self-attention characteristic, the long-range relationship
among diverse feature patches is mined out. It is a signi�cant
complementarity to the local region-based convolutional
information.

In our decoder, we use four side layers to construct
di�erent outputs. Each side layer depicts the segmented
results from its perspective. �ey complement each other.
To directly utilize the predicted maps of each side layer,
we combine the loss Li of each side layer and create the
�nal loss L as shown in (7). Each side layer is weighted by
αi(i � 1, 2, 3, 4), respectively. We tune these weights
carefully (please refer to Table 7). �is can backpropagate
the loss of each side layer and the �nal loss to the earlier
layers of the decoder, which helps alleviate the gradient
degradation problem. Moreover, we take full advantage
of each side layer to obtain better segmentation results.
�e output loss function L is de�ned as follows:

L(V, v) �∑
M

i

αiLi V, v
(i)( ), (7)

where M is the output number. Li is the loss of the i-th side
output layer. Accordingly, v(i) denotes the weight of the i-th

side output layer. V represents the parameters of all the
standard convolutional layers.

4. Experiments

4.1. Data Sets and Evaluation Metrics. In this section, ex-
tensive experiments are conducted to verify the e�ectiveness
and generalization ability of TiM-Net on three public data
sets, including STARE [49], CHASEDB1 [50], and DRIVE
[51].

(1) STARE: It is a color image data set used for retinal
vessel segmentation, which includes 20 retinal im-
ages. Ten images of this data set are diseased, whereas
another 10 images have no disease. �e image res-
olution is 605× 700. We randomly select 14 images
for training and other 6 images for evaluation. From
the perspective of disease distribution, STARE is a
balanced data set, which indicates that it is relatively
easier to train the corresponding segmentation
model.

(2) CHASEDB1: It is a 999× 960 image data set con-
taining 28 retinal images of the central nervous
vascular reªex. No image contains disease.We use 20
images for training and other 8 images for evalua-
tion. Unlike the other two data sets, the corre-
sponding image size of CHASEDB1 is larger, which
indicates that we need to capture su�cient long-
range relationships for better segmentation.

(3) DRIVE: It includes 40 images. Seven images in this
data set are early diabetic retinopathy, whereas an-
other 33 samples are the fundus images without
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diabetic retinopathy. *e resolution of each image is
565× 584. We divide the training set and test set into
1:1. Unlike the above two data sets, it is an imbal-
anced data set, which means a relatively more
challenging segmentation task. But it is closer to
clinical conditions.

According to the above presentation, all the data sets
cover diverse diseases, data distributions, and image sizes.
*is setting has two advantages: (1) this can firmly validate
the effectiveness and robustness of our segmentation model
and (2) this can objectively mimic the real clinical diagnosis
procedure to some degree.

Similar to most methods of retinal image segmentation,
we use the accuracy (Acc), sensitivity (Se), specificity (Sp),
and area under ROC (AUC) metrics to evaluate each seg-
mentation model. Acc is used to evaluate the overall seg-
mentation performance of the model. Larger Acc means that
both objects (vessel or background) can be segmented ac-
curately. It is shown as follows:

Acc �
TP + TN

TP + TN + FP + FN
. (8)

Se is another important metric of retinal vessel seg-
mentation. It is the ratio of correct positive predictions to the
total number of positive predictions in the predicted results.
*is metric mainly evaluates the ability to recognize retinal
vessels (positive) in retinal images. *e better the Se value,
the lower the false negative rate (FNR). *e Se metric is
shown as follows:

Se �
TP

TP + FN
. (9)

Sp is another mainstream metric of retinal vessel seg-
mentation. It is the ratio of correct negative predictions to
the total number of negative predictions. It mainly evaluates
the ability to recognize background (negative) in retinal
images. *e better the Sp value, the lower the false positive
rate (FPR). Hence, the Sp metric is shown as follows:

Sp �
TN

TN + FP
. (10)

Here, TP, TN, FP, and FN denote the number of true
positives, true negatives, false positives, and false negatives,
respectively.

In addition, we introduce the AUCmetric to evaluate the
segmentation performance of each model. It is an important
overall metric. A larger AUC indicates satisfactory perfor-
mance, which indicates that the corresponding ROC curve is
very close to the (0, 1) point and far from the 45° diagonal of
the coordinate axis.

We used the PyTorch backend to implement all net-
works. We conducted all the experiments on our computer
server with four NVIDIA GeForce GTX 2080Ti GPUs. We
only need to resize each original image to 512× 512. *e
learning rate is 0.0015, and the batch size is 2. We compare
the TiM-Net model with numerous state-of-the-art
methods. We use Acc, Se, Sp, and AUC metrics to evaluate
each model more comprehensively.

4.2. Experimental Results

4.2.1. Quantitative Results on STARE. In this section, we
make detailed performance comparisons. We first show the
corresponding comparisons on STARE in Table 1. We use
two variants, namely TiM-Net-1 and TiM-Net-2, in this
experiment. TiM-Net-1 means that only Side7 is chosen as
the final prediction. TiM-Net-2 represents that SideOut is
the final prediction layer.

As shown in Table 1, TiM-Net-2 obtains the best Se and
Acc on STARE. Highly competitive Sp and AUC can be
observed too. First, the best Se, especially for TiM-Net-1,
means that TiM-Net can more accurately identify retinal
vessels (positive), which represents the best FNR among all
the models. More blood vessels can be offered for clinical
diagnosis and produce the effect. As described above, the
MSA mechanism of the Transformer module focuses on
capturing the foreground global vessel details. And the dual-
attention mechanism can suppress noisy interference well.
*ese two factors positively boost the FNR value. Second,
highly competitive Sp indicates that TiM-Net has a very
competitive FPR. Noisy information is suppressed to a
certain degree, which can improve the practicality of TiM-
Net and effectively assist in doctors’ clinical diagnoses.
Although reference [54] gets the best AUC, TiM-Net-2
outperforms it on any other metric. Compared with
[17, 54, 55], relatively higher overall performance is obtained
using TiM-Net-2. Certainly, the AUC value of our model
needs further improvement. Summarily, each model variant
is effective for retinal vessel segmentation on STARE,
demonstrating its better scalability and generalization
ability.

4.2.2. Quantitative Results on CHASEDB1. We show the
corresponding comparisons on the CHASEDB1 data set in
Table 2. We also use the two variants introduced above.

As shown in Table 2, TiM-Net-2 gets the best Acc and Sp,
competitive Se, and AUC. *e best Acc means that both
objects (vessels or background) can be segmented accurately.
More vessel details are offered for clinical diagnosis.*e best
Sp indicates that TiM-Net has the best FPR.*e background
(negative) of the CHASEDB1 images is better segmented.
And doctors can get more evident pathological observations.
Although reference [21] obtains the best AUC, TiM-Net-2
outperforms it on both Acc and Sp metrics. Compared with
[55], TiM-Net-2 achieves superior performance on the other
three metrics except for Se. Our model is relatively com-
petitive for retinal vessel segmentation on CHASEDB1.
However, the Se metric of TiM-Net needs further im-
provement. Some vessels are wrong and recognized as the
background. *is is mostly due to the visual similarity be-
tween the background and vessels. To solve this issue, we
may do some data preprocessing steps. Currently, we have
achieved satisfactory results without such preprocessing
steps. Moreover, we will further focus on feature learning
using some state-of-the-art methods, such as MAE [57] and
ViT [38]. Summarily, our model is effective for retinal vessel
segmentation on the challenging CHASEDB1 data set.
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4.2.3. Quantitative Results on DRIVE. We show the cor-
responding comparisons on the DRIVE data set in Table 3.
We use the two variants introduced above.

As shown in Table 3, TiM-Net-2 obtains the best Acc and
the other three competitive values on DRIVE. More vessel
details are offered for clinical diagnosis. And the background
(negative) of the DRIVE image is better segmented by TiM-
Net. Although reference [7] obtains the best Sp, TiM-Net-2
outperforms it on all other metrics. Similarly, although ref-
erence [21] gets the best Se and AUC, TiM-Net-2 beats it on
other metrics. Our model is relatively competitive on the
imbalance data set. It can generate sufficient effective infor-
mation for clinical diagnosis. Certainly, some vessels are seg-
mented as the background, which leads to low Se (please refer
to TiM-Net-1; the best Se will be obtained if we choose the
Side7 layer, which demonstrates the scalability of TiM-Net to
some degree).

Summarily, the above results demonstrate the effectiveness,
robustness, and scalability of TiM-Net. It achieves the best
overall performance on three public data sets. Unlike other
models, such as [7, 9, 21, 41, 55] and so on, which need
preprocessing steps, our model achieves satisfactory results
without such steps. Owing to very competitive performance,
TiM-Net offers sufficient information for the actual diagnosis.

4.2.4. Qualitative Results. In this section, we use one rep-
resentative retinal vessel image from each data set as an

example to more intuitively show the corresponding qual-
itative segmentation performance. Similar results can be
observed when we use other images. *e morphological
characteristics of the segmented retina can be used to assist
doctors in the diagnosis of diabetic retinopathy, glaucoma,
and age-related macular degeneration. *e qualitative re-
sults are shown in Figures 6 and 7. We compare our model
with M-Net and U-Net.

As shown in Figure 6, we choose some representative
local regions to zoom in. *e hard regions are mainly
composed of thinner blood vessel boundaries, whereas the
easy regions are made up of thicker blood vessel boundaries.
Owing to MSA, sufficient long-range relationship in the
fundus images is captured accurately to decode the key blood
vessel boundaries, especially for the CHASEDB1 data set.
Compared with U-Net, TiM-Net owns superior perfor-
mance for both easy and hard regions on STARE. Similar
results can be observed on DRIVE and CHASEDB1.
Compared with M-Net, our model has obvious advantages
for thinner blood vessels on DRIVE. More vessel details are
precisely segmented by TiM-Net, which can assist doctors in
observing lesion areas and making accurate diagnosis de-
cisions. Certainly, the corresponding performance on small
blood vessels needs further improvement. Summarily, TiM-
Net obtains the best overall qualitative segmentation per-
formance, which firmly supports the clinical diagnosis.

As shown in Figure 7, to further explore the clinical
practicality of TiM-Net, we compare the segmentation re-
sults of disease and nondisease cases on DRIVE. We choose
some representative local regions to zoom in. *e disease
cases usually have more noise, and the blood vessels in the
hard regions are more blurred than those in the nondisease
images. Hence, accurate blood vessel segmentation has
significant clinical value. Moreover, this has a certain in-
fluence on the segmentation result. First, by observing the
segmentation results of the disease images, we found that
our model had an advantage in obtaining more vascular
details, which can assist doctors in observing the lesions and
making correct diagnostic results. We conclude that this is
mostly due to the combination of the MSA and dual-at-
tention mechanisms. Second, by observing the segmentation
results of the nondisease images, we found that although
TiM-Net owns better segmentation results than other
models, there is no evident advantage because each

Table 1: Performance comparisons on STARE. *e best result of
each metric is shown as 0.9711. “—” means that the corresponding
value was not provided.

Model Acc ↑ Se ↑ Sp ↑ AUC ↑
U-Net [7] (2015) 0.9674 0.7371 0.9878 0.8855
Orlando’s model [52] (2017) — 0.7680 0.9738 —
Yan’s model [53] (2018) 0.9612 0.7581 0.9846 0.9801
Yan’s model [54] (2018) 0.9638 0.7735 0.9857 0.9833
M-Net [17] (2018) 0.9701 0.7446 0.9908 0.8848
DUNet [9] (2019) 0.9641 0.7595 0.9878 0.9832
IterNet [22] (2020) 0.9701 0.7715 0.9886 0.9881
EfficientNet [55] (2020) 0.9569 0.7554 0.9970 —
TiM-Net-1 0.9674 0.8109 0.9819 0.9454
TiM-Net-2 0.9711 0.7867 0.9880 0.9670

Table 2: Performance comparisons on CHASEDB1.*e best result
of each metric is shown as 0.9711.

Model Acc ↑ Se ↑ Sp ↑ AUC ↑
U-Net [7] (2015) 0.9684 0.7430 0.9842 0.8902
Wu’s model [56] (2018) 0.9637 0.7538 0.9847 0.9825
M-Net [17] (2018) 0.9709 0.7606 0.9855 0.8917
DUNet [9] (2019) 0.9610 0.8155 0.9752 0.9804
Wang’s model [42] (2019) 0.9661 0.8074 0.9821 0.9812
HANet [21] (2020) 0.9670 0.8239 0.9813 0.9871
IterNet [22] (2020) 0.9655 0.7970 0.9823 0.9851
EfficientNet [55] (2020) 0.9643 0.8477 0.9825 0.9448
Pyramid U-Net [23] (2021) 0.9639 0.8035 0.9787 0.9832
TiM-Net-1 0.9695 0.7933 0.9814 0.9384
TiM-Net-2 0.9711 0.7697 0.9865 0.9648

Table 3: Performance comparisons on DRIVE. *e best result of
each metric is shown as 0.9638.

Model Acc ↑ Se ↑ Sp ↑ AUC ↑
U-Net [7] (2015) 0.9604 0.7042 0.9854 0.9130
Wu’s model [56] (2018) 0.9567 0.7844 0.9807 0.9819
M-Net [17] (2018) 0.9634 0.7559 0.9835 0.8985
DUNet [9] (2019) 0.9566 0.7963 0.9800 0.9802
Ma’s model [41] (2019) 0.9570 0.7916 0.9811 0.9810
Wang’s model [42] (2019) 0.9567 0.7940 0.9816 0.9772
IterNet [22] (2020) 0.9573 0.7735 0.9838 0.9816
HANet [21] (2020) 0.9581 0.7991 0.9813 0.9823
TiM-Net-1 0.9616 0.8033 0.9770 0.9510
TiM-Net-2 0.9638 0.7805 0.9816 0.9682
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nondisease image has clearer vessel details. Summarily, our
model can better obtain the implicit relationship between
feature channels and long-range relationship in the fundus
images, to segment disease images accurately, which has
significant clinical value.

4.3. Other Optimizations. We use a group of side output
layers, including Side5, Side6, Side7, Side8, and SideOut, to
complete the final segmentation prediction. Each side layer
can be employed to make segmentation independently.
*en, we complete feature fusion using all the layers. So the
SideOut layer represents the weighted sum of each side layer.
*e weight αi (i� 1, 2, 3, 4) of each side layer is set equally
(0.25). And we obtain the corresponding experimental re-
sults shown in Table 4. We use Acc, Se, Sp, and AUCmetrics
to evaluate the model.

As shown in Table 4, on each data set, Side8 outperforms
Side5, Side6, and Side7 on the Sp and Acc metrics. *e
phenomena are more evident on CHASEDB1. *is means
that more significant information is decoded at the last side
layer, which helps improve the final performance. However,
the AUC of Side8 is unsatisfactory, especially for CHA-
SEDB1. Side8 is a relatively better choice if we only need a
lower FPR. Second, Side7 outperforms Side5 and Side6 on
the Acc, Se, and Sp metrics. *e phenomena are more ev-
ident on CHASEDB1. Much valuable information is still
retained in the Side7 layer. It is a firm foundation for the final
prediction. Similar to Side8, Side7 is another good choice if
we focus on a specific metric, such as Se or Acc. Moreover,
SideOut gets the best AUC and competitive Acc and Sp. All
these results demonstrate that different side layers com-
plement each other and they create a kind of joint force to
boost the final performance. Overall, the SideOut layer
obtains a more balanced performance among all the side
layers.

According to the results of Table 4, we get the following
to ascend rank order of all the side layers:
“Side5< Side6� Side7< Side8.” Hence, we must set different
weights for different side layers to further improve seg-
mentation performance. We tune αi (i� 1, 2, 3, 4) to 0.10,
0.25, 0.25, and 0.40, respectively. We use Acc, Se, Sp, and
AUC metrics to evaluate each model. All the results are
shown in Table 5. Moreover, to observe the performance
improvement of each layer, we average the corresponding
performance improvement of each metric on all the data sets
compared to Table 4 and draw Figure 8.

As presented in Table 5, on each data set, Side8 out-
performs Side5, Side6, and Side7 on the Sp and Acc
metrics. *e phenomena are more evident in the STARE
and DRIVE data sets. *is means that sufficient important
information is decoded accurately at the last side layer.
Certainly, the AUC of Side8 is unsatisfactory. Side8 is a
relatively optimal choice if we need the best overall
performance or a lower FPR. Second, Side7 outperforms
Side5 and Side6 on most metrics. *e phenomena are
more evident in DRIVE and STARE. Much valuable in-
formation is retained in Side7. It is another firm foun-
dation for weighted prediction. Moreover, the SideOut

layer gets the best AUC and Acc. *e best overall per-
formance is obtained by assigning a suitable weight to
each side layer. Different side layers complement each
other and create a kind of joint force to boost the final
performance.

It is worth noting that compared with Table 4, more
improvements of SideOut are found in Table 5. Four metrics
get performance improvements on STARE and CHASEDB1,
whereas three metrics get more evident improvements on
DRIVE. *ese results validate that we must use those sig-
nificant features to complete the final segmentation.
Meanwhile, different side layers complement each other and
contribute to boosting the final performance from their
views. As another suitable choice, we can choose Side7 if we
focus on improving a specific metric, such as Se or Acc
(please refer to the results of TiM-Net-1 in Tables 1–3). *is

Table 5: *e corresponding results of using different weights. *e
best value of each metric on each data set is shown as 0.9638. And
the improved metric of SideOut compared with Table 4 is shown as
0.9638.

Data set Side layer Acc ↑ Se ↑ Sp ↑ AUC ↑

DRIVE

Side5 0.9278 0.5225 0.9666 0.9195
Side6 0.9511 0.7578 0.9698 0.9552
Side7 0.9616 0.8033 0.9770 0.9510
Side8 0.9636 0.7704 0.9824 0.8945

SideOut 0.9638 0.7805 0.9816 0.9682

STARE

Side5 0.9273 0.5732 0.9594 0.9158
Side6 0.9522 0.7844 0.9676 0.9549
Side7 0.9674 0.8109 0.9819 0.9454
Side8 0.9712 0.7711 0.9896 0.8846

SideOut 0.9711 0.7867 0.9880 0.9670

CHASEDB1

Side5 0.9450 0.5985 0.9683 0.9332
Side6 0.9617 0.7557 0.9756 0.9519
Side7 0.9695 0.7933 0.9814 0.9384
Side8 0.9711 0.7637 0.9851 0.9141

SideOut 0.9711 0.7697 0.9865 0.9648

Table 4: *e experimental results of assigning the same weight to
each layer. *e best value of each metric on each data set is shown
as 0.9608.

Data set Side layer Acc ↑ Se ↑ Sp ↑ AUC ↑

DRIVE

Side5 0.9233 0.4562 0.9682 0.9026
Side6 0.9471 0.7107 0.9702 0.9437
Side7 0.9597 0.7263 0.9826 0.9106
Side8 0.9608 0.6944 0.9868 0.8944

SideOut 0.9596 0.7060 0.9844 0.9529

STARE

Side5 0.9117 0.6406 0.9355 0.8963
Side6 0.9421 0.7790 0.9567 0.9451
Side7 0.9610 0.7926 0.9761 0.9191
Side8 0.9668 0.7452 0.9865 0.8966

SideOut 0.9604 0.7783 0.9767 0.9476

CHASEDB1

Side5 0.9369 0.6162 0.9582 0.9239
Side6 0.9569 0.7523 0.9704 0.9491
Side7 0.9675 0.7827 0.9798 0.9295
Side8 0.9702 0.7222 0.9868 0.8721

SideOut 0.9676 0.7527 0.9818 0.9580
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demonstrates the effectiveness of TiM-Net from another
perspective.

As shown in Figure 8, from the perspective of Se, the best
performance improvement was achieved when Side8 was
chosen. From the perspective of Sp and Acc, Side5 achieves
the best improvement, which indicates that it has better
segmentation accuracy and a lower FPR. *e model variant
using Side5 segments blood vessels more correctly. How-
ever, this model requires a great sacrifice of vascular seg-
mentation performance. In terms of AUC, Side7 achieves the
best performance improvement, which implies that Side7
can distinguish negative and positive objects well. Overall,
SideOut achieves relatively better and more balanced per-
formance improvement, and its performance is more robust
and satisfactory, which could firmly support clinical
diagnosis.

Summarily, on the one hand, the SideOut layer obtains a
more balanced segmentation performance. On the other
hand, the best overall performance is obtained by setting a
suitable weight for each side layer. Different side layers
complement each other to boost the final performance.
*erefore, the TiM-Net model employs the new weighted
SideOut layer to make the final retinal vessel segmentation.

4.4. Ablation Analysis. In this section, we complete a group
of detailed ablation analyses, including the application of the
Transformer module (Subsection 4.4.1), and the real con-
tribution of each module in TiM-Net (Subsection 4.4.2).

4.4.1. Application of Transformer. To validate the effec-
tiveness of the modified skip connection, we make the
following experiments. We add the Transformer module
into the second layer (TransL2), third layer (TransL3), and
fourth layer (TransL4). We want to know where the best
position is to apply the Transformer module and how many
Transformer modules are needed for TiM-Net. We use Acc,

Se, Sp, and AUC metrics to complete our experiments. All
the results are shown in Table 6.

As shown in Table 6, for DRIVE and CHASEDB1, the
largest performance improvement can be observed in
TransL2.*is means that effective feature learning or feature
selection by the Transformer module is obtained at the top
layer, which contains much more valuable discriminative
information and long-range relationship in the fundus
images. And this information can better depict vessel details.
Contrarily, this information may be lost at the bottom layers
(i.e., TransL3). *is phenomenon is more evident in the Se
and AUC metrics. Similar results can be observed on
STARE. Second, we need not add too many Transformer
modules into the skip connection. *e worst performance is
observed when we use three Transformer modules, espe-
cially for DRIVE and STARE. On the other hand, too many
Transformer modules also need extra computing resources.
Certainly, the combination of TransL2 and TransL4 is a good
choice if we intend to use many more Transformer modules.
*is indicates that we should consider both top and bottom
information to better complete vessel segmentation. It is a
valuable conclusion that is closer to people’s objective
cognition.

In summary, we should tune the number and position of
the plug-and-play Transformer module carefully to obtain
the best segmentation performance.

4.4.2. Real Contribution of Each Module. TiM-Net consists
of several key components, such as the backbone, dual-at-
tention (DA) mechanism, and Transformer module. Each
component acts its role in retinal vessel segmentation. In this
subsection, we evaluate the real contribution of each
component. And we get a group of model variants by ab-
lation analysis. *is helps us recognize the bottleneck of
TiM-Net and light our future research. We use Acc, Se, Sp,
and AUC metrics to evaluate each model variant. All the
results are shown in Table 7. We call this procedure coarse-
grained ablation analysis. Here, “Backbone1” represents
U-Net [7]. “Backbone2” represents M-Net [17]. “DA” rep-
resents the dual-attention mechanism. “TransL2” is the
Transformer module. Meanwhile, fine-grained ablation
analysis results are shown in Figures 9 and 10. Figure 9
illustrates the average performance improvement of each
model variant on each metric relative to “Backbone1.”
Figure 10 illustrates the corresponding performance im-
provement relative to the “Backbone2.” For example, the
average improvement of “DA” on the Se metric relative to
“Backbone1” is calculated as follows:
((0.7787− 0.7042) + (0.7303− 0.7430) + (0.8132− 0.7371))/
3� 0.0498. Other values are computed in the same way.

As shown in Table 7, for DRIVE, using different back-
bones leads to different segmentation performances.
Compared with “Backbone1,” the corresponding Acc, Se, Sp,
and AUC of “Backbone2” improve about 0.36%, 4.72%,
−0.08%, and 4.89%, respectively. Similar results can be found
on the other two data sets, especially for STARE. *ese
results validate that M-Net is a better and more robust
backbone for retinal vessel segmentation.
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Figure 8:*e average performance improvement of each metric in
all the data sets.
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Second, for the challenging DRIVE data set, using the
dual-attention mechanism leads to evident improvements.
Compared with “Backbone1,” the corresponding Acc, Se, Sp,
and AUC of “Backbone1 +DA” improve about 0.34%,
7.45%, −0.37%, and 2.28%, respectively. Compared with
“Backbone2,” the corresponding Acc, Se, Sp, and AUC of

“Backbone2 +DA” improve about 0.29%, 3.55%, −0.36%,
and 0.15%, respectively. Similar results can be observed on
the other two data sets, especially for STAR. For STARE,
compared with “Backbone2,” the corresponding Acc, Se, Sp,
and AUC of “Backbone2 +DA” improve about 0.21%,
1.83%, 0.07%, and 0.47%, respectively. Hence, similar to

Table 7: *e corresponding coarse-grained ablation analysis results. *e best value of each metric is shown as 0.9726.

Data set Backbone1 Backbone2 DA TransL2 Acc ↑ Se ↑ Sp ↑ AUC ↑

DRIVE

✓ 0.9604 0.7042 0.9854 0.9130
✓ ✓ 0.9638 0.7787 0.9817 0.9358
✓ ✓ 0.9617 0.7136 0.9858 0.9345
✓ ✓ ✓ 0.9641 0.7523 0.9847 0.8858

✓ 0.9640 0.7514 0.9846 0.9619
✓ ✓ 0.9638 0.7869 0.9810 0.9634
✓ ✓ 0.9639 0.7330 0.9862 0.9620
✓ ✓ ✓ 0.9638 0.7805 0.9816 0.9682

CHASEDB1

✓ 0.9684 0.7430 0.9842 0.8902
✓ ✓ 0.9713 0.7303 0.9874 0.9172
✓ ✓ 0.9693 0.7553 0.9838 0.9312
✓ ✓ ✓ 0.9681 0.7617 0.9821 0.9062

✓ 0.9711 0.7523 0.9860 0.9643
✓ ✓ 0.9719 0.7692 0.9856 0.9679
✓ ✓ 0.9712 0.7635 0.9854 0.9670
✓ ✓ ✓ 0.9711 0.7697 0.9865 0.9648

STARE

✓ 0.9674 0.7371 0.9878 0.8855
✓ ✓ 0.9726 0.8132 0.9875 0.9626
✓ ✓ 0.9700 0.7681 0.9878 0.9677
✓ ✓ ✓ 0.9697 0.7351 0.9911 0.8970

✓ 0.9686 0.7665 0.9871 0.9633
✓ ✓ 0.9707 0.7848 0.9878 0.9680
✓ ✓ 0.9700 0.7759 0.9876 0.9700
✓ ✓ ✓ 0.9711 0.7867 0.9880 0.9670

Table 6: *e ablation analysis results from the application of the Transformer. Our backbone is M-Net [18]. *e best value of each metric is
shown as 0.9706.

Data set TransL2 TransL3 TransL4 Acc ↑ Se ↑ Sp ↑ AUC ↑

DRIVE

✓ 0.9629 0.7903 0.9797 0.9130
✓ 0.9627 0.6997 0.9882 0.8633

✓ 0.9628 0.7316 0.9852 0.8917
✓ ✓ 0.9602 0.7008 0.9857 0.8737
✓ ✓ 0.9625 0.7277 0.9853 0.8717

✓ ✓ 0.9601 0.6908 0.9862 0.8980
✓ ✓ ✓ 0.9532 0.6618 0.9813 0.9052

CHASEDB1

✓ 0.9706 0.7640 0.9846 0.9088
✓ 0.9702 0.7325 0.9863 0.8847

✓ 0.9705 0.7390 0.9862 0.8806
✓ ✓ 0.9686 0.7467 0.9837 0.9113
✓ ✓ 0.9696 0.7492 0.8946 0.8738

✓ ✓ 0.9678 0.6925 0.9864 0.8394
✓ ✓ ✓ 0.9638 0.6771 0.9832 0.8604

STARE

✓ 0.9700 0.7440 0.9907 0.8705
✓ 0.9685 0.7065 0.9925 0.8280

✓ 0.9690 0.7416 0.9899 0.8850
✓ ✓ 0.9658 0.7008 0.9901 0.8755
✓ ✓ 0.9690 0.7308 0.9908 0.8937

✓ ✓ 0.9667 0.7028 0.9906 0.8824
✓ ✓ ✓ 0.9618 0.6465 0.9906 0.8700
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M-Net, the dual-attention mechanism also plays an im-
portant role in TiM-Net.

*ird, applying the Transformer module leads to ev-
ident performance improvements. For STARE, compared
with “Backbone2,” the corresponding Acc, Se, Sp, and
AUC of “Backbone2 + TransL2” improve about 0.14%,
0.94%, 0.05%, and 0.67%, respectively. Similar results can
be observed in the other two data sets. However, com-
pared to the “Backbone2” and dual-attention mechanism,
the Transformer module plays a relatively secondary role
in our model. Hence, the “Backbone2” and dual-attention
modules are more important for retinal vessel segmen-
tation. *is also informs us to modify the pure Trans-
former structure in our future work. All the above

discussions belong to the scope of coarse-grained ablation
analysis.

Besides coarse-grained ablation analysis, we also make
fine-grained ablation analyses to better understand the real
contribution of each module. As shown in Figure 9, in terms
of AUC, using the “DA” or “TransL2” module can attain
more evident performance improvement in Backbone1.
Each module improves a specific evaluation metric. In terms
of Acc, adding both the “DA” and “TransL2” modules leads
to more evident performance improvement. Summarily,
eachmodule contributes to promoting the final performance
in the Backbone1.

As shown in Figure 10, in terms of Se, using the “DA”
module causes the largest performance improvement in
Backbone2. *is indicates that the “DA” module improves
the FNR of the proposed segmentation model. More vessels
are segmented accurately by TiM-Net. *is may offer more
detailed vessel information for the clinical diagnosis.
According to Sp, using the Transformer module obtains the
best performance. More background pixels are segmented
accurately by TiM-Net. We infer this is mostly due to the
long-range relationship captured by the MSA mechanism.
*e combination of the DA and Transformer modules
achieves the best AUC improvement. Notably, compared
with Figure 9, more balanced improvements are observed by
using the “DA” and “TransL2” modules. Hence, we combine
the two modules arbitrarily to obtain the best performance.
*e Transformer and “DA” modules are plug-and-play,
which firmly supports this requirement.

Summarily, according to the fine-grained ablation
analysis, second only to Backbone2, “DA” plays a more
significant role in TiM-Net. Certainly, the combination of
the “DA,” “TransL2” modules gets the best overall perfor-
mance in Backbone2. *is can firmly support clinical di-
agnosis. Moreover, these results are consistent with those of
coarse-grained ablation analysis.

5. Conclusion and Future Work

We propose a novel model, called TiM-Net, for effective
retinal vessel segmentation. To fully use multiscale infor-
mation, TiM-Net employs the multiscale images after
maximum pooling as its inputs. *en the dual-attention
mechanism is placed behind the encoder to lower the
negative influence of noisy features. Meanwhile, we make
feature re-coding using the MSA mechanism of the
Transformer module to capture the long-range relationship
in the fundus images. Finally, we create a weighted SideOut
layer to complete the final segmentation.

We evaluate TiM-Net on the DRIVE, STARE, and
CHASEDB1 data sets. *ey cover diverse diseases, data
distributions, and image sizes, which have certain clinical
and technological values. Compared with state-of-the-arts,
TiM-Net, including its variants, achieves competitive seg-
mentation performance. We make detailed ablation analyses
from coarse- and fine-grained perspectives. *e descending
order of the real contribution of all the modules is
“Backbone2>DA>TransL2.” Notably, we can obtain sat-
isfactory results without any data preprocessing steps, which
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Figure 9: *e average performance improvement of each metric
using the Backbone1 (U-Net) in all the data sets.
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Figure 10: *e average performance improvement of each metric
using the Backbone2 (M-Net) in all the data sets.
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have certain practicality for clinical diagnosis. Last but not
least, in terms of qualitative results, our model has an evident
advantage in the segmentation of the disease images, which
will be beneficial for the clinical diagnosis. Summarily,
owing to satisfactory performance, TiM-Net provides firm
technical support for clinical human-computer interaction
diagnosis. And it shows clinically satisfactory accuracy and
sensitivity to some degree.

Certainly, current researches including the proposed
TiM-Net have the following shortcomings: (1) it is difficult to
obtain the best performance on each metric; (2) they in-
evitably lose some vessel details owing to continuous
upsampling. Hence, in the future, we plan to modify the
internal structure of the Transformer module to improve the
corresponding FPR. We intend to get a trade-off between all
metrics. Additionally, we will combine the symmetric pat-
tern in Swin-Unet [48] with the coding pattern in MAE [57],
to retain sufficient vessel details and make the performance
of our model more outstanding on each metric.
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