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This study aimed to analyze the diagnostic value of multimodal images based on artificial intelligence target detection algorithms
for early breast cancer, so as to provide help for clinical imaging examinations of breast cancer. This article combined residual
block with inception block, constructed a new target detection algorithm to detect breast lumps, used deep convolutional neural
network and ultrasound imaging in diagnosing benign and malignant breast lumps, took breast density grading with mam-
mography, compared the convolutional neural network (CNN) algorithm with the proposed algorithm, and then applied the
proposed algorithm to the diagnosis of 120 female patients with breast lumps. According to the results, accuracy rates of breast
lump detection (94.76%), benign and malignant breast lumps diagnosis (98.22%), and breast grading (93.65%) with the algorithm
applied in this study were significantly higher than those (75.67%, 87.23%, and 79.54%) with CNN algorithm, and the difference
was statistically significant (P < 0.05); among 62 patients with malignant breast lumps of the 120 patients with breast lumps, 37
were patients with invasive ductal carcinoma, 8 with lobular carcinoma in situ, 16 with intraductal carcinoma, and 4 with
mucinous carcinoma; among the remaining 58 patients with benign breast lumps, 28 were patients with fibrocystic breast disease,
17 with intraductal papilloma, 4 with breast hyperplasia, and 9 with adenopathy; the differences in shape, growth direction, edge,
and internal echo of multimodal ultrasound imaging of patients with benign and malignant breast lumps had statistical sig-
nificance (P < 0.05); the malignant constituent ratios of patients with breast density grades I to IV were 0%, 7.10%, 80.40%, and
100%, respectively. In short, the multimodal imaging diagnosis under the algorithm in this article was superior to CNN algorithm
in all aspects; according to the judgment on benign and malignant breast lumps and breast density with multimodal imaging
features, the higher the breast density, the higher the probability of breast cancer.

1. Introduction

Breast cancer is a malignant tumor with the highest incidence
among women [1]. According to incomplete statistics, the
number of new patients of breast cancer in our country takes a
percentage of 12.5% in the total number of patients in the world
each year, and the mortality rate takes a percentage of 9.7% in
the global mortality rate [2]. According to study, the high
incidence of breast cancer is in the 70-80 year-olds in de-
veloped countries, while this brings forward for 20 years in our

country [3]. Moreover, for the differences in regions and
medical levels in our country, people’s understanding on breast
cancer is not deep enough in relatively backward areas, which
often results in advanced breast cancer when discovered [4].
Therefore, early and accurate diagnosis and treatment of the
early breast cancer have become a key in improving the cure
rate [5]. In addition to breast biopsy, imaging examination has
become a common and important method for medical diag-
nosis of breast cancer, including ultrasound (US), computer
tomography (CT), mammography, magnetic resonance
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imaging (MRI), and three-dimensional digital breast tomog-
raphy (DBT) [6,7]. Multimodal imaging technology is an
emerging technology in recent years. It combines multiple
imaging technologies and fusing information from different
modal images to obtain multiple aspects of the body at the same
time, so that information complementation and cross-valida-
tion are possible. The biological detection system based on
multimodal images can provide more comprehensive physi-
ological and pathological information for the research of life
and medical science and provide a quantitative detection and
evaluation platform for the development of advanced diagnosis
and treatment methods [8].

With the development of artificial intelligence and in-
formation technology, neural network has been applied in
medical images [9]. Elastography ultrasound imaging
technology can be used to evaluate the hardness of biological
soft tissues, and change of the hardness may indicate the
lump [10]. Pan et al. [11] use grid-based algorithm to seg-
ment breast lumps automatically, extract elastic features
from elastic ultrasound images, and analyze benign and
malignant lumps with the features of B-mode ultrasound.
Breast density is of vital importance in the diagnosis of breast
cancer. For individual difference of radiology staff and
addition of supervisory factors, there are many problems
with breast density grading, thus the grading accuracy needs
to be improved [12]. Kirschnick et al. [13] propose an 8-layer
convolutional neural network (CNN), which extracts the
imaging features of mammogram images, achieves a good
breast density grading, and divides the tissues into dense and
adipose tissues. Although numerous scientific researchers
have been committed to the studies on benign and malig-
nant breast lumps diagnosis and breast density grading,
most of the studies are single-imaging studies [14].

In this study, 120 female patients with breast lumps who
were admitted to our hospital from July 4, 2017, to July 5,
2020, were selected as the research samples, and all of them
underwent multimodal imaging examinations. Then, based
on the residual block and Google’s Inception module, an
artificial intelligence target detection algorithm was pro-
posed and applied to analyze the multimodal images of
patients. In addition, the imaging characteristics of patients’
benign and malignant lesions were analyzed to compre-
hensively evaluate the value of multimodal imaging based on
artificial intelligence target detection algorithms for early
diagnosis of breast cancer.

2. Materials and Methods

2.1. Research Objects. 120 female patients aged 20-76 years
with breast lumps in hospital from July 4, 2017, to July 5,
2020, were selected as research subjects. This study had been
approved by the Ethics Committee of the hospital, and the
patients and their families had understood this study and
signed the informed consent form.

The inclusion criteria were defined as follows: patients
with breast lumps less than 20 mm in diameter; patients not
receiving chemotherapy, surgery, or medication before
surgery; patients accepted multimodal imaging examina-
tions before surgery; patients with case results after biopsy.
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The exclusion criteria were determined as follows: pa-
tients not signing the informed consent; patients with in-
complete clinical data; patients withdrawn from experiment
midway due to personal reasons; patients in pregnancy and
lactation.

2.2. Multimodal Image Examination. Multimodal ultra-
sound examination used color Doppler ultrasound diag-
nostic equipment, which was equipped with elastic imaging
software Toshiba Aplio500/400, and the probe frequency
was 6-13 MHz. Before the examination, patient was kept in a
supine position under the guidance of medical staff, with
arms raised to ensure the exposure of breasts and axillas, and
then gray-scale ultrasound was used to give cross-sectional
scan. During the period, it needs to observe distribution,
size, and growth environment of the lesions, as well as their
connection with surroundings, etc. Finally, by switching to
the elastography mode, two-dimensional ultrasound image
and the corresponding ultrasound elastography image could
be observed via the real-time display function, and adjust-
ment should be given according to the specific situation to
obtain elastic ultrasound image.

Mammography adopted MammoNovation Siemens
FFDM with amorphous selenium solid-state detector, pixel
size 60 mm (micrometers), 14-bit contrast resolution, and
3328 x 4084 pixels in matrix, to save the image acquired.

2.3. Multimodal Imaging of Target Detection Algorithm under
Artificial Intelligence

2.3.1. Breast Lump Detection with the Ultrasonic Images
under Target Detection Algorithm. The target detection al-
gorithm was mainly divided into two-stage target detector
and single-stage target detector: the former had high ac-
curacy rate and took a long time for the interest area ex-
traction specially, and the latter had low accuracy rate and a
fast-running speed. According to the lumps and the char-
acteristics of real-time ultrasound imaging, single-stage
target detector was used to improve accuracy of breast lump
detection by improving the network and optimizing the loss
function. SSD model was constructed in this article by
combining residual block with Google’s inception block.
Deep CNN was affected by many factors, and small blocks
were reused in this article. Residual blocks of different
network scales are shown in Figure 1.

SSD is single-stage detector algorithm. It firstly draws
forward features and reverse optimization from CNN, ex-
tracts interest areas, and then performs nonmaximum
suppression to obtain the final prediction results. By setting
k frames in a certain position, targeting category c, and
confirming each frame with 4 offset values, the number of
convolution kernels K needed is as below:

K=(c+4)xk. (1)

The number of results in the extracted feature map m x n
is as below:
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FIGURE 1: Residual blocks of different network scales: (a) original block, (b) bottleneck block, and (c) inception block.
N=(c+4)xkxmxn. (2) H(P,Y) = H(P;) = -log(Py). (7)

The frame label of original image corresponds to the
object border in the feature map, and the default box is
matched with any groundtruth box (a). In this article,
jaccard overlap (b) between the two was selected to be
greater than the threshold 0.5, and intersection ratio of the
two can be expressed as below:

Clanbl  lanb|

= = , 3
laubl lal +|bl —lanbl| 3

j(a,b)

y?j =1 is used to indicate that a in series i matches with b
phase in series j in category g, and y?j = 0 does not match.
According to the matching strategy in this article, it must be
y,.qu 1. Total objective loss function can be expressed as
below:

[Lconf (X’ C) + ALIOC (X’ L, G)]
n

F(X,C,L,G) = (4)

In (4), n refers to the number of matches between the
two, loc refers to the input localization loss; conf refers to
confidence loss, which is loss function of Softmax. Im-
provement was given to Softmax in this article. Binary
grading is taken as an example, and cross entropy H is
expressed as below:

—log(P), Y=1,
H(P,Y) = (5)
—log(1—-P), otherwise,
P - P, Y =1, ©)
T 11- P, otherwise.

The equation below can be obtained by combining (5)
and (6):

After improving cross entropy and adding coeflicient 3,
the definition is as below:

8 {ﬁ, label = 1, (0<p<1) )
= <p<Ll).
"7 11-p label = -1,
By taking (8) in (7), it can be obtained in
H(Pr) = —Brlog(Pr). 9

The deeper the number of layers of many CNNs, the
smaller the resolution of characteristics patterns. When
giving prediction with # characteristics patterns, the size Si
of each characteristics pattern can be expressed as

(Smax — Smin) (K-1)
n—1
In (10), scale of the highest level S, ,, = 0.93 and that of

the lowest level S,;,, = 0.30 are taken. When expressing with
B, it is as below:

JK € [1,n]. (10)

SK = Smin +

B, :(1,2,3,%,%). (11)

The width and height of each default frame can be
calculated with

Wk = Sc\[B, (12)

Hf = (13)

S
e



When the ratio of width to height of the default frame is
1, one default frame is added, and there are total 6 frames in
each feature map. Algorithm flow is shown in Figure 2.

2.3.2. Benign and Malignant Breast Lumps Diagnosis with
Elastic Ultrasound Images under CNN. After obtaining
interest areas, it needs to subtract B-mode ultrasound images
from the elastic ultrasound images to obtain pure elastic
information, which is then converted into H channel images.
The conversion process is as below:

0.5[(r—g) +(r-b)] .
V(= b +(r=b) (g -b)

H= cos ! (14)

In (14), ranges of the red, green, and blue values of the
pixels in images , g, and b are in 0-360. In this article, data
was augmented by data enhancement to prevent overfitting,
including image selection, translation, and flipping. The
automatic feature extraction was realized before image
training. The convolution operation is expressed as below:

Epy =0y (Wi X Ep+ b )l + 1. (15)

In (15), [ and [ + 1 refer to previous and current layers; b
and W refer to bias and weight; E is output; and & is ac-
tivation function. After convolution, the maximum pooling
and depooling shall occur:

E} pooling = Max pooling (E)). (16)

The network of lumps grading is in the following layers,
and the nonlinear activation function Softmax is expressed
as below:

E; = softmax (W, X E,_; + b)),
(17)

a;

The subsequent process of CNN is deconvolution, which
is used to update weights and biases, and seeks the optimum
parameters by optimizing the multiclass cross entropy loss
function.

softmax =

p=E(1,X). (18)

In (18), 7 refers to all weights and biases and X refers to
input. Algorithm flow is shown in Figure 3.

2.3.3. Breast Density Grading with Mammography under
CNN. The thinking of breast density grading under CNN is
consistent with that of benign and malignant breast lumps
diagnosis. This article just added residual block in the deep
CNN to extract deeper features for the convenience of breast
density grading. Algorithm flow is shown in Figure 4.

2.4. Simulation Experiment

I. Breast lump detection with the ultrasonic image of
target detection algorithm: workstation was dell-7910,
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two E5-2640v4 Intel Haswells CPUs were configured,
the optimization algorithm was Adam, the maximum
number of iterations was 10,000, the initial learning
rate was 0.0001, weight was initialized randomly, and
bias was initialized to 0.

II. Diagnosis of benign and malignant breast lumps
with elastic ultrasound images under CNN: experi-
mental framework was Keras, Tensorboard was used to
monitor network training, workstation was dell-7910,
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two E5-2640v4 Intel Haswells CPUs were configured,
the optimization algorithm was Adam, Batch size was 8,
the maximum number of iterations was 6,000, and the
initial learning rate was 0.0001.

III. Breast density grading by mammography under
CNN: experimental framework was Keras, Tensor-
board was used to monitor network training, work-
station was dell-7910, two E5-2640v4 Intel Haswells
CPUs were configured, the optimization algorithm was
Adam, Batch size was 8, the maximum number of it-
erations was 3,000, the initial learning rate was 0.0001,
weight was initialized randomly, and bias was initial-
ized to 0.

2.5. Performance Evaluation Indicators. Accuracy rates of
the two algorithms in breast lump detection were compared,
and intersection and union ratio (IoU) was used to evaluate
the overlap between target area A and actual label B. When
IoU > 0.75, lump detection was considered to be correct, and
the accuracy rate should be calculated:

|ANB|

ToU = .
Y TlAuB]

(19)

The two algorithms were compared in the sensitivity,
specificity, and accuracy rate of benign and malignant breast
lumps diagnosis:

TP
itivity = ———— x 100%, 20
sensitivity TP + FN X % (20)
TN
ificity = ———— x 100%, 21
specificity TN+ FP X % (21)
+TN
accuracy rate = x 100%. (22)

Total

In (20), (21), and (22), TP refers to correct identification
of malignant lumps; TN refers to correct identification of
benign lumps; FP refers to incorrect identification of ma-
lignant lumps; FN refers to incorrect identification of benign
masses.

Accuracy rates of the two algorithms in breast density
grading were compared. Breast density can be divided
into four grades. Grade I is fat type with very low
density (0%-25%); Grade II is scattered glandular type
with low density (26%-50%); Grade III is uneven dense
type with relatively high and uneven density (51%-75%);
Grade IV is dense type with extremely high density (76%-
100%).

Pathological results and multimodal ultrasound imaging
features (shape, growth direction, edge, and internal echo) of
benign and malignant lesions of the patients were recorded,
and malignant constituent ratio of breast density grading of
the patients was calculated:

malignant number

constituent ratio = x 100%.

graded number of people
(23)

2.6. Statistical Method. The data processing of this study
adopted SPSS 22.0 version statistical software, the measure-
ment data was expressed as mean value + standard deviation
(" x+35), the counting data was expressed in percentage (%), and
the difference was statistically significant at P < 0.05.

3. Results

3.1. Pathological Results of All Patients. Figures 5 and 6 gave
pathological results of malignant and benign lumps, re-
spectively. The figure illustrated that there were 62 patients
with malignant breast lumps in the 120 patients with breast
lumps, including 37 patients with invasive ductal carcinoma,
8 with lobular carcinoma in situ, 16 with intraductal car-
cinoma, and 4 with mucinous carcinoma, and that there are
58 patients with benign breast lumps, including 28 patients
with fibrocystic breast disease, 17 with intraductal papil-
loma, 4 with breast hyperplasia, and 9 with adenopathy.

3.2. Comparison of Accuracy Rates of the Two Algorithms in
Breast Lump Detection. Figure 7 showed the comparison of
accuracy rates of the two algorithms in breast ump detection.
Figure 6 was a schematic diagram of breast lump detection
under the algorithm proposed in this study, where IoU >
0.75. The figure indicated that the accuracy rate of breast
lump detection under CNN algorithm was 75.67%, and that
under the algorithm proposed in this study was 94.76%. The
accuracy rate of breast lump detection under the algorithm
proposed in this study was significantly higher than that
under CNN algorithm, and the difference was statistically
significant (P < 0.05).(Figure 8)

3.3. Comparison of the Two Algorithms in Benign and Ma-
lignant Breast Lump Detection. Figure 9 shows comparison of
the two algorithms in benign and malignant breast lump
detection. The figure indicated that the sensitivity of benign and
malignant breast lump detection under CNN algorithm was
84.23%, the specificity was 82.74%, and the accuracy rate was
87.23%; the sensitivity of benign and malignant breast lump
detection under the algorithm proposed in this study was
97.13%, the specificity was 94.32%, and the accuracy rate was
98.22%. The sensitivity, specificity, and accuracy rate of benign
and malignant breast lump detection under the algorithm
proposed in this study were significantly higher than those
under CNN algorithm, and the differences all had statistical
significance (P < 0.05). Figure 10 shows the ultrasound images
of different breast masses. The first column was ultrasound
images of benign masses, and the second and third columns
were ultrasound images of malignant masses. The darker the
color (red), the harder the mass and the more severe the lesion.

3.4. Comparison of Accuracy Rates of the Two Algorithms in
Breast Density Grading. Figure 11 showed comparison of
accuracy rates of the two algorithms in breast density
grading. Figure 12 revealed that the accuracy rates of Grades
L, II, ITI, and IV and the overall accuracy rates under CNN
algorithm were 77.8%, 85.65%, 83.45%, 68.00%, and 79.54%,
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respectively, and those under the algorithm proposed in this
study were 97.89%, 96.23%, 96.45%, 87.54%, and 93.65%,
respectively. The accuracy rate of breast density grading
under the algorithm proposed in this study was significantly
higher than that under CNN algorithm, and the differences
were all significant statistically (P <0.05).

Figure 12 shows mammograms of different breast density
grades. Grade I was fat type; Grade II was scattered glandular
type; Grade III was uneven dense type; Grade IV was dense type.

3.5. Comparison of Multimodal Ultrasound Image Features of
Patients with Benign and Malignant Breast Lumps.
Figure 13 gave comparison of multimodal ultrasound image
features of patients with benign and malignant breast lumps.
The figure illustrated that 65.5% (38/58) of benign lumps had

regular shape, and 34.5% (20/58) had irregular shape, 70.7%
(41/58) showed parallel growth direction, and 29.3% (17/58)
showed nonparallel growth direction, 56.9% (33/58) had
complete edges, and 43.1% (25/58) had incomplete edges,
20.7% (12/58) gave even internal echo, and 79.3% (46/58) gave
uneven internal echo; and that 22.6% (14/58) of malignant
lumps had regular shape, and 77.4% (48/58) had irregular
shape, 95.2% (59/58) showed parallel growth direction, and
4.8% (3/58) showed nonparallel growth direction, 25.8% (16/
58) had complete edges, and 74.2% (46/58) had incomplete
edges, 71.0% (44/58) gave even internal echo, and 29.0% (18/58)
gave uneven internal echo. The differences in shape, growth
direction, edge, and internal echo of multimodal ultrasound
images of patients with benign and malignant breast lumps
were significant statistically (P <0.05).
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FiGgure 10: Comparison of ultrasound images of benign and malignant breast lumps. Note. A; ~ C; were elastic ultrasound images; A, ~ C,
were B-mode ultrasound images; A; and A, show benign lumps; B, B,, C;, and C, show the malignant lumps.

3.6. Malignant Constituent Ratio of Breast Density Grades of 11, III, and IV, respectively, and that malignant constituent
Patients. Figure 14 indicated malignant constituent ratio of ratios were 0%, 7.10%, 80.40%, and 100%, respectively, which
breast density grades of patients. The figure illustrated that  revealed the higher the breast density grade, the higher the
there were 4, 28, 56, and 32 patients in breast density GradesI, ~ probability of malignant lumps.



110

Journal of Healthcare Engineering

*
100
g 90
L
&
> 80
Q
g
=
3 70
<
60
50
1 I
—e— CNN

—o— Proposed algorithm

1T v ALL

F1GURE 11: Comparison of accuracy rates of the two algorithms in breast density grading. Note. * indicated that the differences compared to

CNN algorithm were significant statistically (P < 0.05).

(a) (b)
60 -
=
8 3
8 40 | 3
g .
& =)
=}
5 &
E 3
5 204 B
z 15
)
0

Rules
Parallel 4

=
<
—
=]
=1}
19
=
=)
—

B Benign
Malignant

Not parallel

Complete
Uneven

Incomplete

FIGURE 13: Comparison of multimodal ultrasound image features of patients with benign and malignant breast lumps. Note. * revealed that
the differences compared to benign lumps were significant statistically (P < 0.05).

4, Discussion

At present, breast cancer has become a major disabling and
fatal disease among middle-aged and elderly women
worldwide, greatly affecting the physical and mental health
of women. Vigorously publicizing the early detection, early
diagnosis, and early prevention of breast cancer can

effectively improve the 5-year survival rate of patients and
effectively reduce the economic burden on the family and
society of patients with breast disease [15-17]. Multimodal
ultrasound imaging technology has broad application
prospects in the field of breast cancer diagnosis. It can
conduct multiparameter and all-round evaluations for early
breast cancer patients and subsequent neoadjuvant
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chemotherapy, and better guide clinical evaluation and
prognosis improvement [18]. As inspired by multimodal
imaging omics, this article combined residual block with
inception block, constructed a new target detection algo-
rithm to detect breast lumps, used deep CNN and ultra-
sound imaging in diagnosing benign and malignant breast
lumps, took breast density grading with mammography, and
gave comparison with CNN algorithm. The results revealed
that the accuracy rate of breast lump detection under the
algorithm proposed in this study (94.76%) was significantly
higher than that under CNN algorithm (75.67%), and the
difference was statistically significant (P < 0.05). The sensi-
tivity (97.13%), specificity (94.32%), and accuracy rate
(98.22%) of benign and malignant breast lump detection
under the algorithm proposed in this study were signifi-
cantly higher than those under CNN algorithm (84.23%,
82.74%, and 87.23%), and the differences had statistical
significance (P < 0.05). The accuracy rate of breast density
grading under the algorithm proposed in this study (93.65%)
was significantly higher than that under CNN algorithm
(79.54%), and the differences were significant statistically
(P <0.05). This indicated that the multimodal imaging of
target detection algorithm under artificial intelligence pro-
posed in this article could improve the accuracy rates of
breast lump detection, benign and malignant breast lumps
diagnosis, and breast grading. Such results were similar to
the study results of Yoo et al. [19]. The combination of
multimodal imaging and deep CNN realizes breast lumps
diagnosis and breast density grading and indicates a higher
accuracy rate by comparing with traditional diagnostic
methods.

Later, it was applied to the diagnosis of 120 female
patients with breast lumps, and the results showed that there
were 62 patients with malignant breast lumps, including 37
patients with invasive ductal carcinoma, 8 with lobular
carcinoma in situ, 16 with intraductal carcinoma, and 4 with
mucinous carcinoma, and that there were 58 patients with
benign breast lumps, including 28 patients with fibrocystic
breast disease, 17 with intraductal papilloma, 4 with breast
hyperplasia, and 9 with adenopathy. 65.5% (38/58) of benign
lumps had regular shape, and 34.5% (20/58) had irregular
shape, 70.7% (41/58) showed parallel growth direction, and
29.3% (17/58) showed nonparallel growth direction, 56.9%

(33/58) had complete edges, and 43.1% (25/58) had in-
complete edges, 20.7% (12/58) gave even internal echo, and
79.3% (46/58) gave uneven internal echo; 22.6% (14/58) of
malignant lumps had regular shape, and 77.4% (48/58) had
irregular shape, 95.2% (59/58) showed parallel growth di-
rection, and 4.8% (3/58) showed non-parallel, 25.8% (16/58)
had complete edges, and 74.2% (46/58) had incomplete
edges, 71.0% (44/58) gave even internal echo, and 29.0% (18/
58) gave uneven internal echo. The differences in shape,
growth direction, edge, and internal echo of multimodal
ultrasound images of patients with benign and malignant
breast lumps were significant statistically (P < 0.05). This was
consistent with the study results of Ulaner (2019) [20], who
applied the FDG PET/CT to the initial stage of breast cancer,
treatment response assessment, and suspected recurrence
assessment, and compared it with other imaging methods; it
was found that FDG PET/CT was currently the imaging
method that had the greatest impact on the clinical man-
agement of breast cancer patients. Ultrasound elastography
could clearly identify the boundaries of breast lumps and
provide growth information of the lumps; thereby the
judgment on benign and malignant lumps might be given
with image features. There were 4, 28, 56, and 32 patients in
breast density Grades I, II, III, and IV, respectively, and
malignant constituent ratios were 0%, 7.10%, 80.40%, and
100%, respectively. This identifies with the study results of
Skaane et al. (2019) [21] and indicates that the risk of breast
cancer of patients in dense breast type is about 5 times higher
than that in nondense breast type, and the higher the breast
density, the higher the risk of breast cancer [22].

5. Conclusion

Inspired by multimodal imaging omics, this article com-
bined residual block with inception block, constructed a new
target detection algorithm to detect breast lumps, used deep
CNN and ultrasound imaging in diagnosing benign and
malignant breast lumps, took breast density grading with
mammography, and gave comparison with CNN algorithm.
Later, it was applied to the diagnosis of 120 female patients
with breast lumps. The results indicated that multimodal
imaging of target detection algorithm under artificial in-
telligence could improve the accuracy rates of breast lump
detection, benign and malignant breast lumps diagnosis, and
breast grading; the higher the breast density, the higher the
incidence of breast cancer, according to the judgment on
benign and malignant breast lumps and the density with
multimodal imaging features. However, the sample size of
patients selected in this study was small with simple source,
and the results may be biased. Follow-up studies should
further expand the inclusion of patient samples and conduct
multicenter and large-scale discussions. All in all, the results
of this article provided theoretical support for the early
diagnosis and treatment of breast cancer.
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