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Diabetic retinopathy is a main cause of blindness in diabetic patients; therefore, detection and treatment of diabetic retinopathy at
an early stage has an important effect on delaying and avoiding vision loss. In this paper, we propose a feasible solution for diabetic
retinopathy classification using ResNet as the backbone network. By modifying the structure of the residual blocks and improving
the downsampling level, we can increase the feature information of the hidden layer feature maps. In addition, attention
mechanism is utilized to enhance the feature extraction effect. .e experimental results show that the proposed model can
effectively detect and classify diabetic retinopathy and achieve better results than the original model.

1. Introduction

Diabetic retinopathy (DR) is a common chronic compli-
cation of the diabetic eye, which causes ischemia in the
retinal capillaries, leading to vasodilatation and rupture,
resulting in greater damage to the retina [1]. .ere are two
stages of DR: nonproliferative and proliferative. In the
nonproliferative stage, macular edema and local ischemia
occur in the retina and lead to vision loss. With the pro-
longation of the disease, nonproliferative lesions tend to
deteriorate into proliferative lesions, which cause micro-
vascular proliferation, retinal hemorrhage, and blindness.
Diabetic retinopathy is now prevalent in 2.6% of the world’s
population [2], a condition that occurs mostly due to the low
priority given to the disease and the delay in treatment due to
the lack of visibility of the DR lesion. Treatment at an early
stage of the disease can greatly reduce the impact of DR on
patients’ health.

Currently, in the medical field, the process of DR di-
agnosis, which is quite expensive and time-consuming, is
slow and complex, and the difference in the presence of
retinal lesions in the three stages of early lesions in DR is not
obvious, which often leads to misdiagnosis and other

conditions by physicians. With the development of artificial
intelligence, computer-aided medical systems [3] are
gradually applied to detect medical diseases, which can be
implemented by traditional machine learning algorithms or
deep neural networks. Researchers can achieve end-to-end
learning through convolutional neural networks, which
helps them learn lesion features and diagnose new images
afterward by simply using the lesion images and lesion
categories as training data. Compared with machine
learning, the algorithm can save the time of manual an-
notation of features and achieve higher diagnostic accuracy,
which has great potential for research.

In this work, we propose a residual network with im-
proved residual blocks incorporating an attention mecha-
nism [4] based on the ResNet [5] model and integrated
preprocessing of the images to accurately detect DR levels.
.e first part of this screening system is a preprocessing stage
in which we perform weighted image fusion, grayscale,
contrast enhancement, and resizing of the images to a
uniform size. After that, we used the preprocessed images as
training data to train the proposed model and used it for
testing the model metrics in the test set. .e experimental
results show that the network model can achieve efficient
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automatic detection and classification of diabetic retinop-
athy, which is of great practical importance for the correct
diagnosis of retinal diseases caused by diabetes.

2. Related Works

Owing to the increase in the hardware computing power and
the development of artificial intelligence, machine learning
and deep learning algorithms are widely used in the field of
medical imaging, and a new way of diagnosis and treatment
has been designed: the computer-aided medical system. For
DR, automatic screening systems can provide ophthal-
mologists with a reliable diagnosis in order to carry out the
next step of treatment, thus reducing human and material
consumption in the treatment process.

2.1. Principle Component Analyst and Neuron Networks.
In the early diagnosis of diabetic retinopathy, researchers
used a comprehensive analysis of the physical indicators of
patients to determine the type of lesion. Wu et al. [6] used
principal component analysis (PCA) to downscale the
patient’s physical indicators to obtain a composite variable
more suitable for lesion type prediction and used it to
construct a logistic regression model. .is method fully
considers the physical indicators of patients, making the
diagnosis results more practical, but it needs a lot of
manpower for data analysis. In subsequent studies, some
researchers have combined neural networks with principal
component analysis for DR classification. Bhatkar et al. [7]
output composite features through PCA and trained
multilayer perceptrons and generalized a feedforward
network to obtain the final DR lesion results; finally, 95%
accuracy, 94.45% sensitivity, and 100% specificity are ob-
tained. Compared with using PCA, it shows better detec-
tion accuracy, but manpower is still needed for data
collection.

2.2. Machine Learning Algorithms. Machine learning algo-
rithms are one of the commonly used methods in DR de-
tection. .is method does not need to analyze patient data
but reuses manually designed components for lesion rec-
ognition. Singh et al. [8] proposed a computer-based au-
tomated hybrid technique for the detection of
nonproliferative lesions and used a virtual support vector
machine (SVM) for the classification of the lesion degree.
97.1% sensitivity and 98.3% specificity were obtained, but the
small dataset used reduced the application value of the al-
gorithm. Roychowdhury et al. [9] introduced a computer-
aided screening system, which uses the MinIMas algorithm
to extract the features of lesions and utilizes the AdaBoost
algorithm to retain the features with more weight. .en, the
features are used to train the Gaussian mixture model and
the K-nearest neighbor classifier for DR lesion-type detec-
tion, and 100% sensitivity, 53.16% specificity, and 0.904
AUC are obtained. Compared with other advanced algo-
rithms, it shows better performance but does not consider
the detection of nonproliferative lesions.

2.3. Deep Learning Algorithms. .e end-to-end deep
learning algorithm can learn the features of the lesion image
and its category and automatically screen the DR lesion
category. Early researchers used simple models for detection
tasks, which had high classification efficiency but poor
classification performance. Pratta et al. [10] proposed a
convolutional neural network model with a total of 12 layers
and trained it with a large dataset of more than 80000
images. .e model finally obtained 75% accuracy, 30%
sensitivity, and 95% specificity. .is method has strong
generalization ability in lesion screening but does not
achieve better detection results. Bodapati et al. [11] used the
VGG16 [12] model for feature extraction, fused the feature
maps of multiple specific layers and used them for final
lesion detection, and finally obtained an accuracy rate of
84.31%.

Some researchers have improved the existing models for
DR detection tasks. Shrivastava et al. [13] used the Inconcept
V3 [14] network for feature extraction and used the
extracted feature map to train the SVM classifier with a
radial volume function and achieved 81.8% accuracy and
0.93 AUC. .is method applies a network model with a
complex structure for DR detection and improves the
performance of the model. Fan et al. [15] proposed an
adaptive weighted multiscale feature fusion neural network
based on MobileNet V3 [16] and obtained 85.31% accuracy,
0.726 sensitivity, and 0.931 specificity on the APTOS 2019
dataset. .is work introduced an adaptive weighted atten-
tion mechanism for feature fusion and improved the clas-
sification performance of the original model, but the small
dataset used cannot guarantee the generalization ability of
the model.

With the emergence of a variety of advanced neural
networks, researchers can combine multiple models to
obtain an integrated model. Compared with a single model,
the integrated model has better experimental indicators but
has higher requirements for experimental hardware. Jiang
et al. [17] integrated ResNet 152 [5], Inception V3, and
Inception-Resnet-V2 [18] for lesion detection of DR and
obtained 88.21% classification accuracy, 85.57% sensitivity,
and 90.85 specificity. Compared with a single model, the
integrated model shows higher performance and robustness
but increases the difficulty of training the model. Alyoubi
et al. [2] proposed a CNN512 model and a YOLO V3 [19]
model to determine the lesion grade by combining the DR
detection results of the two models and obtained 89% ac-
curacy on the DDR dataset, but the large volume of the
CNN512 model limits the application scenarios. Table 1 lists
the datasets used in the above-mentioned works and their
model evaluation indicators, including accuracy (ACC),
sensitivity (SEN), and specificity (SP).

Compared with the above-mentioned methods, our
proposed method has the following contributions: (1) .e
experimental results contain more comprehensive model
evaluation metrics. (2) .e use of open-source datasets
provided by the Kaggle platform with a large data volume
ensures the strong generalization ability of the model and its
application value. (3) Deep learning algorithms are used for
DR lesion screening without consuming a lot of human
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resources. (4) Compared with other advanced models, our
method has better results in detecting the DR lesion stage.
(5) By improving the original structure of the residual
module and incorporating the attention mechanism, the
proposed model has low requirements for experimental
hardware and is easy to train the weight parameters of each
layer.

3. Proposed Method

In this work, we aim to train several improved models using
a data-enhanced and image-preprocessed fundus image
dataset and select the best performing model. For the
complex structure of retinal images and the incon-
spicuousness of lesions, it is often necessary to choose a
neural network model with a more complex structure and a
deeper network in order to improve the feature extraction
effect. .erefore, we choose the ResNet network model as
the backbone network and improve the feature utilization by
modifying the structure of the residual blocks and intro-
ducing the attention mechanism [4]. .e model structure is
shown in Figure 1.

3.1. Backbone Network. ResNet is a deep network structure
proposed by He et al. [5]. Compared with other network
structures, ResNet uses a residual block to solve the problem
of network degradation and gradient disappearance in the
deep network; the residual block is shown in Figure 2, and a
convolutional layer of 1× 1 is used instead of 3× 3 to per-
form the upscaling operation to reduce the computation so
that the network depth is increased without degrading the
performance. Let us consider H(x) as the feature of the next
layer and F(x) as the output feature of the feature map
calculated by the convolution layer, with x denoting the
original feature map; then the relationship between F(x) and
H(x) is as follows:

H(x) � F(x) + x. (1)

We adopt a shortcut connection in the residual block to
feed the input feature x to the next layer. When the residue
calculated by this layer is 0, we can still take the original
feature x as the output so that the next layer can learn new
features. Formally, in this paper, we consider a residual unit
expressed as

yl � h xl(  + F xl, Wl( ,

xl+1 � f yl( .
 (2)

Here, xl and xl+1 are the input and output of the lth
residual unit, respectively. .e function F(x, W1) represents
the learned features of the residual block, h(xl)� xl is the
constant mapping, and the function f(yl) is the activation
function of the structure.

3.2. Improved Attention Mechanism. .e convolutional
block attention module (CBAM) [4] is formed by the
channel attention module (CAM) [14] and the spatial at-
tention module (Sam) [4] in series, and the feature map is
processed by the CAM and SAM to obtain the features that
retain important information in the channel and spatial
dimensions. .e weight matrix in the SAM is calculated
from all the images in one batch; the dataset used in this
paper utilizes data augmentation, and different sampling
methods make the important features in each image be
located differently. Hence, the weight matrix cannot inte-
grate the information of all images well, resulting in the loss
of features in the processed feature map and serious
underfitting of the model in the experiment. .e improved
attention module is shown in Figure 3. .e computation
process of this module is as follows, where F is the input
feature map and xout is the output feature map of this
module:

xout � CAM(F) + SAM(F),

� Mc(F) × F + Ms(F) × F.
(3)

In the CAM, the feature map F is input into the MLP
network through a global pooling operation based on spatial
dimension, the output feature map is fed into the MLP
network, and finally, the add operation is performed and
activated by the sigmoid function to obtain the channel
attention feature; the output feature is obtained by multi-
plying the feature with the feature map F element by ele-
ment. .e CAM calculation process is as follows:

Mc(F) � σ(MLP(AvgPool(F))) + MLP((MaxPool(F))). (4)

.e feature map F is used as the input feature map of the
SAM, and after the global pooling operation based on the

Table 1: Summary of related works.

Method Number of classes Dataset
Performance measure

Limitation
ACC SEN SP

Wu et al. [6] 3 Private dataset – – – High manpower requirements
Bhatkar et al. [7] 2 Private dataset – 1.0 0.5316
Singh et al. [8] 4 DRIVE and STARE – 0.971 0.983 Small dataset used
Roychowdhury et al. [9] 2 DIARETDB1&Messidor 94.23% 0.909 0.957 Proliferative lesions were not considered
Pratta et al. [10] 5 Kaggle 85.32% 0.726 0.931 Low screening accuracy
Bodapati et al. [11] 5 APTOS 2019 84.31% – – Weak generalization capability
Shrivastava et al. [13] 5 Kaggle 81.8% 0.802 0.932 No complete model evaluation
Fan et al. [15] 5 APTOS 2019 85.32% 0.726 0.931 Small dataset used
Jiang et al. [17] 5 Private dataset 88.21% 0.855 0.908 Difficulty of training model
Alyoubi et al. [2] 5 DDR and APTOS 2019 89.0% 0.89 0.973 Huge model structure
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channel, the output feature map is concatenated, and the
spatial attention feature Ms(F) is obtained by the convolu-
tion operation of the 7× 7 matrix and the activation of the
sigmoid function. .e output feature is obtained by mul-
tiplying the feature map F element by element, and the
calculation process is as follows:

Ms(F) � σ f
7×7

([AvgPool(F); MaxPool(F)]) , (5)

where σ is the sigmoid activation function and Ms(F) is the
weight matrix of the spatial dimension of the feature map F.

3.3. Residual Block. Before inputting the images into the
model, the pixel values need to be normalized to float
variables that are easier to handle by the GPU. We find that
the values of the elements in the feature matrix obtained
from the deeper layers of the network become very small
after the normalized image is input into the model, which
results in a large amount of missing feature information in
the feature map processed by the attention mechanism, and
thus, the input feature map needs to be enriched with in-
formation. In the following, we propose a solution to this
problem from three aspects.

3.3.1. Activation Function. .e residual block structure in
ResNet uses the ReLU activation function.When the input is
negative, the output of the ReLU function is 0, and its first
order derivative is also 0, which causes the death of neurons

in this function, resulting in partial loss of feature infor-
mation in the feature map..erefore, all activation functions
in the network are replaced with leaky ReLU activation
functions, which can use this part of the feature information
and learn it so as to retrain the feature information useful for
classification. .e expression of leaky ReLU is as follows:

f(x) �
x, if x> 0,

α e
x

− 1( , if x≤ 0.
 (6)

3.3.2. Bottleneck Layer. .e bottleneck layer in the ResNet
structure uses three convolutional layers to implement the
upscaling operation of the feature map. .e number of
output channels of the 3× 3 convolutional kernel in the
bottleneck structure are set as n, the number of output
channels of the 1× 1 convolutional kernel as m, and the
number of output channels of the bottleneck structure as c.
Chu et al. [20] demonstrated that when m/n is smaller, the
residual block has more expression capability and less re-
dundancy of the feature map, so we improve the dimen-
sioning structure in the residual block. In the original
structure, c�m; now, we reducem so thatm+ n� c, and the
output feature map of the bottleneck layer retains some of
the feature information of the feature map before dimen-
sioning; the improved attention mechanism is added to the
residual block to enrich the feature information that can be
extracted from the bottleneck layer. .e structure of the
improved residual block is shown in Figure 4.

4. Experiments

To confirm the performance enhancement effect of intro-
ducing the attention mechanism and improved residual
blocks on multiclassification tasks, three architectures were
constructed to detect diabetic retinopathy in five stages,
which are the ResNet50 model, ResNet50 model with im-
proved residual blocks, and ResNet50 model with the at-
tention mechanism and improved residual blocks. We have
thoroughly evaluated the proposed method and compared it
to the existing state-of-the-art segmentation methods to
demonstrate the superiority of our model in the classifica-
tion of diabetic retinopathy.

4.1.Data Preparation. .e dataset used in this experiment is
from the diabetic retinopathy detection competition on the
Kaggle platform, with retinal images provided by EyePACS.
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Figure 1: Architecture of ResNet.
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Figure 2: Improved residual block structure.
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.e dataset contains 35126 high-resolution retinal images,
which are divided into five categories according to the stage
of the lesion, with a small proportion of retinal images in the
severe and proliferative lesion stage. Based on the existing
dataset, the data volume was increased to 40000 through
data augmentation, 35000 of which are taken as the training
set and 5000 as the verification set and test set so as to test the
generalization ability of the model to new data and adjust the

hyperparameters in the model in real time so as to prevent
overfitting. .e data distribution is shown in Table 2.

Figure 5 presents a few example retinal images of different
stages of diabetic retinopathy from the dataset, where
Figure 5(a) shows a healthy retina, Figure 5(b) shows a mildly
diseased retina, Figure 5(b) shows amoderately diseased retina,
Figure 5(c) shows an image of a severely diseased retina, and
Figure 5(d) shows an image of a proliferative-diseased retina.
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Figure 4: Improved residual block structure.
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4.2. Image Preprocessing. .ere are a few incomplete or all-
black images in the dataset, and the original retinal image
contains a large number of black edges without information,
which need to be screened out in advance. First, the position of
the optic disc is found by graying and edge detection, and the
radius of the minimum surrounding circle is found to cut the
optic disc. Second, most retinal images have uneven illumi-
nation. .e image with balanced illumination is obtained by
graying the original image, Gaussian filtering, and weighted
image fusion [21]. Finally, because the sizes of pictures in the
dataset are different, the dimensions of the images are all
resized to 512× 512 pixels. An example of the original image
and the preprocessed image is shown in Figure 6.

4.3. Evaluation Metrics. .e performance of the proposed
method is evaluated based on accuracy (ACC), kappa score,
F1-score, sensitivity (SEN), specificity (SP), and precision
(PRE). .e mean values of sensitivity, precision, and
specificity of the model at multiple lesion stages are used as
evaluation metrics. .e number of true positives is set as TP,
the number of false positives as FP, the number of false
negatives as FN, and the number of true negatives as TN in
the prediction results; then the evaluation indexes of each
category are calculated as follows.

For multiclassification tasks, the most intuitive evalua-
tion metric is the all-category accuracy rate, which is the
ratio of the number of correctly classified samples to the total
number of samples, and it is denoted as

Accuracy �
TP + TN

TP + TN + FP + FN
. (7)

Precision is the proportion of the number of samples
predicted to be positive that are true positives, and it is
denoted as

Precision �
TP

TP + FP
. (8)

Sensitivity is the proportion of true positive samples that
are predicted to be positive, and a higher value indicates that
fewer of the positive samples are missed; it is denoted as

Sensitivity �
TP

TP + FN
. (9)

Specificity indicates the proportion of true negative sam-
ples that are predicted to be negative, and a larger value in-
dicates fewer false positives in negative samples; it is denoted as

Specificity �
TN

TN + FP
. (10)

(a) (b) (c)

(d) (e)

Figure 5: Different categories of DR severity images. (a) No DR. (b) Mild DR. (c) Moderate DR. (d) Severe DR. (e) Proliferate DR.

Table 2: Retinal image data distribution.

Dataset
DR severity

No DR Mild Moderate Severe Proliferate DR
Training set 7000 7000 7000 7000 7000
Test set 1000 1000 1000 1000 1000
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Kappa score evaluates the consistency of the model’s
classification by comparing the model’s predictions with the
labeled true labels, and it is denoted as

Kappa Score �
ObseredAccuracy − ExpectedAccuracy

1 − ExpectedAccuracy
. (11)

.e F1 score is the summed average of sensitivity and
precision, which is used for the comprehensive evaluation of
the model, and it is denoted as

F1 Score � 2 ×
Sensitivity × Precision
Sensitivity + Precision

. (12)

4.4. Configuration. .e proposed network architecture is
implemented using the Python language and the Pytorch
framework. All experiments were conducted on an NVIDIA
Tesla P100 GPU with 16GB of memory. .e initial learning
rate of the neural network used in the proposedmethod is set
to 3∗ 10− 4. In our experiments, we used multiple sets of
initial learning rates and found that the convergence rate of
the model decreases fastest when the learning rate ap-
proaches 1∗ 10− 4. In our experiments, we found that the
convergence of the model was slower after every 80 epochs,
so we set the learning rate decay period to 80 epochs and the
decay rate to 0.5. .e proposed model was trained close to
270 epochs, and the loss function was nearly smooth, so we
set each model to train 300 epochs to evaluate the test results
of the model. To prevent the model from overfitting in the
later stage of training, L2 regularization is added to the loss
function of the model, and the regularization parameter is
set to 1∗ 10− 3 to prevent difficulties in training the model. In
this experiment, DR lesion detection is a multiclassification
task, so the cross-entropy function is used as the loss
function, and the Softmax classifier is chosen as the classifier.
.e expression of the cross-entropy function is shown as
follows:

L �
1
N


i

Li � −
1
N


i



M

c�1
yiclog pic( . (13)

Here, M is the number of categories, yic is the conformity
function, which takes 1 when the true category of sample i is
c; otherwise, it takes 0, and pic denotes the predicted
probability that the observed sample i belongs to category c.

5. Experimental Results

We have thoroughly evaluated our three constructed con-
volution neural networks and compared them to existing
state-of-the-art classification methods in references
[2, 11, 13, 15]. .e evaluation results are shown in Table 3.

We used the three constructed convolution neural
networks for training and testing the preprocessed dataset.
Table 3 shows the experimental results of our three con-
structed network frameworks and other SOTA algorithms.
.e results show that the ResNet model with the improved
residual block shows a small improvement over the original
model in each metric because the improved residual block
can provide richer image features to the Softmax classifier to
improve the detection of lesion stages. Our proposed model
performs better than ResNet and ResNet with the improved
residual block in the task of DR lesion classification, and we
believe that the improved attention mechanism makes full
use of the feature maps containing more information, which
enables the classifier to make better judgments. .e special
structure of the residual block makes the model structure
deeper, and the feature maps in the deeper layers of the
network have a higher field of perception so that the model
can learn the feature information that cannot be perceived
by the shallow network better.

Figure 7 presents the confusion matrix of our model and
ResNet for the lesion classification task, with the true labels
on the vertical axis and the model predictions on the hor-
izontal axis. We can see that some of the images in categories
1, 2, and 3 are incorrectly classified into other categories; this
is because the difference between the undiseased retina and
the retina at the beginning of the lesion is small, but most of
each category is classified as the true category. Both pro-
liferate DR and severe DR were correctly classified, indi-
cating that the problem of unbalanced data volume of each
category in the original data is solved through data aug-
mentation, and the model has learned the lesion charac-
teristics of these two categories well.

.e accuracy curves of the proposed model and ResNet
are shown in Figure 8. It shows that the twomodels converge
gradually after more than 200 epochs of training; in addition,
the accuracy rates stabilize in the validation set, but the
accuracy curves of the proposed model still have small
fluctuations, which we believe is due to the instability of each
value in the weight matrix output by the attention

(a) (b)

Figure 6: Retinal images. (a) Original retinal image. (b) Processed retinal image.
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Table 3: Comparison between the proposed models and the state-of-the-art model.

Model
Performance measure

ACC (%) F1 Score Kappa score SEN SP PRE
Bodapati et al. [11] 84.31 – – – – –
Shrivastava et al. [18] 81.8 0.862 – 0.802 0.932 0.89
Fan et al. [15] 85.3 0.853 0.773 0.727 0.931 0.744
Alyoubi et al. [2] 89.0 0.849 – 0.89 0.973 0.812
ResNet50 [2] 88.4 0.882 0.859 0.884 0.971 0.881
ResNet50 (improved residual block) 88.9 0.889 0.865 0.889 0.972 0.89
Proposed 91.3 0.912 0.893 0.913 0.978 0.912
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Figure 7: Confusion matrixes for the severity prediction task. (a) ResNet50. (b) Proposed.
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Figure 8: Accuracy curve of models. (a) ResNet 50. (b) Proposed.
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mechanism. After training, our proposed model can achieve
a maximum classification accuracy of 91.3%, which is 2.9%
better than that of the original model.

Table 4 shows the assessment metrics of our proposed
model applied to each category in the diabetic retinopathy
class classification task. Our proposed model achieves 0.893
on the kappa score, indicating that the predicted classifi-
cation results of the model are in good agreement with the
actual results. In addition, the F1 score reached 0.912, in-
dicating that the model has high confidence in the identi-
fication results of lesions at all stages.

6. Discussion

In this work, we propose a ResNet network based on im-
proved residual blocks and the attention mechanism for DR
screening, which achieves satisfactory performance on the
Kaggle dataset and provides an idea of how to apply the
attention mechanism to medical images for feature ex-
traction and improvement of datasets containing data with
different distributions. .e experimental results show that
our proposed model achieves better classification results on
the preprocessed dataset and a large number of images from
the Kaggle dataset are utilized for model training to ensure
the generalization and robustness of the model. Compared
with some other SOTA algorithms, our proposed model
shows better performance.

In addition, we found that using the attention mecha-
nism directly to replace the original residuals or adding them
outside the residual blocks caused the model to underper-
form the original model. We believe that the global pooling
operation used by the SAM in calculating the weight matrix
combines the feature importance of all images in one batch
while the images are rotated after data augmentation so that
the feature information is distributed differently; in addition,
the output feature maps of the attention mechanism often
contain less information. .erefore, the CAM is more
suitable for this kind of task, and the model can perform
better by connecting the channel attention mechanism and
the spatial attention mechanism in parallel to achieve the
complementary information of the two feature maps.

Table 4 shows that the improved model clearly performs
better in the severe and proliferative DR categories, which is
caused by the highest percentage of data-enhanced images in
these two categories. For instance, the number of images in
the severe stage in the source dataset only accounts for 2.4%
of the total dataset, and the number of images in the pro-
liferative stage is 1.8% of the total dataset, which greatly
limits the ability of the model to diagnose lesions in these
two stages and is more prone to overfitting. In order to solve
the problem of data imbalance in the original dataset, data
augmentation is an essential method, but the contrast in
noise points increases with the enhancement of image
features, which is detrimental to the classification of lesion
stages. With the development of hardware computing
power, a new trend in the field of diabetic retinopathy stage
discrimination has emerged: multi-model integrated dis-
crimination of the lesion level. For example, Liang et al. [22]
trained AlexNet [23], ResNet50, and VGG16 to discriminate

the lesion stage, and the final result was 79% accuracy by
combining the three discriminations.

In the course of our work, we think the proposedmethod
still has some shortcomings: (1) .e dataset used in the
proposed method is based on preprocessing operations such
as Gaussian filter transform and weighted image fusion, and
there is a small decrease in the detection accuracy when the
unpreprocessed fundus images are detected. (2) .e ResNet
50 network structure contains a large number of residual
modules, which provide the input feature maps for the
deeper layers by short-circuiting the connections but at the
same time occupy some additional memory, thus imposing
certain requirements on the equipment used, and further
research on the optimization of the model is still needed in
the future. (3).e image data to be detected should have the
same data distribution as the dataset used in the experiment
when the proposed model can achieve the best screening
effect.

In the future, we can use a network suitable for dis-
criminating the three stages of no DR, mild DR, and
moderate DR to perform a comprehensive screening with
the proposed model and improve the convolutional layers in
the proposed model such as using asymmetric convolution
instead of normal convolutional kernel to deepen the net-
work while improving the efficiency of the model and in-
crease the size of the input image to make the image details
clearer. Further training and tuning of the system on a more
balanced dataset should further improve the performance of
the model.

7. Conclusion

Using an effective neural network-based screening system
and scanner for regular scanning and diagnosis is beneficial
for the mitigation and treatment of ocular diseases in dia-
betic patients. In this study, we proposed an effective and
stable lesion severity classification model for the diabetic
retinopathy classification task. By modifying the upper
sampling level and residual structure of ResNet, we can get
richer feature maps and use them for feature extraction of
the attention mechanism. .us, the feature map containing
more important information can be used for the classifi-
cation task of the classifier. An accuracy of 0.913, F1 score of
0.912, and kappa score of 0.893 were achieved, which are
2-3% higher than those of the original model and have
demonstrated some potential for application in actual lesion
diagnosis. Recent research in this area has shown a trend of
combining image segmentation algorithms with image
classification algorithms to improve model performance. In
the future, this study will be expanded to other deep learning

Table 4: .e performance metrics of the DR stages.

Stage Sensitivity Specificity Precision
No DR 0.801 0.959 0.832
Regent’s canal 0.942 0.975 0.901
Moderate 0.823 0.964 0.853
Severe 0.996 0.999 0.985
Proliferate DR 1.0 0.997 0.987
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models combing image segmentation algorithms, and more
datasets will be employed to achieve data balance and im-
prove the generalization ability of the models.
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