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Human physical activity identification based on wearable sensors is of great significance to human health analysis. A large number
of machine learning models have been applied to human physical activity identification and achieved remarkable results.
However, most human physical activity identification models can only be trained based on labeled data, and it is difficult to obtain
enough labeled data, which leads to weak generalization ability of the model. A Pruning Growing SOMmodel is proposed in this
paper to address the limitations of small-scale labeled dataset, which is unsupervised in the training stage, and then only a small
amount of labeled data is used for labeling neurons to reduce dependency on labeled data. In training stage, the inactive neurons in
network can be deleted by pruning mechanism, which makes the model more consistent with the data distribution and improves
the identification accuracy even on unbalanced dataset, especially for the action categories with poor identification effect. In
addition, the pruning mechanism can also speed up the inference of the model by controlling its scale.

1. Introduction

Appropriate amount of exercise can promote human blood
circulation, help bone and muscle growth, enhance car-
diopulmonary function, and also prevent diabetes, hyper-
tension, and other diseases [1, 2]. )erefore, human activity
monitoring is necessary for human health management.
However, if the assessment of the amount of exercise only
depends on the personal impression, the evaluation results
are inevitably too subjective. )erefore, a reliable human
physical activity identification system is needed to identify
the daily human movements. )e development of micro-
electromechanical sensors, Internet of )ings technology,
and high-speed low-power communication networks
makes it easier to implement the task of human physical
activity identification by using wearable sensors to form a
human sensor network. )e wearable device can perform
the all-weather and uninterrupted collection of the activity
information of the wearing part without affecting the daily
activities of the human body. A human sensor network
composed of multiple wearable devices can estimate the
pose of different parts of the human body as well as the

heart rate or the respiratory rate of the human body [3], and
the data collected by these devices can be transmitted to the
cloud storage via the network for data analysis [4]. All-
weather data collection means that a large amount of
human activity data is produced by wearing sensors, which
makes it possible to analyze human daily activity and
evaluate human health.

In early research, only one sensor is used to identify
human physical activity [5–7]. )en, a multisensor system is
introduced into this area [8–10]. Also, deep learning [11–13]
and ensemble learning [14, 15] have been introduced into
this area. However, these research methods based on vision
are easily restricted by many factors, such as object occlusion
and light conditions, and are not conducive to the protection
of users’ privacy. What is more, Graph CNN [16–21] has
been widely studied in this field, but GNN is generally for
image data, video data, or skeleton data, which has the ability
of representation learning, but large computational power
and training data is necessary. Compared with these
methods, sensors with high computing power, small size,
and low cost make it possible for people to interact with
these devices as a part of their daily life.

Hindawi
Journal of Healthcare Engineering
Volume 2022, Article ID 9972406, 15 pages
https://doi.org/10.1155/2022/9972406

mailto:lfmo@seu.edu.cn
https://orcid.org/0000-0002-8561-9122
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9972406


)e identification task inevitably needs labels to deter-
mine the identification results, but unsupervised learning
models without labeled data can be used during model
training, which will greatly reduce the proportion of demand
for labeled data in the process of training and using models.
)erefore, unsupervised learning has been introduced to
both feature extraction [22] and activity identification
[23–27]. Multiple unsupervised learning algorithms such as
k-means, Gaussian mixture model (GMM), hierarchical
clustering, and density-based spatial clustering of applica-
tions with noise (DBSCAN) have been applied to human
physical activity identification. But k-means, GMM, and
hierarchical clustering all need to have prior knowledge
about the number of the classes of the dataset, GMM can
only perform well on dataset with Gaussian distribution,
DBSCAN is not suitable to dataset with high dimension or
uneven density. Besides, it is difficult to identify with a
unified model because different people have different
physical activity patterns. However, most of the existing
models are offline training, so they cannot make adaptive
adjustment to the new input data to realize online learning
or incremental learning. )is defect makes these models
cannot perform well on different individuals. )e Self-Or-
ganizing Map (SOM) network is an unsupervised learning
algorithm proposed by the Finnish mathematician Kohonen
in 1990 [28]. It is based on Hebb’s learning rules and only
updates the connection weights between neurons based on
activated neurons. Since the algorithm was proposed, there
have been various improvements made by scholars. )e
improvements are aimed at the network structure [29–31]
and the learning mechanism [32–35]. )e improvement of
parameter initialization is also a research target [36, 37].
)ese rich SOM network variants show that the SOM
network is exceedingly scalable. Compared with other classic
unsupervised learning algorithms, SOM only needs little
prior knowledge about the dataset, and it can deal with high-
dimensional data well. )e proposed model can perform
well in the field of human physical activity identification
when the data distribution is complex; the Growing SOM
network (GSOM) can achieve the adaptive adjustment of
network structure to obtain the most suitable network
structure for specific dataset andmake the topology of neural
network more consistent with the distribution of dataset.
Growing SOMhas been widely used in the Internet of)ings
area, including sensor network communication [38], big
data analysis [39], and data mining [40]. Growing SOM and
its variants had been utilized widely because of their
characteristics [41, 42]. It is suitable for tasks when the
researchers have no idea about the data distribution [43, 44].
In addition, the characteristics of Growing SOM enable it to
generate new network neurons for new samples to identify
them and realize incremental learning without losing the
original information.

In this paper, a Pruning Growing SOM (PGSOM) model
is proposed based on GSOM. After an additional pruning
mechanism is introduced, the redundant neurons will be
deleted to reduce inference time and the storage space of the
model under the premise of ensuring identification accu-
racy. )e introduction of PGSOM not only reduce the

dependence of human physical activity identification on
labeled data and the prior knowledge of the exact number of
the categories, but also adjust the structure of the model to fit
the dataset better. Because the training cost of the model is
not high and there are few super parameters, a robust model
can be trained offline through grid search.

)e organization of this article is as follows: firstly, the
importance of this research and the related work of this area
will be introduced; then the method used in this article will
be explained in detail; after that, there is a simulation ex-
periment and a real-world experiment that helps to show the
characteristics of the method, and the results will be ana-
lysed; at last, a conclusion is proposed about this article.

2. Materials and Methods

2.1. PA Identification Diagram. )e human physical activity
identification is shown in Figure 1. In the experiment, the
wearable device is used to obtain the activity data of different
individuals. )e input dataset is ready after feature ex-
traction and feature selection, but different individuals’
activity patterns are not consistent, and it is expensive to
obtain a large quantity of labeled data in reality. What is
more, it is difficult to design appropriate topology for dif-
ferent datasets. PGSOM could learn without supervision and
be adjusted adaptively according to the scale and dimension
of the dataset to reduce the quantization error. )en, a small
amount of labeled data is used to calibrate the neurons in the
trained network to obtain a model for the activity identi-
fication of different individuals.

2.2. SOMNetwork. )e SOM network structure is shown in
Figure 2. It is a feedforward neural network composed of an
input layer and an output layer. )e number of neurons in
the input layer is the same as the dimension of the input
sample. )e output layer is also called the competition layer.
Most of the neurons in the layer are arranged in two di-
mensions. )e input layer and the output layer are fully
connected networks with variable weights. )e samples are
input to the network for training, the neuron with the
smallest Euclidean Distance from the input sample is the
winner, and the weights of the neurons in the neighborhood
of the winner are updated. )e labeled information is not
needed in training. After unsupervised training, a small
number of labeled samples can be input to label the activated
neurons.

)e calibration algorithm is summarized as follows:

2.3. Growing SOM Network. )e disadvantage of SOM is
that it requires a preset network topology, and a large
number of experiments are needed to find an appropriate
network topology to the dataset.

)e structure of GSOM starts with four neurons and
grows on boundary based on heuristics and input repre-
sentation. GSOM controls the difficulty of network growth
by adjusting hyperparameters. When the cumulative
quantization error (CEQ) on an activated neuron reaches the
growth threshold (GT) and the winner neuron is a boundary
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neuron, it will perform growth operations; GT is a
hyperparameter to control the ability about growth. Its
CEQ will be halved and distributed to all adjacent neurons

if it is not at the boundary of the network, which is shown
in Figure 3.

However, GSOM also faces growth controllability issues.
)e increasing number of new neurons will contribute to the
old neurons less activated because their weight vectors do
not correspond to a certain pattern. )erefore, a pruning
mechanism needs be introduced to optimize GSOM.

2.4. Pruning Growing SOM Network. Cutting the connec-
tion between neurons belonging to different patterns has been
proved to be a way to adjust the network structure [45–47].
)e key is to find a proper method to decide when a neuron
(or the connection between neurons) should be removed.

)e Pruning Growing Self-OrganizingMap cuts neurons
when the samples can activate the neuron being less than a
predesigned threshold. When the dataset is unbalanced,
samples of one or more categories are significantly less or
more than others, the threshold is hard to be designed to
make the pruning mechanism able to equally treat neurons
represent minority category and majority category.

)e TurSOM [48] uses neuron age threshold as the
pruning threshold, but due to its mechanism, it prefers to cut
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Figure 1: Human physical activity identification with PGSOM.
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Figure 2: SOM network structure. Different colours of neurons
represent different clusters; each input sample can activate a
neuron in output layer.
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new neurons, not the old neurons. )is mechanism will
make the newly input knowledge harder to be learned.

Inspired by the SOINN proposed by Furao and Hase-
gawa [49], a pruning mechanism based on the active degree
of the neurons was proposed to improve GSOM. )e in-
active neurons in the GSOM contain very little useful in-
formation and have limited contribution to the performance
of network by the theory of SOINN.)e number of neurons
can be effectively controlled without significantly affecting
the accuracy of the model if the mechanism is added.

)e algorithm uses neuron’s age to describe how much
time has passed since the neuron was last activated and it will
eliminate neurons that have been inactive for a long time and
preserve newborn neurons and the neurons that are often

activated, which makes the model more suitable for learning
new information without forgetting the useful information
of the past; the pruning operation of PGSOM is shown in
Figure 4. After the weight update and growth of the network
are completed, all inactive neurons will be deleted.

Once an input sample x is presented to PGSOM, the
index of the winner neuron is calculated according to (1) and
(2) [28]. )en, the CEQ [29–31] is calculated by (3) and (4).
Update the weights of the winner neuron and other neurons
in its topological neighborhood according to (4) and (5).

di � x(t) − wi
2
, i ∈ ϕ(t), (1)

winner(t) � argmin di , (2)

Input: Neuron distribution map (Φ), Dataset (X), Label of Dataset
Parameter: Similarity threshold (T)
Process:
(1) for neuron in Φ
(2) calculate the distance di between the weight of neuron and X
(3) if min {di}≥T
(4) neuron is inactive
(5) else
(6) neuron gets the label of the most similar sample x
(7) end if
(8) end for

Output: Labeled Neuron distribution map (Φ)

ALGORITHM 1: Class Calibration Algorithm.

Growing on boundary
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Figure 3: GSOM network structure and related operations. (a) New neurons grow at the dotted line position. (b) )e cumulative error of
winner neurons is halved and propagated to neurons; red neuron is the winner.
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CEQwinner(t) � CEQwinner(t) + η(t) × di, (3)

η(t + 1) � 1 −
R

|ϕ(t)|
   × η(t), (4)

wi(t + 1) � wi(t) + η(t) × wwinner(t)(t) − wi(t)  × e
− di , i ∈ ϕ(t).

(5)

)e symbol w is the weight vector of neuron in com-
petition layer; d is Euclidean distance between the weight
vector of input sample and the weight vector of competition
layer. Φ (t) is a set of all neurons in competition layer. η is
decay factor, which decreases with the increase of iteration,
and is used to ensure the training of PGSOM convergence.
)e network enters the growth stage after updating the
weights.

Judging whether the CEQ of the winner neuron ex-
ceeds the growth threshold, the growth threshold can be
determined by (6), D is the dimension of input sample,
and spread factor (SF) is a hyperparameter between 0 and
1 to influence the difficulty of network growth. If the above
condition is true and the winner is at the boundary of the
network, the new neuron will be used to fill the sur-
rounding of the winner neuron as (7) and (8) [29–31], and
the weight of the new neuron is initialized by interpo-
lation. If the winner neuron is not a boundary neuron, the
CEQ is halved and the lost error is equally distributed to
the neurons around as shown in Figure 3. Finally, the age
of new neurons and winner neurons is updated to 0, and
ages of the remaining neurons are increased by 1 as (9).
At the same time, the neurons whose age exceeded the
age threshold are deleted, which can be expressed by (10)
and (11).

GT � −D × ln(SF), (6)

Newneuron(t) �

neurons in remaining neighborhood,

if winner′s CEQ≥GT andwinner is at the boundary,

{ }, else,

⎧⎪⎪⎨

⎪⎪⎩

(7)

ϕ(t) � ϕ(t)⋃

New neuron(t), (8)

Agei �
0, winner or new neuron,

Agei + 1, else,
 (9)

Delete(t) � neui|i ∈ ϕ(t)∩  Agei >M , (10)

ϕ(t + 1) � ϕ(t) − Delete(t). (11)

)e training algorithm is summarized as follows:

3. Results and Discussion

3.1. Dataset Description. A total of 110 volunteers were
called for data collection; each volunteer carried 5 to 7
physical activities [50]. )e whole statistic characteristics of
volunteers are given in Table 1.

)e experiment involved a total of 9 common human
activities; the label, kind, and the number of activities after
feature engineering are shown in Table 2. All physical ac-
tivity data come from two triaxial acceleration sensors worn
on the wrist and hip and a piezo sensor worn on the ab-
domen, whose sampling frequency is 30Hz; as shown in
Figure 5, multiple raw data are stored in SD card for training
model in offline environment. )e raw data collected is
shown in Figure 6.

A sliding window with length of 500 sampling points
[51] is used to divide the raw data into several units. Each
unit contains 7 signals combined with 6 signals from 2
triaxial acceleration sensors and one signal from a ventila-
tion sensor; on this basis, we add 2 synthetic acceleration
signals. )e calculation formula of synthetic acceleration
signal is as follows:

synthetic signal �

����������

x
2

+ y
2

+ z
22



. (12)

11 features are extracted from each signal, respectively,
as shown in Table 3, and the correlation coefficients between
the synthetic acceleration signal from hip and piezo signal,
the synthetic acceleration signal from wrist and piezo signal
are calculated, which forms a 101-dimensional
(11 ∗ 9 + 2�101) dataset.

4. Experiment and Results

One of the most important parameters of model is Age
threshold (M), which determines the life cycle of neurons
that have not been activated for a long time.)e old neurons
are more likely to be preserved with M increasing. Another
important parameter is SF, which determines the growth
threshold (GT) and affects the speed of the growing. 8586
samples are divided into training set and validation set in a
ratio of 9 :1; then, 10-fold cross validation is conducted. In
each iteration of training, 4000 samples are randomly se-
lected from 7727 samples for training, and fixed 2000
samples which are selected from current training set for
calibration. )e 859 samples in the validation set are used to
evaluate the performance after each iteration of training.
Ratio factor (RF) is the ratio of M to the size of samples in
each iteration (batch size); for example, when the size of
input in each iteration is 4000 and RF is 1.25, the M of

Pruning
inactive neurons

Figure 4: Pruning operation of PGSOM; the yellow neurons are
older than age threshold.
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(i) Input: Dataset (X)
Parameter: Spread factor (SF), Iterations, Age threshold (M), R� 2.8, η (0)� 1
Process:

(1) initialize the network as shown in Figure 3 and set SF with an interval of (0, 1), all the age of neurons set 0, calculating the GT
according to (1), set iteration = 0

(2) while iteration ＜ iterations do
(3) for x in random subset from X
(4) present the input sample x (t) to the Neuron distribution map
(5) get the winner by (1) and (2), update the CEQ of winner by (3)
(6) update the weights of competitive neurons by (4) and (5)
(7) if the CEQ of winner ≥GT as (6) and winner is at the boundary
(8) carry out growth operation by 7 and 8 and Figure 3
(9) end if
(10) update the age of competitive neurons by (9)
(11) prune the network by (10) and (11)
(13) end for
(14) iteration = iteration +1
(15) end while

Output: Neuron distribution map (Φ)

ALGORITHM 2: Pruning Growing Self-Organizing Map.

Table 1: Volunteers’ information.

Distribution Time duration of
each activityInformation Category Number Percentage

Gender F 59 53.6%

Each volunteer performs 5–7 kinds of physical activities for 5 minutes and rest
for 2 minutes after each exercise to lower heart rate

M 51 46.4%

Age (years)

20–30 30 27.3%
30–40 28 25.5%
40–50 25 22.7%
50–60 27 24.5%

Mass (kg)

<50 2 1.8%
50–60 26 23.7%
60–70 34 30.9%
70–80 13 11.8%
80–90 21 19.1%
>90 14 12.7%

Height (cm)

150–160 16 14.5%
160–170 43 39.1%
170–180 33 30.0%
>180 18 16.4%

BMI (kg/
m2)

<18.5 1 0.9%
18.5–25 65 59.1%
25–30 30 27.3%
>30 14 12.7%

Table 2: Physical activity and Label, and the number of each kind of samples after feature engineering.

Label and activity
1-Table working (1635) 2-Housekeeping (807) 3-Moving objects (794)
4-Walking (840) 5-Cycling (1549) 6-Running low speed (1646)
7-Running fast speed (494) 8-Playing tennis (359) 9-Playing basketball (462)
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Figure 5: Wearing position of sensors and raw data acquisition. )e wrist unit and the abdominal unit transmit the sensor data to the hip
unit wirelessly via ZigBee [50].

0

0.0
0.5
1.0

100

H
ip

200 300 400 500

Hip_X
Hip_Y
Hip_Z

Wrist_X
Wrist_Y
Wrist_Z

–1

0

1

W
ris

t

0 100 200 300 400 500

Abdomen

0.00
0.25
0.50
0.75
1.00

Ab
do

m
en

0 100 200
Data Point

300 400 500

(a)

Figure 6: Continued.

Journal of Healthcare Engineering 7



neuron is 5000, as (13). First, the ratio factor is set as 1 and
different SF used to verify the impact of SF on network size;
the result is shown in Figure 7.

RF � M÷ batch size. (13)

When the growth and pruning of the network reach a
balance, the network will converge. )erefore, comparative
experiment is carried out on the basis of adjusting the two
parameters, recording the accuracy of the PGSOM on the
validation set and the number of neurons. )e experimental
results are shown in Figure 8. )e training curve of the
model that has high accuracy is shown in Figure 9.

As can be seen from Figure 8, the PGSOM achieves the
highest accuracy when SF� 0.8 and RF� 1.5. It can be seen
from the training curve in Figure 8 that PGSOM and GSOM
models have begun to converge after 45 iterations, and
PGSOM can achieve higher accuracy in the validation set. In

order to verify the superiority of PGSOM, we compare
PGSOM with SOM and GSOM. Experiments will be con-
ducted on a personal computer with Intel® Core™ i5-
10210U CPU, which is quad core, and the frequency is
1.60GHz. )e program used to train the models runs in the
Python environment (Python 3.7). Indicators such as the
accuracy of model, inference time, and the size of the model
are used for comparing the performance of SOM series
models. )e comparison results are shown in Table 4. )e
hardware configuration of inference stage is consistent with
that of training stage.

In addition, we supplement the comparison results
between PGSOM and other unsupervised learning methods
such as k-means, GMM, DBSCAN, and hierarchical clus-
tering in Figure 10.

Other indicators such as kappa, recall, and Fmeasure are
calculated in Table 5.
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Figure 6: Sensor raw data. (a) Walking. (b) Running (low speed).

Table 3: All the extracted features.

Data sources Features Total
number

Uniaxial signal and synthetic acceleration signal Mean, variance, root mean square, kurtosis, skewness,
energy [10, 25, 50, 75, and 90] percentile 11 ∗ 9

Between each synthetic acceleration signals and piezo signal Correlation coefficient 2
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5. Discussion

)ere will be isolated neuronal clusters no matter how to set
the hyperparameter of PGSOM from Figure 7, which shows
that there are transition regions between neurons repre-
senting different patterns, and the neurons in these tran-
sition regions are deleted because they cannot represent any

pattern, pruning out the fact that these useless neurons will
help speed up the training of the PGSOM, and the size of the
PGSOM will increase with the increase of SF from (a) to (d)
in Figure 7.

)en, different SF and RF are set up to train PGSOM to
find the appropriate hyperparameter for the physical activity
dataset and the best accuracy appears when SF� 0.8 and
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Figure 7: Neuron distribution of PGSOM with different spread factors. (a) SF� 0.1. (b) SF� 0.25. (c) SF� 0.5. (d) SF� 0.75.
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RF� 1.5 from Figure 8. In Figure 9, we draw several training
curves of PGSOM and GSOM, which proves that the
classification performance of PGSOM is better than GSOM,
and each model basically converges when the number of
iterations reaches 45. )erefore, in the following experi-
ments, we set the maximum iterations as 50 to ensure the
network convergence.

In Table 3, we compare the performance of a series of
SOM networks including SOM of 3 structures (20 ∗ 20,
25 ∗ 25, and 30 ∗ 30), GSOM of 3 structures (SF� 0.75, 0.8,
and 0.85), and PGSOM of 6 structures (SF, RF� 0.75/1.25,
0.75/1.50, 0.80/1.25, 0.80/1.50, 0.85/1.25, and 0.85/1.50)
according to the accuracy of model, inference time, and the
size of the model. Generally speaking, networks with more
neurons have better identification ability and generalization
performance, but it will also increase the cost of training and
retain too many redundant neurons to increase the cost of
model storage. )e top accuracy of SOM is 86.723% when
the size of competition layer is 30 ∗ 30, the top accuracy of
GSOM is 88.272% when SF is 0.8 and the top accuracy of
PGSOM is 90.120% when SF is 0.8 and RF is 1.5. Obviously,
the last two models have better performance. )e inference
time of top PGSOM model is 0.262ms, which is 50.3% less
than the top GSOMmodel, and the number of neurons used
is 856.1, which is 31.7% less than the top GSOM model. It

proves that the introduction of pruning mechanism can
effectively delete redundant neurons, improve the structure
of the network, and optimize the training speed of the
network.

Besides, both GSOM and PGSOM have the ability to
grow new neurons when there are samples belonging to new
patterns being input. )e network will distribute new area to
store these new patterns, which means these models have
incremental learning ability. In Figure 10, it can be found
from the experimental results that k-means algorithm
performs worst among all unsupervised learning algorithms
because it misidentifies Housekeeping and Playing tennis
more frequently than other algorithms. All 6 algorithms
have difficulty in distinguishing Walking and Running (low
speed). Due to the length of the article, the confusion matrix
of each algorithm is not expanded here. But since the activity
category number is fixed, k-means, GMM, and hierarchical
clustering algorithm cannot generate more clusters to de-
scribe these two activities more accurately. As for DBSCAN,
the data density is obviously uneven in this dataset, espe-
cially those of easy-misidentified activity. )erefore, the
performance of DBSCAN is limited. But GSOM and
PGSOM can get over these adverse conditions to reach
higher accuracy. In addition, because the adaptive adjust-
ment mechanism of the network increases the stability of the
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Figure 8: Results under different SF and RF. (a) Accuracy of model. (b) Number of neurons in the model.

10 Journal of Healthcare Engineering



network, the standard deviation of PGSOM is smaller than
other unsupervised learning methods.

We give the confusion matrix of GSOM and PGSOM in
Figure 11 to analyze the source of identification error and
find that the main error source of both GSOM and PGSOM
is the misclassification of Playing tennis as Playing basketball
or Moving objects. We hold the view that it is due to the

imbalance of the dataset, but the identification accuracy of
other activities by PGSOM has reached a high level, which
also reflects the robustness of the algorithm to the unbal-
anced dataset. And the identification effect of PGSOM is
almost better than GSOM. We believe that the pruning
mechanism removes redundant neurons and reduces the
misidentification rate of the model.
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Figure 9: Training curve of Some models. (a) Accuracy of PGSOM. (b) Accuracy of GSOM.

Table 4: Training performance of different SOM models

Model Hyperparameter Accuracy (%) Inference time (ms) Number of neurons

SOM
20 ∗ 20 79.269 0.071 400
25 ∗ 25 84.405 0.110 625
30 ∗ 30 87.596 0.261 900

GSOM
SF� 0.75 87.713 0.294 1044
SF� 0.80 88.027 0.315 1155
SF� 0.85 88.272 0.527 1254

PGSOM (ours)

SF� 0.75, RF� 1.25 88.644 0.127 731
SF� 0.75, RF� 1.50 88.994 0.161 797.1
SF� 0.80, RF� 1.25 89.401 0.265 864
SF� 0.80, RF� 1.50 90.120 0.262 856.1
SF� 0.85, RF� 1.25 89.809 0.261 864
SF� 0.85, RF� 1.50 89.762 0.283 929
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Figure 10: Accuracy of unsupervised learning algorithms in proposed human physical activity dataset.

Table 5: Performance comparison of unsupervised learning algorithms.

Algorithm Kappa F measure Inference time (ms)
GSOM 0.882 0.896 0.527
PGSOM (ours) 0.897 0.902 0.262
k-means 0.611 0.613 4.101
GMM 0.852 0.873 9.033
Hierarchical cluster 0.802 0.786 4.371
DBSCAN 0.778 0.808 4.205
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Figure 11: Confusion matrix of model. (a) Confusion matrix of top GSOM model. (b) Confusion matrix of top PGSOM model.
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)e results of the experiments indicate that the proposed
model works well in the human physical activity identifi-
cation task, and the identification effect of action 2 and
action 8 is significantly improved because of the pruning
mechanism deleting a large number of ineffective neurons
with side effects on identification. In addition, due to the
incremental learning ability of PGSOM, this model can
adapt itself to the particular user when practically applied,
which means that individual differences will not be a serious
problem when this model is utilized as a human physical
activity classifier if each user uses its own physical activity
data to further train this model.

6. Conclusions

PGSOM is proposed to address the scale of GSOM neurons.
)e adaptive growth of GSOM can adjust the structure of
model to the distribution of the dataset with the limitations
of little prior knowledge, which makes the application
scenarios of the algorithm more abundant and makes it
possible for the algorithm to migrate between different
individuals. But it also leads to a large number of neurons,
which increase the storage and reduce the inference speed
and the identification accuracy of the model. PGSOM in-
herits the advantages of GSOM and adds pruning mecha-
nism, which can delete the inactive neurons with useless
information as well as learn the new knowledge. )e
PGSOM algorithm has been utilized to identify 9 kinds of
physical activities and the accuracy on the provided dataset
can reach 90.120%. Compared with other unsupervised
learning algorithms, the proposed algorithm has competitive
effect. Besides, it can obtain higher identification accuracy
and reduce the inference time as well as reduce the storage
cost of the model.
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