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Cardiovascular disease (CVD) is one of the most severe diseases threatening human life. Electrocardiogram (ECG) is an efective
way to detect CVD. In recent years, many methods have been proposed to detect arrhythmia using 12-lead ECG. In particular,
deep learning methods have been proven to be efective and have been widely used. Te attention mechanism has attracted
extensive attention in many felds in a series of deep learning methods. Of-the-shelf solutions based on deep learning and
attention mechanism for ECG classifcation mostly give weights to time points. None of the existing methods were considered
using the attention mechanism dealing with ECG signals at the level of heartbeats. In this paper, we propose a beat-level fusion net
(BLF-Net) for multiclass arrhythmia classifcation by assigning weights at the heartbeat level, according to the contribution of the
heartbeat to diagnostic results.Tis algorithm consists of three steps: (1) segmenting the long ECG signal into short beats; (2) using
a neural network to extract features from heartbeats; and (3) assigning weights to features extracted from heartbeats using an
attention mechanism. We test our algorithm on the PTB-XL database and have superiority over state-of-the-art performance on
six classifcation tasks. Besides, the principle of this architecture is clarifed by visualizing the weight of the attention mechanism.
Te proposed BLF-Net is shown to be useful and automatically provides an efective network structure for arrhythmia clas-
sifcation, which is capable of aiding cardiologists in arrhythmia diagnosis.

1. Introduction

Cardiovascular disease (CVD) is at high risk of leading to
death. According to the World Health Organization
(WHO), in 2019, an estimated 17.9 million individuals died
from CVDs, representing 32% of global deaths [1]. In
particular, sudden cardiac deaths account for roughly 50% of
all fatalities due to cardiovascular disease, with cardiac ar-
rhythmias accounting for about 80% of them [2]. Electro-
cardiogram (ECG) is widely used for recording the heart’s
electrical activities, which can refect the physical condition
of humans. ECG is noninvasive and inexpensive. It is ob-
tained by electrodes attached to the skin. Te standard ECG
has 12 leads, namely, I, II, III, avR, avL, avF, V1, V2, V3, V4,

V5, and V6. Automatic arrhythmia detection using ECG has
become increasingly important. It can assist doctors in
treating patients and provide helpful information about
heart conditions for ordinary people with wearable devices.

ECG signal has its periodicity due to the regular electrical
activity of the heart. A typical ECG signal record is com-
posed of several heartbeats. Tese heartbeats are closely
related physiologically and temporally. On the one hand,
each beat of the ECG signal can be divided into PRQST
waves according to diferent physiological meanings. De-
polarization of the right atrium is responsible for the frst
half of the P wave, while depolarization of the left atrium is
responsible for the second half. Depolarization of the middle
of the left side of the interventricular septum causes the QRS
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complex’s initial 0.01 second. Depolarization of the endo-
cardium of both ventricles produces the next few millisec-
onds of the QRS complex. Depolarization of a smaller
portion of the right ventricle and a larger portion of the left
ventricle follows. Te fnal few milliseconds of the QRS
complex are caused by depolarization of the basilar region of
the left ventricle. Te T wave is created by the ventricles
repolarizing [3].

In the past few decades, a large number of arrhythmia
classifcation methods have been proposed. Technically, a
typical method includes preprocessing, feature extraction,
and feature classifcation. Feature extraction is the most
sophisticated step because we need to choose a set of features
manually. Terefore, ECG classifcation based on deep
neural networks (DNNs), which have the capability of au-
tomatic feature extraction, has attracted much attention and
manyDNN-based arrhythmia classifcation works have been
proposed.

Since each beat has the same structure, a novel method
using the beat-level attention fusion network for multiclass
arrhythmia classifcation is proposed by exploiting this
feature. Our method can be divided into three steps: (1)
segmentation, (2) beat-level feature extraction, and (3)
interbeat feature fusion. Te segmentation module trans-
forms ECG signals into diferent heartbeats. Beat-level
feature extraction module extracts features from heartbeats.
Interbeat feature fusion module fuses beat-level features into
global features that incorporate information about the whole
ECG signal by considering the contribution of the heartbeat
to diagnostic results. Te main contributions of our algo-
rithm are stated as follows. Te model BLF-Net is proposed
by utilizing the attention mechanism at the level of heartbeat
instead of the time point. Te attention mechanism gives
weights for diferent beats in an ECG signal. Te purpose is
to focus on the informative beats and suppress less useful
beats among one ECG signal. Tis model outperforms the
state-of-the-art models in terms of arrhythmia detection.
Besides, this model provides a new perspective for ar-
rhythmia detection. Tat is, an ECG signal can be dealt with
the level of heartbeats and attention can be utilized to fuse
features extracted from each beat.

2. Related Works

Traditional methods are required to extract features man-
ually. Typical features extracted manually are statistical
features [4], morphological features [5, 6], P-QRS-T features
[7, 8], and wavelet features [9, 10]. Also, dimensionality
reduction methods can be exploited for extracting useful
information, such as principal component analysis (PCA)
[11], independent component analysis (ICA) [12, 13], and
linear discriminant analysis (LDA) [14, 15]. After extracting
features, there are varieties of classifers to be chosen from.
Commonly used techniques are support vector machine
(SVM) [16, 17], artifcial neural network (ANN) [18], de-
cision tree [9, 12], and bayesian classifer [6, 13].

A set of well-designed hand-crafted features is neces-
sary and important for high performance and robustness in
traditional methods, while it costs a lot of labor to design

manual features. How to design features usually depends
on the researchers’ work experience. As a consequence,
methods based on the deep neural network [19] have
gradually become mainstream in ECG classifcation due to
the ability to extract features automatically. Convolutional
neural networks (CNNs) are widely employed because of
their ability to extract features efectively. A patient-specifc
ECG heartbeat classifcation using an adaptive CNN was
developed by Kiranyaz et al. [20], which is a single structure
that integrates feature extraction and classifcation. Te
continuous wavelet transform was utilized by Al Rahhal
et al. [21] to convert ECG into images, which were then
input into a CNN network pretrained on ImageNet. For
identifying supraventricular and ventricular ectopic beats,
this approach performed well. A 34-layer residual CNN
presented by Hannun et al. [22] reached expert-level
performance in detecting cardiac arrhythmias. In some
studies, the ECG signal was regarded as a time-series and
they deployed recurrent neural network (RNN) which is
designed for dealing with sequential data. Long short-term
memory (LSTM) and gated recurrent unit (GRU) are two
representative variants of RNN. Based on several LSTMs
and wavelet transform, a real-time heartbeat classifcation
method was developed by Saadatnejad et al. [23] for
personal wearable gadgets. For classifying biometric ECG
signals, a deep bidirectional GRU network was developed
by Lynn et al. [24]. Besides all that, many studies have
proposed multilayer networks by combining CNN and
RNN. By combining a residual CNN with a bidirectional
LSTM, He et al. [25] achieved good results for arrhythmia
classifcation. Yao et al. [26] used a model composed of
VGGNet and LSTMs to classify multiclass arrhythmias.
Tis model is efective in recognizing paroxysmal ar-
rhythmias and supports varied-length inputs. Recently, a
number of works [27, 28] have exploited the attention
mechanism to take into account the fact that diferent parts
of ECG signals contribute dissimilarly to the diagnosis.
Tere are many variants of the attentional mechanism
[29–31]. Zhang et al. [32] used the spatio-temporal at-
tention mechanism to deal with the ECG classifcation by
assigning weights in the spatio-temporal dimension of
ECG. Tese works exploited the attention mechanism to
assign weights to ECG signals at the level of time point (i.e.,
temporal attention mechanism). Te temporal attention
mechanism can focus on which signal points are more
important in the temporal dimension and which signal
points do not have a sufciently prominent contribution to
the result. However, the ECG signal is composed of
heartbeats; so another practicable alternative is to exploit
the attention mechanism to assign weights at the level of
ECG heartbeat. Considering the use of the attention
mechanism from the perspective of the heartbeat allows the
attention mechanism to take the heartbeat as a whole and
pay attention to how much the heartbeat contributes to the
result. Tat is to say, beats that contribute more to the result
are assigned higher weights. Tis provides a new per-
spective to treat and process ECG signals. In other words,
extracting features from each beat and fusing these features
deserves further research.
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3. Method

3.1. Problem Formulation. Temulticlass and multilabel 12-
lead ECG dataset is defned as

X � x
(1)

, y
(1)

 , x
(2)

, y
(2)

 , . . . , x
(n)

, y
(n)

  , (1)

where x(i) ∈ RL×D is the ECG signal, L refers to the length of
the signal, and D refers to the signal dimension (i.e., the
number of leads). y(i) ∈ FC

2 , C refers to the number of
categories and F2 � 0, 1{ } is a set containing only 0 and 1.

Te goal of the arrhythmia classifcation is to construct a
model to automatically identify the categories of arrhythmia
based on the ECG signal. Te model takes 12-lead ECG
signals as input and outputs predicted labels. Te model
needs to learn the mapping relationshipH(·) from the input
x(i) to the output z(i) of the output layer, which is defned as

z
(i)

� H x
(i)

; θ , (2)

where θ refers to the network parameters of the model.
During training, the goal of the model is to minimize the
binary cross entropy loss (BCE Loss) of the predicted
probability relative to its reference label, defned as

L(X;H) � − 

C

k�1
y

(i)
k logz(i)

k + 1 − y
(i)
k log 1 − z(i)

k  . (3)

3.2.ModelOverview. Teproposed BLF-Net includes 3 parts
illustrated in Figure 1: (1) segmentation used for segmenting
ECG signal into heartbeats; (2) beat-level feature extraction
used for extracting features from beats; (3) interbeat feature
fusion used for synthesizing features extracted by beat-level
feature extraction module.

Specifcally, in our model, the ECG signal is frst fed into
the segmentation module, and several segmented beats are
obtained. Te segmented beats are sent to the beat-level
feature extraction module to obtain the encoded features of
each beat. Tese features are then fed into the interbeat
feature fusion module, where the features are fused using an
attention mechanism to assign diferent weights to em-
phasize useful beats and suppress the less useful ones. Fi-
nally, a two-layer fully connected layer is used as a classifer
to output the probability of classifcation.

Te ECG signal is a periodic and multibeat signal. Te
heartbeat is the basic component of the ECG signal. A typical
ECG signal consists of a P wave, QRS complex, and other
waves. Diferent heartbeats are temporally and physiologi-
cally correlated with each other. On the one hand, the
heartbeat can be divided into P, QRS, T waves, etc.,
according to the physiological process of the heart, which
corresponds to the occurrence of diferent changes in the
heart and is expressed as a complete cycle; on the other hand,
when pathological changes occur, there may be irregular
changes between diferent beats of one ECG signal. Such
changes are expressed as the variability between diferent
beats. According to the above-given two points, pathological
changes in the heart can be refected by the individual beat

characteristics of the ECG signal. Terefore, each heartbeat
should be emphasized, and the method used for automatic
arrhythmia detection should have the ability to extract
features from individual heartbeats.

3.3. Segmentation. Let X ∈ RL×D be an original ECG signal,
where L is the length of the original ECG signal and D is the
number of leads.Ten, we adopt a classical R-peak detection
algorithm proposed by Pan et al. [33]. Tis algorithm
comprises the following steps: (1) bandpass flter, (2) dif-
ferentiator, (3) squaring process, (4) moving-window in-
tegration, and (5) thresholding. After this, we get a sequence
of R-peaks.

According to the positions of the detected R-peaks, we
segment the original ECG signal into heartbeats. Te frst Lf

points and the last Lk points of an R-peak are considered as
one heartbeat. Finally, we have a series of beats denoted as
B � (b1, b2, . . . , bs) where bi ∈ RLb×D, i ∈ 1, 2, . . . , s,
Lb � Lf + Lk is the length of a heartbeat.

3.4. Beat-Level Feature Extraction. Beat-level feature ex-
traction module is composed of CNN and RNN. Hence, the
procedure for this part can be formulated as

fCNN � CNN(B) � CNN b1, b2, . . . , bs( 

� CNN b1( , CNN b2( , . . . , CNN bs( ( 

� fCNN1
, fCNN2

, . . . , fCNNs
 ,

fRNN � RNN fCNN( 

� RNN fCNN1
, fCNN2

, . . . , fCNNs
 

� RNN fCNN1
 , . . . , RNN fCNNs

  

� f1, f2, . . . , fs( .

(4)

3.4.1. Convolutional Neural Network. A convolutional
neural network contains 6 1-dimension (1-D) convolution
layers, as shown in Figure 1. “Conv1d 3 × 64, 2” means that
the kernel size of the convolution layer is 3, the number of
kernels is 64, and the stride for the cross-correlation is 2.
“Conv1d 3 × 64” means that the stride for the cross-cor-
relation is 1. Other similar expressions have similar
meanings. A batch normalization (BN) layer together with a
rectifed linear unit (ReLU) function follows each convo-
lution layer. BN [34] normalizes each batch during training,
which is used for accelerating the convergence. ReLU [35] is
a common function used for activating output values and
avoiding the vanishing gradient to a certain extent. Dropout
[36] follows every two convolution layers to prevent
overftting.

3.4.2. Recurrent Neural Network. Following the convolu-
tional neural network, the recurrent neural network (RNN)
is utilized. More specifcally, GRU [37], a kind of RNN, is
adopted here. GRU uses gate mechanisms to modulate the
information fow, similar to LSTM, but the hidden state is
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utilized to convey information instead of the cell state. We
use a bidirectional GRU which is a combination of a forward
GRU layer and a backward GRU layer.

yt � f Wzxt + Uz ⊙ ht−1( , (5a)

rt � f Wrxt + Urht−1( , (5b)

ht � tanh Wxt + U rtht−1( ( , (5c)

ht � 1 − yt( ht−1 + yt
ht. (5d)

Here, the sigmoid function is denoted by the symbol f.
⊙ stands for element-by-element multiplication.Te update
and reset gates, yt and rt, determine the extent to which the
activation ht is updated and the extent to which the prior
activation ht−1 is forgotten, respectively. Wz, Uz, W, U, Wr

and Ur are the trainable parameters. Te activation ht is the
weighted sum of the prior activation ht−1 and the candidate’s
activation ht.

3.5. Interbeat Feature Fusion. For learning features from
several beats and putting diferent weights on the features of
diferent beats, we utilize the attention mechanism [38] to
fuse features extracted from diferent beats. Considering that
the number of heartbeats may not be consistent for each
segmented record, the masking technique is used. After
using the masking technique, the attention mechanism
actually performs assigning weights to the heartbeats that the
record actually has. First, we concatenate the features
extracted previously. Let f1, f2, . . . , fs refer to features.
Here, fi ∈ Rn, n is the number of features after passing
through the beat-level feature extraction module. After

passing the concatenation layer, we obtain the following
output:

fo � Cat f1, f2, . . . , fs( . (6)

Ten, the concatenated features fo is fed through an
attention layer i.e.,

fatt � Attention fo( . (7)

Tis algorithm is formulated as

ui � tanh Wfi + b( , (8a)

αi �
exp u

T
i u 


i

exp u
T
i u 

, (8b)

fatt � 
i

αifi. (8c)

Here, i ∈ 1, 2, . . . , s. Tis procedure is illustrated in
Figure 1. Weights are assigned to beats in an ECG signal by
the attention mechanism in order to emphasize those that
are more related to arrhythmia detection. In the attention
mechanism, we frst compute scores using the input of at-
tention layer fi. Specifcally, W and b here are trainable
parameters. We compute the linear mapping of fi and then
it is activated by nonlinear function tanh(·). tanh shown in
Figure 1 represents this process. In order to get the weight in
the interval [0, 1], the softmax function is applied to the
scores we get previously. softmax shown in Figure 1 rep-
resents this step. Finally, the output of the attention layer is
obtained by using diferent weight factors in the input
features fi to achieve the weighted average. Te intersection
of the dashed line and the solid line represents a
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Classifier

probabilities

Segmentation
Conv1d 3×64

Conv1d 3×64, 2
Dropout

Conv1d 3×128
Conv1d 3×128, 2

Dropout
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GRU
Linear

Conv1d 3×256
Conv1d 3×256, 2

Dropout

f2f1 fs
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u1 u2

…

…
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α1 α2 αs

tanh

softmax

tanh tanh

fatt

fi

Figure 1: Te framework of our method.
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multiplication of scalars and vectors, and the plus sign in the
circle means the addition of a vector.

4. Experimental Studies and Results

4.1. Environment. Python 3.7 and Pytorch 1.2.0 are used to
implement the proposed approach. In this study, all of the
experiments were carried out on a server using 128GB of
RAM, a Xeon E5 2620 processor, and four GeForce RTX
2080 graphics cards.

4.2. Data Description. Te PTB-XL dataset [39] consists of
21837 clinical 12-lead ECG records from 18885 patients,
each lasting 10 seconds. Te annotation of ECG statements
follows the SCP-ECG standard [40], and each record can
have several statements. Te ECG statements in the dataset
are divided into 71 diferent classes. Tere are 44 diagnostic
statements, 19 form statements, and 12 rhythm statements
in these categories. Te statements are nonexclusive at three
levels, and the diagnostic statements comprise four form
rhythm statements. Furthermore, diagnostic statements are
divided into fve superclasses (CD: conduction disturbance,
HYP: hypertrophy, MI: myocardial infarction, NORM:
normal ECG, and STTC: ST/T change) and 23 subclasses.
Te number of ECG records and the descriptions of diferent
classes for superclasses of diagnostic statements are shown in
Table 1. Tis study employed a sampling rate of 100Hz.

4.3. Evaluation Metric. We use area under curve (AUC) to
evaluate how our model performs on arrhythmia classif-
cation. AUC refers to the area under a receiver operating
characteristic curve [41]. Let n be the number of samples, M

refers to the number of positive samples, and N refers to the
number of negative samples; here, n � M + N. First, the
samples are sorted in descending order by score. Ten, the
rank corresponding to the sample with the largest score is set
as n, and the rank corresponding to the sample with the
second-largest score is set as n − 1, and so on. Ten, we add
up the ranks of all the positive samples, subtract M(1 +

M)/2, and then divide by M × N. To sum up, AUC is defned
as

AUC �
i∈positiveClassranki − M(1 + M)/2

M × N
. (9)

Te Mann–Whitney U, which determines whether
negatives are rated lower than positives, is found to be
closely related to the AUC.TeWilcoxon test of ranks [42] is
another name for it.

4.4. Training Setting

4.4.1. Model Optimization. Mini-batch is used for saving
memory and accelerating training. Te batch size is set to
256 samples. Te Xavier uniform initializer [43] is used to
initialize the weights of convolutional layers, while the or-
thogonal initializer is used to initialize the weights of the
bidirectional GRU. We also employ the Adam optimizer
[44] to iteratively update the parameters due to its potential

to speed up the convergence of the network. Te rate of
learning is set at 3e-4.

4.4.2. Regularization Strategies. Because the neural network
has huge amounts of parameters, to avoid overftting, we
need to apply regularization on the loss function to impose a
cost on the optimization function to make the optimal
solution smooth. Specifcally, L2 regularization is utilized in
our model. L2 regularization is the most common regula-
rization technique. L2 regularization limits the magnitude of
the parameters by adding a penalty term to the loss function.
With w representing the parameters of the model, L2 reg-
ularization is expressed as

L2(θ) � ‖θ‖
2
2 � 

i

θ2i . (10)

Te loss function with L2 regularization term is
expressed as

LR(X;H) � L(X;H) + L2(θ). (11)

Here, LR(X;H) is the loss function used in our model,
L(X;H) is the BCE loss as noted in equation (3).

4.4.3. Cross Validation. Te PTB-XL dataset was divided
into ten parts by reference [39]. Te tenth part serves as the
test set and the rest of the nine parts serve as the training set.
For the remaining nine parts, we follow the recommenda-
tion and use 9-fold cross-validation to make use of the
training set thoroughly in consideration of the small size of
the training set. We divide the training set into nine equal
parts using this strategy. Each of the nine parts takes turns as
the validation data, and the training data is made up of the
remaining subsets. In the end, the fnal probabilities are
calculated by averaging the output of nine models.

4.5. Experimental Process. Te input shape of the network is
(256, 12, 1000). Te frst dimension is the batch size for the
mini-batch, here is 256. Te second dimension refers to the
channel number (i.e., the number of leads). Te third di-
mension here is the length of the signal whose sampling
frequency is 100Hz and duration is 10 s.

After passing the segmentation module, the dimensions
are turned into (256, 20, 12, and 80). Here, the frst di-
mension is still the batch size and the third dimension is the
channel number. Te second dimension is the number of
beats and the fourth dimension is the length of beat, which is
set to 25 before R-peak and 55 after R-peak. Ten, these

Table 1: List of the distribution and the description for superclasses
of diagnostic statements.

#Records Superclass Description
9528 NORM Normal ECG
5486 MI Myocardial infarction
5250 STTC ST/T change
4907 CD Conduction disturbance
2655 HYP Hypertrophy
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segmented ECG signals are fed into the beat-level feature
extraction module. Since one out of every two convolutional
layers is set to stride 2, the output of the convolutional block
is with dimensions (256, 20, 256, and 10). Te frst and the
second dimensions are the same as before and the third
dimension is the kernel number of the last layer. Tese
feature maps are fowed into a GRU and a linear layer to get
features with dimensions (256, 20, 64, and 10).

Next, these features are put into the interbeat feature
fusion module to fuse features extracted from the beat-level
feature extraction module along the dimension of diferent
beats. Te input of the beat-level feature fusion module is
reshaped into (256, 20, 640). Tat is, we merge the last two
dimensions as features of a certain beat. All these features are
fed into the attention layer to obtain the fusion features with
dimensions (256, 640). Finally, a fully connected layer is
adopted as a classifer to transform these features into
probabilities of diferent kinds of arrhythmias. Here, the
sigmoid function is utilized to compress the output of the
model into probabilities between 0 and 1. Adam optimizer is
adopted to iteratively update network parameters.

5. Result & Discussion

5.1. Classifcation Performance. With the above-given ex-
perimental setup, the experiments were conducted. We
followed the recommendations of [45] and compared them
with 7 previous works at 6 annotation levels. Table 2
compares the proposed method with 7 previous works
[45] on six classifcation tasks based on macro-AUC scores.
As shown in Table 2, our algorithm has superiority over the
works listed in [45]. Compared to the wavelet +NN algo-
rithm,macro-AUC scores are improved by 9.2%, 9.7%, 9.5%,
7.1%, 17.7%, and 8.9% in the six classifcation tasks, re-
spectively. Te number of parameters in our model is better
than that of methods with similar performance, as will be
discussed later. Tis demonstrates that the proposed algo-
rithm produces a signifcant improvement in detecting most
arrhythmias, suggesting that it is a competitive method in
detecting arrhythmias when compared to state-of-the-art
methods. And, the confusionmatrices are shown in Figure 2.

5.2. Ablation Studies. To explain the efectiveness of BLF-
Net and investigate the infuence of hyperparameters in
model performance, ablation studies are applied. In this
process, we deploy the same experimental settings as before.
Tat is, the same evaluation metric and training settings are
adopted.

5.2.1. Comparison between Backbone Network and BLF-Net.
To illustrate the validity of BLF-Net, we make experiments to
compare the performance between the backbone network
and BLF-Net.Te backbone network is the same structure as
the beat-level feature extraction module shown in Figure 1,
which is followed by a fully connected layer as a classifer.
Tere is no beat-level fusion structure in the backbone
network. Tat is, we send the original ECG signal to the
backbone network without segmentation and interbeat

feature fusion. By contrast, we deploy the model with seg-
mentation and feature fusion i.e., BLF-Net. Table 3 shows the
macro-AUC score of the backbone network and BLF-Net in
classifying multi-class cardiac arrhythmias based on the
PTB-XL dataset.

Tis experiment demonstrates the introduction of the
beat-level fusion module can efectively improve the accuracy
of arrhythmia detection by contrast with a simple feature
extraction module. As shown in Table 3, BLF-Net outper-
forms BackboneNet based on the macro-AUC score of all
diferent criteria in detecting multiclass cardiac arrhythmias.

5.2.2. Comparison between Temporal Attention Module and
with Interbeat Feature Fusion Module. To verify the efec-
tiveness of the interbeat feature fusion module, we make
another experiment to compare the performance between
the temporal attention module and the interbeat feature
fusion module. In this experiment, we remove the seg-
mentation module of BLF-Net and feed the original ECG
signal into the neural network. Ten, the interbeat feature
fusion module is changed to the temporal attention module.
Te modifed model is named temporal attention network,
and we compare the results of this model with BLF-Net. Te

CD 0 1

0 1631 34

1 213 285

MI 0 1

0 1517 93

1 217 336

HYP 0 1

0 1878 22

1 163 100

NORM 0 1

0 969 230

1 70 894

STTC 0 1

0 1535 105

1 130 393

Diag. Prediction

Label
TN FP

FN TP

Figure 2: Te confusion matrices of BLF-net on superdiagnostic.
Te frst subfgure shows an example of a subfgure. TN, FP, FN,
and TP represent true negative, false positive, false negative and
true positive, respectively.

Table 2: Comparing our work with the previous works in terms of
classifcation performance.

Models
Macro-AUC scores

All Diag. Sub-
diag.

Super-
diag. Form Rhythm

Lstm1 0.907 0.927 0.928 0.927 0.851 0.953
Inception1d1 0.925 0.931 0.930 0.921 0. 99 0.953
Lstm_bidir1 0.914 0.932 0.923 0.921 0.876 0.949
Resnet1d_wang1 0.919 0.936 0.928 0.930 0.880 0.946
Fcn_wang1 0.918 0.926 0.927 0.925 0.869 0.931
Wavelet +NN1 0.849 0.855 0.859 0.874 0.757 0.890
Xresnet1d1011 0.925 0.937 0.929 0.928 0.896 0.957
Ours 0.927 0.93 0.941 0.936 0.891 0.969
1Tese models are stated in detail in [45]. Te best performance is high-
lighted in bold.
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structure of the temporal attention network consists of the
backbone network and the temporal attention module. Te
backbone network is the same confguration as the BLF-Net,
which is followed by the temporal attention module used for
assigning weights to the features temporally. A fully con-
nected classifer is employed here and the number of output
categories is denoted as nc. Te result is shown in Table 4.
Tis experiment is conducted to demonstrate that the at-
tention module applied among beats outperforms that ap-
plied among time points. Te temporal attention module
assigns weights temporally. Tis means that the attention
module focuses on the microlevel, which is less likely to
capture global information and focuses more on local
changes. While the interbeat feature fusion module focuses
on the beat level, this allows for a better fusion of features
extracted from each beat.

5.2.3. Analysis of Segmentation Length. Te heartbeat length
Lb in this experiment is set to 80 points. Tis hyper-
parameter can be regarded as a window size for a beat-level
feature extraction module to observe heartbeats. Here,
experiments were conducted to analyse the efect of this
hyperparameter on the model. We chose diferent heartbeat
length Lb to repeat the experiments of arrhythmias de-
tection based on the PTB-XL dataset. Table 5 shows the
result of these experiments. It can be seen that among the
rhythm Lb � 160 reachs the highest score and among the
form Lb � 80 reaches the highest score. From here, we can
get a conclusion, the greater the heartbeat length we set, the
better score among the rhythm we get. And, the smaller
heartbeat length we set, the better score among the form we
get. we can infer that a greater heartbeat length will catch
more information about rhythm and a smaller heartbeat
length will catch less.

An explanation is given for the decrease in macro-AUC
scores as the heartbeat length is reduced. A shorter heartbeat
length means a smaller observation window for the ECG
signal. Te signal acquired by a single heartbeat becomes less.
Unlike morphological judgments, rhythm is inferred by
comparing similar signals at the time before and after. While
morphology is judged by the amplitude at the same time. For
shorter time windows, we have less signal to observe and less
signal to compare back and forth. For longer time windows,
more signals can be observed and more signals can be
compared back and forth to determine rhythm-related in-
formation, so the larger the observation window, the more
accurate the rhythm-related judgments. Longer signals mean
that it is easier to determine the rhythm of the heartbeat.

5.3. Performance Analysis. ECG signal is composed of
beats, each heartbeat refects the same electrical activity
(i.e., from depolarization to repolarization). One cycle of
the electrical activity of the heart can be denoted as a
random signal X(t). Beat in the sample can be regarded as
the observed signal x(t) of random signal X(t). Beats that
come from the same ECG signal have the same physio-
logical meanings and individuals, so they can be con-
sidered as an identical distribution. Terefore, a series of
continuous beats can be dealt with the same network due
to identical distribution. In this paper, a module named
beat-level feature extraction is deployed to extract features
from beats. Our beat-level feature extraction module
extract features from beats with the same structure. Ten,
features extracted by the beat-level feature extraction
module are fed into the interbeat feature fusion module to
focus more on the representative beats. Take the STTC as
an example. Te ST segment myocardial infarction
(STEMI) is refected in ST elevation [46]. ST elevation is
linked to infarction and can be preceded by changes in-
dicating ischemia, such as ST depression or the T waves
inversion, according to [47]. In this case, our model will
assign higher weights to those heartbeats that show the
morphological characteristic of ST elevation.

5.4. Attention Weights. To illustrate how the interbeat fea-
ture fusion module works, we show the weights assigned by
the attention layer, as shown in Figure 3. Te upper parts in
Figures 3(a)–3(d) show the waveform of lead II, and the
lower parts show the weights assigned by our interbeat
feature fusion module. Te higher weight assigned to a beat,
the more contribution this beat has to the result. As shown in
Figure 3, our model gives higher weights to the abnormal
heartbeats, suggesting that these abnormal heartbeats are
paid more attention to in our method. In clinical practice,
abnormal heartbeats defne the diagnostic results for the
ECG signal. Terefore, we can consider that the proposed
method well learns the important features from ECG signals
and reasonably explains the classifcation results.

5.5. Parameter Size. We make a comparison in terms of the
number of parameters between the proposed BLF-Net and
four previous works in this subsection, as shown in Table 6.
It can be seen that the proposed model does not have a large
number of parameters but achieves optimal performance.
Compared to “inception1d” and “resnet1d_wang,” our
model outperforms on the macro-AUC score. And, as
shown in Table 2, our model surpasses the performance of
other models on subdiagnostic and superdiagnostic signif-
icantly. Although the performance of the model “xres-
net1d101” is comparable to ours, the number of parameters
in our model is much less than this works. Te experiment
result shows that a decrease in convolutional layers doesn’t
sacrifce the ability of models to learn compared with other
models. In addition, fewer parameters are less likely to
overft, contributing to better generalization and less
memory-consuming.

Table 3: Comparing our work with the branch network in terms of
classifcation performance.

Models
Macro-AUC scores

All Diag. Sub-
diag.

Super-
diag. Form Rhythm

BackboneNet 0.908 0.924 0.921 0.919 0.828 0.946
BLF-net 0.927 0.93 0.941 0.936 0. 91 0.969
Te best performance is highlighted in bold.
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Table 4: Comparing our work with the temporal attention network in terms of classifcation performance.

Models
Macro-AUC scores

All Diag. Sub-diag. Super-diag. Form Rhythm
Temporal attention network 0.921 0.920 0.923 0.930 0.855 0.953
BLF-net 0.927 0.93 0.941 0.936 0. 91 0.969

Table 5: Comparison of BLF-Net with diferent heartbeat lengths in terms of classifcation performance.

Lengths
Macro-AUC scores

All Diag. Sub-diag. Super-diag. Form Rhythm
Lb � 160 0.925 0.937 0.931 0.933 0.887 0.969
Lb � 120 0.923 0.93 0.934 0.931 0.890 0.961
Lb � 80 0.927 0.937 0.941 0.936 0. 91 0.954
Te best performance is highlighted in bold.
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Figure 3: Te heartbeat-level weights assigned by the proposed interbeat feature fusion module for diferent ECG classes including (a)
myocardial Infarction, (b) conduction disturbance and myocardial infarction, (c) myocardial infarction and ST/T change, and (d) con-
duction disturbance and hypertrophy and myocardial Infarction.Te upper subfgures in (a)–(d) show the original ECG signal from lead II.
Te lower subfgures show the corresponding heartbeat-level weights.
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 . Conclusion

BLF-Net, an end-to-end multiclass arrhythmia classifcation
model utilizing 12-lead ECG records, is proposed in this
study. Te attention mechanism is used by BLF-Net to focus
on the informative features while suppressing the unim-
portant ones. Experiments show that when compared to of-
the-shelf methods, BLF-Net achieves state-of-the-art per-
formance. And, BLF-Net is both lightweight and efective.
BLF-Net, the proposed model for arrhythmia classifcation,
has the promise of aiding cardiologists in their clinical
practice.
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