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Detecting atrial fbrillation (AF) of short single-lead electrocardiogram (ECG) with low signal-to-noise ratio (SNR) is a key of the
wearable heart monitoring system. Tis study proposed an AF detection method based on feature fusion to identify AF rhythm
(A) from other three categories of ECG recordings, that is, normal rhythm (N), other rhythm (O), and noisy (∼) ECG recordings.
So, the four categories, that is, N, A, O, and ∼ were identifed from the database provided by PhysioNet/CinC Challenge 2017. Te
proposed method frst unifed the 9 to 60 seconds unbalanced ECG recordings into 30 s segments by copying, cutting, and
symmetry. Ten, 24 artifcial features including waveform features, interval features, frequency-domain features, and nonlinear
feature were extracted relying on prior knowledge. Meanwhile, a 13-layer one-dimensional convolutional neural network (1-D
CNN) was constructed to yield 38 abstract features. Finally, 24 artifcial features and 38 abstract features were fused to yield the
feature matrix. Random forest was employed to classify the ECG recordings. In this study, the mean accuracy (Acc) of the four
categories reached 0.857. Te F1 of N, A, and O reached 0.837. Te results exhibited the proposed method had relatively
satisfactory performance for identifying AF from short single-lead ECG recordings with low SNR.

1. Introduction

Atrial fbrillation (AF) is a disordered and rapid atrial
electrical activity characterized by supraventricular tachy-
arrhythmia. Its incidence increases with age, and millions of
people are afected by AF every year [1]. In practice, real-
time monitoring of cardiovascular disease is essential for
early warning of AF. At present, wearable electrocardiogram
(ECG) monitoring is the mainstream real-time monitoring
system [2], which can help patients get rid of discomfort and
time and place restrictions in the process of long-term health
monitoring. However, the ECG recordings collected by
wearable devices or mobile phones are easily contaminated
by the complex external environment so that their signal-to-
noise ratio (SNR) is low. Actually, many recordings with low
SNR cannot be used for diagnosis because of their poor
quality. Tus, the ECG recordings with low SNR also should
be identifed to avoid wasting clinical resources.

Traditional machine learning algorithms based on sta-
tistics were extensively used for data analysis [3–6]. Most of
the current studies on AF automatic analysis do not focus on
recognizing the noisy ECG recordings with low SNR.
Krasteva et al. [3] used the limited feature set and combined
with the optimized artifcial neural network to conduct four-
classifcation research on the CinC 2017 database. Good-
fellow et al. [4] extracted three types of features, that is,
template features, RRI features, and full waveform features
using step-by-step machine and classifed the CinC 2017
database into four categories. In general, previous studies
can be divided into machine learning methods based on
prior knowledge extracting artifcial features and deep
learning methods based on neural networks. Bin et al. [5]
extracted 30 features including AF features, morphological
features, and RR interval features from ECG recordings and
trained a decision tree model using AdaBoost.M2 algorithm
to realize AF detection. Datta et al. [6] extracted several
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categories of AF features, that is, morphological features,
HRV, frequency domain, and statistical features from
PhysioNet/CinC Challenge 2017 database. Tey frst
transformed a four-classifcation problem into two binary
classifcation problems because the performance of binary
classifer is better than that of single multi-class classifer and
then used a binary classifer to classify the two binary
classifcation problems. Finally, the ECG recordings were
divided into four categories, that is, normal, AF, other, and
noisy ECG recordings. Pham et al. [7] frst generated third-
order cumulant images from four categories of ECG re-
cordings and extracted 18 features including entropy fea-
tures and other texture-based features. Tey used multiple
classifers to classify the recordings into four categories, that
is, Nsr, Vfb, Af, and Afb. Te results exhibited random forest
achieved the best performance than other algorithms, that is,
KNN, J48 DT, PART rules, MLP, logistic regression, and
Gaussian naive Bayes. Parsi et al. [8] extracted seven new
features using the Poincare representation of the R-R in-
terval series and fused the new features with classical features
to predict the paroxysmal AF. Yue et al. [9] used frequency
slice wavelet transform (FSWT) to analyze the ECG seg-
ments and converted the obtained two-dimensional (2-D)
time-frequency matrix into a one-dimensional (1-D) feature
vector. Finally, fve machine learning methods were com-
pared to classify AF, among which the Gaussian-kernel
support vector machine has the best classifcation perfor-
mance. Te classical methods need a lot of artifcial features
that rely on the researchers’ experience. However, more
artifcial features are not always better because some are
redundant and may even descend classifcation accuracy.

Another method based on convolutional neural net-
work (CNN) is widely used in physiological signal analysis
[10, 11]. CNN can acquire implicit and abstract features
within the ECG recordings by the convolutions of various
structures without human intervention. Kachuee et al.
[12] proposed a deep CNN model for heartbeat classif-
cation, which can accurately classify fve diferent ar-
rhythmias with the AAMI EC57 standard. Andersen et al.
[13] proposed an end-to-end method combining recur-
rent neural network (RNN) and CNN to extract depth
features from RR interval and divide the ECG recordings
into AF and normal categories. Wang [14] designed an 11-
layer network architecture based on CNN and Elman
neural network to realize AF detection. By comparing
several advanced classifcation methods, the combination
of the two deep neural networks was confrmed to be
feasible. Fan et al. [15] designed a multiscale fusion CNN
structure to divide the ECG recordings into AF and
normal categories. Tey used flters of diferent sizes to
obtain features of diferent scales from 1-D ECG re-
cordings and classifed the recordings after feature fusion.
Zhang et al. [16] proposed a global hybrid multiscale CNN
which can fully extract features to realize the categories of
AF and normal recordings. Acharya et al. [17] designed a
9-layer CNN model to automatically identify fve heart-
beat categories in ECG recordings, and they also tested the
model in an original recording group and a noise at-
tenuation recording group.

Actually, with the adoption of wearable devices and
mobile phones, the ECG recordings collected using the
devices are easy to be contaminated by noise so that the
recordings cannot be used for clinical purpose because of
their poor quality. So, the noisy ECG recordings should
be recognized before diagnosing. Tus, it is necessary to
distinguish the acceptable ECG recordings and the noisy
ECG recordings from a large lot of ECG recordings with
low SNR. In previous studies, entropy helped identify the
inherent nonlinear property within the ECG recordings
and randomness [18]. Zhang et al. [19] calculated a
multiscale entropy of the ECG recordings for signal
quality assessment and further studied the sensitivity of
multiscale entropy on the ECG recordings with noise.
Pham et al. [7] extracted a large number of entropy
features to train classifers. Fu et al. [20] extracted dif-
ferent entropy features, that is, approximate entropy,
sample entropy, and fuzzy entropy to feed into machine
learning, that is., support vector machine (SVM), least-
squares SVM (LS-SVM), and long short-term memory
(LSTM) for assessing the quality of the ECG recordings.
Zhang et al. [21] proposed a permutation ratio entropy
(PRE) based on permutation entropy to identify random
components and inherent irregularities within time se-
ries. Te studies exhibited a satisfying performance of
entropy methods for identifying random components
and inherent irregularities within the recordings. Tus,
this study used the entropy feature, namely, PRE, to
identify the noisy ECG recordings and other ECG
recordings.

So, a novel method was proposed in this study, which
used feature fusion including artifcial features and abstract
features to extract comprehensive information within the
ECG recordings, and the entropy feature was also employed
to improve classifcation performance of the method for
noisy ECG recordings. In this study, Section 2 introduces
materials and methods, including data preparation, feature
extraction, and network architecture. Section 3 shows the
results of this research. Section 4 discusses the efectiveness
of this proposed method. Section 5 summarizes this work.

2. Materials and Methods

2.1. Database. Te publicly available database provided by
PhysioNet/CinC Challenge 2017 (CinC 2017) was used in
this study, and it contains four categories of ECG recordings,
that is, normal rhythm (N), AF rhythm (A), other rhythm
(O), and noisy (∼) ECG recordings. Tis database consisted
of 8528 single-lead ECG recordings ranging in length from
9 s to over 60 s and the ECG recordings sampled at 300Hz
[22]. All recordings were identifed by the clinical experts
and technicians. Among them, 5076 ECG recordings were
marked as N, 758 ECG recordings were marked as A, 2415
ECG recordings were marked as O, and 279 ECG recordings
were marked as ∼. Tese ECG waveforms are shown in
Figure 1.

Tis study used a data-balanced method based on the
imbalance of ECG recordings length, and the method ef-
fectively retained the critical information of the ECG
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recordings [23]. A QRS complex location algorithm was
used to locate the complex position and made the recording
length consistent by copying, cutting, and symmetry. In this
study, all recordings were segmented or flled to 30 s. Among
them, the ECG recordings with lengths greater than 30 s
were randomly segmented. Te recordings with lengths less
than 30 s were frst located to the QRS complex using the
Pan–Tompkins algorithm, then the initial downward de-
fection in the QRS complex was determined as the starting
point of the complex, and fnally the recording from the
starting point of the frst QRS complex to the starting point
of the last QRS complex was intercepted and copied until the
recording length was 30 s. After unifying the length of all
segments, nearly 80% of the segments were used as training
set and the remaining 20% as the test set.Te performance of
the proposed classifcation method was evaluated using the
remaining segments. Table 1 shows the details of the CinC
2017 database used in this study.

2.2. Outline of the Proposed Method. In this study, the ECG
recordings were frst unifed to the length of 30 s. Ten, 62
features were calculated, including 24 artifcial features, that
is, 8 waveform features, 11 interval features, 4 frequency-
domain features, and 1 nonlinear feature and 38 abstract
features extracted by a 13-layer 1-D CNN. Te abstract and
artifcial features constituted a feature vector for yielding the
fused feature matrix. Finally, a random forest [24] con-
taining 300 decision trees was employed to classify the AF
segments. Figure 2 shows the fowchart of the proposed
method.

2.3. Artifcial Features. In the feld of machine learning, the
use of artifcial features is essential. Based on a large
number of previous studies, this study used four types of

features, that is, waveform features, interval features, fre-
quency-domain features, and nonlinear feature without
discarding prior knowledge, and 24 specifc features were
calculated [4–8]. Table 2 shows the artifcial features used in
this study.

2.3.1. Waveform Features. In most cases, the number and
amplitude of R waves within the four categories of ECG
segments are signifcantly diferent, so the features based on
the number and amplitude of R waves were frst calculated.
Te Pan–Tompkins algorithm [25] was used to locate the R
waves of all ECG segments.Ten, the number of Rwaves and
amplitude of all R waves were obtained by the location of R
waves. Finally, the number of Rwaves was taken as one of the
features, and the basic amplitude features, that is, maximum,
minimum, mean, and median of R wave, in each segment
were calculated according to the amplitude of all R waves.
Suppose that there are N pieces of R waves in the time series.
Te r represents the amplitude of R wave. Terefore, the
amplitude of all R waves is defned as [r1, r2, r3. . .. . .rN], so
the maximum value of the amplitude is [r1, r2, r3. . .. . .rN]max,
the minimum value is [r1, r2, r3. . .. . .rN]min, and the mean
value is [r1, r2, r3. . .. . .rN]median.

In the analysis of time series, many time series exhibit
irregular distribution. Still, the distribution of the mean of
the series shows a certain regularity, which requires that
we must have an indicator to measure the relationship
between each point in the series and the mean. So, the
standard deviation was used to distinguish the pseudo law
of distribution in this study. Another waveform feature,
namely, the feature based on standard deviation, was also
calculated in this study. Suppose the time series with N
points is defned as [X1, X2, X3. . .. . .XN], and their mean
value is ‾X. Te standard deviation (S) is calculated as the
following:
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Figure 1: Examples of four categories of ECG recordings.
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where i takes a non-negative integer and starts from 1
until N. According to the defnition of S, the amplitude
standard deviation is also calculated as one of the
waveform features.

Based on the standard deviation, the skewness (SK)
and kurtosis (KU) of the segments were calculated. SK
represents the characteristic number of the asymmetry
degree of the probability density distribution curve rel-
ative to the average value, and KU represents the char-
acteristic number of the peak height of the probability
density distribution curve at the average value. SK is
calculated as the following:

SK �


N
i�1 Xi − X( 

3

(N − 1)S
3 . (2)

KU is calculated as the following:

KU �


N
i�1 Xi − X( 

4

(N − 1)S
4 − 3. (3)

To sum up, 8 waveform features were extracted from the
ECG segments.

2.3.2. Interval Features. RR interval refers to the duration
between two adjacent R waves in ECG, and it can refect the
duration of one heart contraction. Tese features of RR
interval can refect whether a person’s heart rate is normal,
so heart rate can be calculated by the RR interval [26]. Te
heart rate of patients with AF or other abnormal hearts may
be irregular, and the RR interval may be too large, too
small, or unstable. Terefore, the relevant features of RR
interval, that is, maximum, minimum, mean, median, and
standard deviation of RR interval were calculated, and the
heart rate was also obtained from the RR interval as a
feature.

Heart rate (HR) is calculated as the following:

Input segment (30 s)

Abstract FeaturesArtificial Features
Waveform features

Interval features

Non-linear feature

Frequency domain features

Fusion Features

Random Forest Classifier

13-layer
1-D CNN

Figure 2: Flowchart of the proposed method.

Table 1: Details of the CinC 2017 database.

Category Recording Training set Test set Sampling frequency (Hz) Uniform length (s)
N 5076 4101 975

300 30A 758 619 139
O 2415 1916 499
∼ 279 208 71
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HR �
60
R

. (4)

PR interval refers to the time interval from the starting
point of the P wave to the starting point of the QRS
complex on ECG. Some studies have used and proved the
efectiveness of PR interval for ECG classifcation
[3, 27, 28]. To get the PR interval, the P wave of the ECG
recording should be located. P wave is easy to detect in
regular ECG recordings, but it is difcult to detect in noise
environment because the change is not obvious. Terefore,
we used the P-wave detection method based on wavelet
transform proposed by Li et al [29]. Te PR interval was
then calculated. Too long, too short, or variable PR interval
represents diferent conditions of patients. Considering
that there may be diferent situations for separating other
classes in this database to locate these situations to the
greatest extent, the relevant features of PR interval, that is,
maximum, minimum, mean, median, and standard devi-
ation of PR interval were extracted in this study. Te
calculation methods of relevant features of PR interval are
the same as that of RR interval.

Finally, 6 features of RR interval and 5 features of PR
interval were extracted from the ECG segments.

2.3.3. Frequency-Domain Features. In most of machine
learning methods, frequency-domain features are usually
used to refect frequency and energy information within
the ECG recordings. In medical diagnosis or other ap-
plication scenarios, it can be used as a part of the feature
vector together with time-domain features and other
features to enrich the types of feature quantities and

improve the diagnostic accuracy [30]. In this study,
Fourier transform, a simple spectrum analysis method,
was selected to obtain the spectrum of the ECG segments
and the four frequency-domain features, that is, frequency
center of gravity, mean-square frequency, root mean
square frequency, and frequency variance were received
and applied to this study.

Assuming the frequency function is S (f), and S repre-
sents the spectrum and f represents the frequency of the
segment. Te frequency center of gravity (FC) is calculated
as follows:

FC �

∞
0 fS(f)df


∞
0 S(f)df

. (5)

Te mean-square frequency (MSF) is calculated as
follows:

MSF �

∞
0 f

2
S(f)df


∞
0 S(f)df

. (6)

Te root mean square frequency (RMSF) is calculated as
follows:

RMSF �
����
MSF

√
. (7)

Te frequency variance (FV) is calculated as follows:

FV �

∞
0 (f − FC)

2
S(f)df


∞
0 S(f)df

. (8)

Finally, 4 features of frequency domain were extracted
from the ECG segments.

Table 2: Artifcial features used in this study.

Feature type Name

Waveform features

Te number of R wave
Maximum amplitude of R wave
Minimum amplitude of R wave
Mean amplitude of R wave
Median amplitude of R wave

Amplitude standard deviation of R wave
SK
KU

Interval features

Maximum of RR interval
Minimum of RR interval
Mean of RR interval
Median of RR interval

Standard deviation of RR interval
HR maximum of PR interval
Minimum of PR interval
Mean of PR interval
Median of PR interval

Standard deviation of PR interval

Frequency-domain features

FC
MSF
RMSF
FV

Nonlinear feature PRE

Journal of Healthcare Engineering 5



2.3.4. Nonlinear Feature. In some ECG classifcation
studies, nonlinear features are widely used, especially
various entropies are used to evaluate the complexity of
signals. Many entropies, that is, Shannon entropy and
permutation entropy, still cannot identify the nonlinear
features in the signal. PRE was employed in the proposed
method because it can identify nonlinear within ECG
recordings, and the details of the PRE are in Reference
[21]. Tis PRE can refect the amplitude diference be-
tween two adjacent data points of a certain time series.
Because it is sensitive to recording mutation and various
changes, the classical permutation entropy is often used
to measure the complexity of physiological recording
sequence. However, the original time series cannot be
measured by permutation entropy, so some details will be
lost. Furthermore, permutation entropy is based on the
ranking between data points, which also shows that
permutation entropy ignores the diferences between
adjacent data points. Comparing with the classical per-
mutation entropy, the PRE can refect the relationship
between adjacent data points by constructing the rela-
tionship matrix of adjacent elements and better refecting
the confusion degree of time series.

First, PRE constructs a new relationship matrix B to
represent the relationship between adjacent elements and
then calculates the number of new patterns c. Let B (i) be the
ith row vector of matrix B, and c (i) be the number of the ith
pattern. For B (i), when another vector B (j) of matrix B has
the same mode as B (i), c (i) increases by 1, and the two have
a high correlation; when each vector of matrix B represents a
new mode, the maximum total number of mode c is
n−m− 1. Finally, the total number of mode c contained in
matrix B can be obtained.

P i is the probability of pattern c (i), which is defned as
the following:

Pi �
c(i)


k
j�1c(i)

, (9)

where k is the total number of patterns c, 1 ≤ k ≤ n −m − 1.
PRE is defned as the following:

PRE � − 
k

j�1
Pj ln Pj. (10)

2.4. 1-D CNN and Abstract Features. Actually, a deeper
network helps to extract deeper features within ECG
segments; however, the most severe problem of deeper
network was to use too many parameters, which would lead
to a large amount of memory and computing resources for
training and interference [31]. So, a 1-D CNN was directly
used to extract abstract features in this study which was
constructed from six pairs of convolutional layers and a
maximum pooling layer in our proposed feature extraction
network.

Larger convolution kernel size had been used on the frst
layer of convolution layers, and the convolution kernel size
rose stepwise as the number of layers increased. Table 3

shows architecture of the 13-layer 1-D CNN and its detailed
parameters. When an ECG segment was fed into the net-
work, the segment passed through 6 pairs of convolution
pooling layers. In order to obtain the abstract features, the
fnal full connection layer changed the dimension of the
output to get a 1× 38 vector which meant 38 abstract
features.

2.5. Fusion of Artifcial and Abstract Features. Artifcial
features and abstract features were fused, and a feature
vector of length 62 was constructed. Te vector was denoted
as [R1, R2, R3. . .R24, S1, S2, S3· · ·S38]T. Te Ri represents the
ith artifcial features, and i� 1, 2, . . ., 24.Te Sj represents the
jth abstract features, and j� 1, 2, . . ., 38. So, the feature
matrix is defned as the following:

R
1
1 · · · · · · R

N
1

⋮

R
1
24

S
1
1

⋮

⋱

⋮

R
N
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N
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⋮

S
1
38 · · · · · · S

N
38
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, (11)

where N represents the number of input segments.

2.6. Random Forest. In CinC 2017, Zabihi et al. [32] and
Kropf et al. [33] used random forest to train the extracted
features to obtain classifcation results because random
forest is interpretable explain [34]. So, random forest was
employed in this study. Random forest is inherited to-
gether by several decision trees. Each decision tree is a
small classifer, and random forests synthesize all classi-
fcation voting results to determine the fnal output
categories.

In this study, the classifcation of random forest in-
cluded training and testing, and the bootstrap method was
used to train the random forest. In the training process,
80% of the feature vectors were used as the training set,
and a group of decision trees was trained according to the
tags marked in the ECG recordings. Te remaining 20%
was used for testing. Te training process sets the max-
imum number of decision trees as 300, where each node
randomly selected features in the generation process.
Assuming that the number of the samples was n, the
number of features in the randomly selected feature subset
by the decision tree node at each segmentation was set as
default, that is, the square root of the total number of
features, that is,

�
n

√
. Te minimum number of samples

required for internal node division was set as 2, the
maximum depth of the decision tree was set as 40, and the
training ended when the maximum depth was reached.
Te above parameters were set to prevent overftting.
Finally, the classifcation category was determined by
averaging the classifcation voting results of all decision
trees.
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3. Results

3.1. Evaluation Indicators. In this study, accuracy (Acc),
precision, recall, and F1 were used to evaluate performance
of the proposed method.

Te Acc is calculated as the following:

Acc �
TP + TN

TP + FN + TN + FP
, (12)

where true positive (TP) represents the number of ECG
recordings in a given category that are correctly classifed as
the given category, false positive (FP) represents the number
of ECG recordings that other categories are misclassifed as
the given category, true negative (TN) represents the number
of ECG recordings that other categories are not classifed as
the given category but are classifed as the correct category,
and false negative (FN) represents the number of ECG re-
cordings that other categories are not classifed as the given
category and are not classifed as the correct category.

Te precision is calculated as the following:

precision �
TP

TP + FP
. (13)

Te recall is calculated as the following:

recall �
TP

TP + FN
. (14)

Like CinC 2017, the F1n, F1a, F1o, and F1p are defned as
the F1 score of theN,A,O, and ∼ categories, respectively, and
they are calculated as the following [22]:

F1n �
2 × Nn

 N +  n
,

F1a �
2 × Aa

 A +  a
,

F1o �
2 × Oo

 O +  o
,

F1p �
2 × Pp

 P +  p
.

(15)

Where Nn, Aa, Oo, and Pp represent the number of
predicted classifcations obtained by the proposed method
that are consistent with the actual reference classifcations of
ECG recordings. N represents the number of recordings
whose reference classifcation is N and n represents the
number of recordings whose predicted classifcation is N,
A represents the number of recordings whose reference
classifcation is A and a represents the number of re-
cordings whose predicted classifcation is A, O represents
the number of recordings whose reference classifcation is O
and o represents the number of recordings whose pre-
dicted classifcation is O, and P represents the number of
recordings whose reference classifcation is ∼ and p rep-
resents the number of recordings whose predicted classif-
cation is ∼. Table 4 clearly showed the counting rules of the
above variables. Te total of F1 is defned according to the
rules of the CinC 2017 and it is obtained by taking the macro
average of the three scores, and it is defned as the following:

F1 �
F1n + F1a + F1o

3
. (16)

3.2. Results. In this study, 80% of the ECG segments were
used as training set, and the rest 20% were used as test set for
evaluating the proposed method. For the training set, we
used 10-fold cross-validation which randomly selected 90%
of the data for training and 10% for validation. Te results
are shown in Table 5. Te corresponding recall, precision,
and F1 of the N category achieved the highest 0.896, 0.910,
and 0.913 than that of other three categories, that is, A, O,
and ∼. In addition, the average of indicators of four cate-
gories, that is, recall, precision, and F1, is higher than 0.800,
at 0.816, 0.813, and 0.809, respectively.

Table 6 shows a confusion matrix of the proposed
method for the test set and the corresponding recall, pre-
cision, F1n, F1a, F1o, F1p, Acc, and F1. Te N category yields
the highest recall of 0.893, precision of 0.901, and F1n of 0.901
than other categories, that is, A, O, and ∼. Te∼ category
yields the lowest recall of 0.761, precision of 0.711, and F1p of
0.735 among all categories. In addition, the F1 and the Acc
reached 0.837 and 0.857, respectively.

Table 3: Architecture parameters of the 1-D CNN.

No. Layer Kernel size Kernel number Stride Output size
0 Input — — — 1× 3000
1 Convolution-1 5 4 1 4× 2996
2 Pooling — — 2 4×1498
3 Convolution-2 5 8 1 8×1494
4 Pooling — — 2 8× 747
5 Convolution-3 7 16 1 16× 741
6 Pooling — — 2 16× 370
7 Convolution-4 7 16 1 16× 364
8 Pooling — — 2 16×182
9 Convolution-5 9 32 1 32×174
10 Pooling — — 2 32× 87
11 Convolution-6 11 32 1 32× 77
12 Pooling — — 2 32× 38
13 FC — — — 1× 38
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Table 7 collected the results of some previous studies and
compared them with the results of the proposed method.
Te proposed method achieved the highest Acc of 0.857, F1p
of 0.735 than all studies and the highest F1 of 0.837 than all
studies except the F1 0.841 of Wang et al. [35]. Actually,
Wang et al. ignored the ∼ category of ECG recordings and
used only three categories of ECG recordings of the CinC
2017, that is, N, A, and O for classifcation. Zihlmann et al.
[39] combined LSTM and CNN to extract abstract features,
and the total F1 score reached 0.820.Te classifcation results
of ∼ category in the training process were low, and the F1p
was only 0.645.

4. Discussion

4.1. Evaluating Efectiveness of PRE for Noisy Recording
Recognition. Two feature schemes, that is, all features and
all features except the PRE were compared to evaluate the
efectiveness of the PRE for recognizing noisy ECG seg-
ments. Table 8 shows the comparison results for the two
feature schemes using this proposed method. Te Acc of
0.857, F1 of 0.837, and F1p of 0.735 for all features are
higher than for all features except the PRE. Te results
indicate the PRE helps to classify the noisy ECG segments
because the F1p of 0.735 for all features is higher than the
F1p of 0.679 for all features without PRE. Meanwhile, a
radar chart was also designed to show more clearly the
diferences between results of the two schemes. Figure 3
shows a radar map of results for the two feature schemes.

Te F1p for all features is obviously higher than that for all
features except the PRE.

PRE was an improvement based on permutation entropy
for identifying nonlinear chaotic character within time series
instead of randomness. In PRE, a new relationship matrix B
was constructed. Tis matrix was based on the relationship
between adjacent elements and can closely refect the gap
between two points, especially in complex signals. Te
generation of the new mode c can avoid the repeated
counting of the vector and was conducive to the complexity
analysis of the whole signal.Te ablation experiment showed
the PRE not only played a role in noise classifcation but also
helped the overall classifcation indicators.

4.2. Comparison of Efectiveness of Artifcial, Abstract, and
FusionFeatures. In this study, the corresponding Accs of the
three feature schemes, that is, artifcial features, abstract
features, and fusion features were also calculated to evaluate
the efectiveness of the schemes. Table 9 shows the corre-
sponding Accs of artifcial features, abstract features, and
fusion features. Te Acc of 0.820 was obtained for the
scheme using only artifcial features. Similarly, the Acc for
only abstract features generated by the 13-layer 1-D CNN
was the lowest 0.734 than that for all feature schemes.

Actually, deep learning can extract efective abstract
features with the support of a large amount of data. How-
ever, the existed ECG databases are small so that deep
learning algorithms cannot make full use of its power for

Table 4: Counting rules for some variables.

Predicted classifcation

Reference classifcation

N A O ∼ Total
N Nn N
A Aa A
O Oo O
∼ Pp P

Total n a o p

Table 5: Results of using 10-fold cross-validation against the training set.

Label Recall Precision F1n F1a F1o F1p
N 0.896 0.910 0.913 — — —
A 0.814 0.827 — 0.806 — —
O 0.808 0.788 — — 0.795 —
∼ 0.745 0.726 — — — 0.721
Average 0.816 0.813 0.809

Table 6: Confusion matrix of 1-DCNN for test set.

True
Predicted

Recall Precision F1n F1a F1o F1p Acc F1N A O ∼
N 871 13 83 8 0.893 0.908 0.901 — — —

0.857 0.837A 11 110 15 3 0.791 0.815 — 0.803 — —
O 72 7 409 11 0.820 0.796 — — 0.808 —
∼ 5 2 7 54 0.761 0.711 — — — 0.735 —
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acquiring abstract features. Te artifcial features were
summarized on the basis of expert experience and a large
number of experiments, and the features can refect infor-
mation within the ECG recordings. Terefore, abstract and
artifcial features were combined to make the model have the
advantages of both, thus improving the classifcation per-
formance of the model. After fusing artifcial features and
abstract features, the Acc was improved to the highest 0.857
among the Accs for all schemes. Te fusion features gave full
play to the advantages of the two types of features and can
more comprehensively refect the information in ECG re-
cordings, so fusion features can improve the classifcation
performance of such models.

5. Conclusions

In this study, an AF detection method that combined ar-
tifcial features with abstract features was proposed, and it
yielded the higher results, that is, Acc of 0.857, F1 of 0.837,
and F1p of 0.735 for the database provided by the CinC 2017
than the previous studies. In addition, the nonlinear feature,
that is, PRE, helps to identify the noisy ECG recordings from

Table 7: Comparison of classifcation results.

Author Year Database Feature extraction Task Method Acc F1p F1

Datta et al. [6] 2017 CinC 2017
AF DB

HRV, frequency domain, and statistical
features 4-Class Multilayer cascaded

binary classifers — — 0.830

Cao et al. [23] 2020 CinC 2017
AF DB Abstract features 3-Class 2-Layer LSTM 0.844 — 0.827

Zabihi et al.
[32] 2017 CinC 2017

AF DB
Time domain, frequency domain, time-
frequency domain, and nonlinear features 4-Class Random forest — 0.504 0.830

Kropf et al.
[33] 2017 CinC 2017

AF DB
Time-domain and frequency-domain

features 4-Class Random forest — 0.648 0.830

Wang et al.
[35] 2020 CinC 2017

AF DB Abstract features 3-Class DMSFNet — — 0.841

Gao et al. [36] 2021 CinC 2017
AF DB Abstract features 3-Class RTA-CNN 0.851 — —

Mahajan et al.
[37] 2017 CinC 2017

AF DB
Time domain, frequency domain, linear,

and nonlinear features 4-Class Random forest — — 0.780

Xiong et al.
[38] 2017 CinC 2017

AF DB Abstract features 4-Class CNN — — 0.820

Zihlmann et al.
[39] 2017 CinC 2017

AF DB Abstract features 4-Class CNN+LSTM 0.823 0.645 0.820

Gliner and
Yanav [28] 2018 CinC 2017

AF DB
Time-frequency domain, statistical
features, and morphological features 4-Class SVM — — 0.800

Athif et al. [40] 2018 CinC 2017
AF DB

Statistical features and morphological
features 4-Class SVM — — 0.780

Chen et al. [41] 2018 CinC 2017
AF DB

Morphological features and heart rate
variability features 4-Class XGBoost — — 0.810

Tis work 2022 CinC 2017
AF DB

Time domain, interval, frequency domain,
and nonlinear features and abstract

features
4-Class Fusion features + random

forest 0.857 0.735 0.837

Table 8: Comparison results for the two feature schemes.

Feature scheme
All features All features except the PRE

Acc 0.857 0.836
F1 0.837 0.822
F1p 0.735 0.679

All features
All features except PRE

Acc

F1

F1ρ

Figure 3: Radar map of results for the two feature schemes.

Table 9: Accs of three feature schemes, that is, artifcial features,
abstract features, and fusion features.

Feature scheme
Artifcial feature Abstract feature Fusion feature

Acc 0.820 0.734 0.857
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other recordings because the PRE can identify, to some
extent, nonlinear irregularities within the ECG recordings
instead of randomness caused by noise. Finally, the proposed
method exhibits relatively satisfed performance for the ECG
recordings with low SNR.
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