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Neonatal diseases are among the main causes of morbidity and a significant contributor to underfive mortality in the world. There
is an increase in understanding of the pathophysiology of the diseases and the implementation of different strategies to minimize
their burden. However, improvements in outcomes are not adequate. Limited success is due to different factors, including the
similarity of symptoms, which can lead to misdiagnosis, and the inability to detect early for timely intervention. In resource-
limited countries like Ethiopia, the challenge is more severe. Low access to diagnosis and treatment due to the inadequacy of
neonatal health professionals is one of the shortcomings. Due to the shortage of medical facilities, many neonatal health
professionals are forced to decide the type of disease only based on interviews. They may not have a complete picture of all
variables that have a contributing effect on neonatal disease from the interview. This can make the diagnosis inconclusive and may
lead to a misdiagnosis. Machine learning has great potential for early prediction if relevant historical data is available. We have
applied a classification stacking model for the following four main neonatal diseases: sepsis, birth asphyxia, necrotizing enter
colitis (NEC), and respiratory distress syndrome. These diseases account for 75% of neonatal deaths. The dataset has been obtained
from the Asella Comprehensive Hospital. It has been collected between 2018 and 2021. The developed stacking model was
compared to three related machine-learning models XGBoost (XGB), Random Forest (RF), and Support Vector Machine (SVM).
The proposed stacking model outperformed the other models, with an accuracy of 97.04%. We believe that this will contribute to
the early detection and accurate diagnosis of neonatal diseases, especially for resource-limited health facilities.

1. Introduction

The neonatal period is a critical time in human life when
a newborn baby has to adapt to a new environment and
complete several physiological adjustments that are essential
for life [1]. Neonatal mortality is a significant contributor to
underfive mortality [1]. According to estimates for 2018,
more than 2.4 million children died before their second
month of life [2]. The neonatal mortality rate shows dif-
ferences between regions and nations. One-third of the
world’s neonatal deaths are from sub-Saharan Africa, with
about 34 deaths per 1000 live births. The risk of neonatal
death is approximately 55 times higher in the country with
the highest mortality rate than in the country with the lowest

mortality rate [3]. The neonatal mortality rate in Ethiopia is
about 30 per 1000 live births [4]. The region is falling short of
achieving Sustainable Development Goal 3 (SDG-3) [5].
The leading neonatal diseases are sepsis, respiratory
distress syndrome, birth asphyxia, and necrotizing enter
colitis accounting for 26%, 23%, 19%, and 7%, respectively
[6-8]. In Ethiopia, the most common diseases leading to
neonatal death are sepsis, birth asphyxia, necrotizing enter
colitis (NEC), and respiratory distress syndrome (RDS) [4].
Contributing factors for neonatal death include shortages of
neonatologists and pediatricians, the inadequacy of di-
agnostic tools, diagnostic delay, and lack of quality care and
treatments for neonatal conditions [9]. Some neonatal
diseases have similar symptoms, which often result in the
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inappropriate use of antibiotics, which increases the risk of
the development of antimicrobial resistance. For instance,
neonatal sepsis is very similar to diseases such as perinatal
asphyxia and necrotizing enter colitis which makes it dif-
ficult to accurately diagnose and treat. In resource-limited
countries like Ethiopia, neonatal diseases exert a heavy
burden on families, society, and the health system. There are
preventive and curative strategies to mitigate the impact. But
there are limited improvements in the outcomes. Preventive
approaches focus on maternal health before birth, such as
maternal immunization and efforts to guarantee a healthy
pregnancy [10, 11]. With respect to curative approaches,
there are limited diagnostic tools, and the results of di-
agnostics take longer. The delay in results often leads to
a neonate’s condition rapidly deteriorating [12]. It has se-
rious repercussions including chronic lung disease, neuro-
developmental abnormality, and long-term impairment that
necessitate continuous hospitalization [13-16]. There are
also significant increases in expenses and burdens for both
survivors and caregivers. Hence, early identification of
neonatal disease with appropriate antibiotic therapy can be
effective in reducing neonatal death, reducing cost, and
lowering antibiotic resistance in the community [17]. De-
tection of diseases at an early stage with minimum cost is an
area of interest to many researchers [18]. Previous studies
have shown the effectiveness of machine learning techniques
in early recognition for timely preemptive clinical in-
tervention [19]. There have been successful applications of
single classifiers, ensemble techniques, stacking, and hybrid
machine learning methods [20]. Late-onset sepsis (LOS) is
one of the major contributors to morbidity and mortality in
neonates. Early detection of LOS is critical to reduce related
illnesses and death. Machine learning techniques have been
used effectively for the early recognition of LOS [21]. By
identifying disease beginning before it becomes clinically
evident and starting antibiotic medication on time, it may be
possible to avert negative outcomes in newborns.

In this study, we used a stacking machine learning model
to classify the following four major neonatal diseases: sepsis,
birth asphyxia, necrotizing enter colitis (NEC), and re-
spiratory distress syndrome, which account for 75% of
neonatal deaths. The dataset was obtained from the Asella
Comprehensive Hospital. It has been collected between 2018
and 2021. Comparisons have been made between the de-
veloped stacking model and selected machine learning
models such as XGBoost, Random Forest (RF), and Support
Vector Machine (SVM) with and without feature selection.

The paper’s remaining part has been organized into four
sections. In Section 2, related works on neonatal disease
prediction have been discussed. Section 3 contains materials
and methods. The following topics have been covered:
dataset, preprocessing, proposed machine learning model,
and evaluation. In Section 4, experiments, results, discus-
sions, and evaluations of the proposed method were in-
corporated. Lastly, the conclusion that highlights the major
findings and inferences has been incorporated in Section 5.
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2. Related Works

Machine learning approaches have a lot of potential con-
sidering high-risk neonates receive intensive care that is
getting more and more complicated. It has been used in
numerous studies to forecast neonatal illnesses and mor-
tality. Selected related studies on neonatal disease prediction
have been discussed.

Supervised machine learning techniques have been used
for the diagnosis of neonatal diseases, and some of them
have been explored for their comprehensive application to
analyze neonatal data by Shirwaikar et al., [22]. They have
critically analyzed and discussed the methods and perfor-
mance metrics of supervised techniques used on neonatal
data to suggest ways to improve performance. From their
review, the ensemble technique has better predictive power
than SVM, neural networks, and decision trees.

Sheikhtaheri et al. applied machine learning techniques
to improve the performance of prediction of neonatal
mortality and its risk [23]. The dataset was collected from
Iran in two phases. The factors that lead to infant death,
including diseases, were initially identified before training,
testing, and evaluating the effectiveness of several algo-
rithms, such as ANN, RF, CHART, SVM, and ensembles.
SVM had the best accuracy of 94%.

Using a BP learning algorithm, Chowdhury et al., trained
a multilayer perception to identify a design pattern for the
prediction of neonatal illnesses. They compared their ap-
proach with different algorithms that have been previously
used for the prediction of neonatal diseases such as con-
jugate gradient descent and quick propagation. The pro-
posed model used 94 cases of different symptoms and signs
as a parameter to test the model and obtained 75%
accuracy [24].

Safdari et al. developed an expert system with fuzzy logic
that predicts the risk of neonatal death. To gain knowledge,
they created questionnaires and distributed them to neo-
natologists [25]. Then, they combined computational and
fuzzy models based on an inference system for the prediction
of neonatal death risk. They used MATLAB for model
building and C# for the graphical user interface (GUI). The
model has a 90% accuracy.

Shirwaikar et al. applied machine learning techniques to
predict episodes of apnea in preterm neonates. They have only
considered neonates who are not older than one week. The 229
neonates admitted to the neonatal intensive care unit (NICU)
make up the dataset. SVM, RF, and decision trees have been
used to predict apnea episodes in neonates. RF outperforms
the other machine learning models with an accuracy of 88%
[26]. They have developed a machine learning-based auto-
mated solution to predict apnea in neonates.

Mani et al. have developed machine-learning models to
predict LOS using secondary data from electronic medical
records (EMR) [17]. Comparisons have been made between
predictions made by models resulting from machine
learning algorithms and the sepsis treatments administered
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by physicians. The outcome was impressive, with eight out of
nine machine learning algorithms tested have outperformed
physicians in terms of treatment sensitivity, and all nine
machine learning algorithms are superior in terms of
specificity.

There are studies in Ethiopia to predict neonatal diseases
and mortality. Bitew et al. showed the risk of underfive
mortality in Ethiopia using RF, LR, and KNN [27]. They
tried to identify important sociodemographic determinants
using the 2016 EDHS dataset. RF has the highest accuracy of
67.2%. Different regions of Ethiopia have different underfive
mortality rates. The summary of selected related works is
shown in Table 1.

3. Materials and Methods

In this study, four high-burden neonatal diseases such as
sepsis, birth asphyxia, necrotizing enter colitis (NEC), and
respiratory distress syndrome have been classified using
a stacked machine learning approach. The dataset was ob-
tained from Asella Compressive Hospital. Figure 1 shows the
overall workflow.

The proposed architecture has been shown in Figure 2.
Steps starting from collecting relevant data to evaluation
have been followed. The dataset undergoes preprocessing
including cleaning, handling missing values, and trans-
forming the data. Recursive feature elimination with cross-
validation has been chosen as an appropriate feature se-
lection technique to identify relevant features. Then, pre-
processed data was fed into SVM, RF, and XGB. The results
of three selected models have been combined to form
stacking. The models’ performances were evaluated using
stratified k-fold cross-validation (k=10) with and without
feature selection methods. These steps and techniques have
been discussed in the following sections:

3.1. Data Collection. Data used for this research was ob-
tained from neonatal patient cards’ of patients admitted to
the NICU of Asella Comprehensive Hospital, Asella, Oro-
mia, Ethiopia, during the period of 2018 to 2021. The
hospital keeps the record of each patient in a manual format.
The primary task in the data collection was to carefully
encode each instance into a soft copy. It was compiled from
neonatal disease discharge summaries and examination
cards. The three-year dataset has 2298 instances with 20
features. The registered dataset includes admission in-
formation, delivery information, symptoms, laboratory re-
sults, and X-ray results. A description of the features of the
dataset is shown in Table 2. Experts working in the NICU
reviewed the patient history dataset. To enhance our un-
derstanding of the situation and features, we conducted
interviews with pediatricians. We have also assessed dif-
ferent local and global literature on neonatal disease.

3.2. Preprocessing. The dataset of the study contains in-
complete, noisy, inconsistent, inaccurate, and irrelevant
values. Preprocessing has been carried out before modeling,
as shown in Figure 3.

3.2.1. Cleaning Data and Missing Values Handling.
Missing values can be handled in several ways, including by
dropping them if they have an insignificant impact on in-
dividual instances, replacing them with a global constant,
imputation, and predicting missed values. In the dataset, 12
features contain missing values, as shown in Table 3. The
missing values were filled up via imputation using mean
values for categorical features and mode values for numeric
features.

3.2.2. Handling Imbalanced Data and Feature Scaling.
The dataset has a slight class imbalance. This has been
handled by setting the class weight of the hyperparameter
setting. Standardized scalar has been used for feature scaling
in this study.

Standardize scalar

X = , (D

where X is the score of a sample, u is the training sample
mean and s is the standard deviation.

3.2.3. Selection of Features. One of the preprocessing steps is
identifying the feature set that is relevant to generate the best
possible result with a feasible computational cost. It is the
process of deciding which feature set, typically from a large
number of input features, is the most important because not
all features will necessarily be useful. Hence, the primary
goal of feature selection is to choose an essential set of
features to reduce the computational cost without com-
promising the performance of the model. Clinical datasets
frequently use a filter, wrapper, and embedded feature se-
lection approaches [28-31]. By evaluating the correlation
between features and the target feature, the most important
features are chosen using the filter approach. It is in-
dependent of the machine-learning algorithm. Another
popular feature selection method is the wrapper method,
which selects a set of features as a search problem in which
several combinations are generated, estimated, and com-
pared with one another. Univariate, recursive feature
elimination, and sequential forward selection are better
methods. Effective techniques for selecting features include
recursive feature elimination (RFE). It is efficient at picking
out the most essential features. Hence, recursive feature
elimination with cross-validation (RFECV) has been chosen
in this study.

3.3. Modeling. Instead of individual learners, we used the
stacking approach, which is one of the most successful
approaches to classification and regression problems. If
appropriately applied, multilevel stacking generates more
precise results than individual models. In stacking, indi-
vidual model predictions from the prior level are used as
input for models in the subsequent level, like meta-learner
[32]. It combines multiple classifiers or models M1, M2, .. .,
Mn on a single dataset S [33]. S consists of examples si = (xi,
yi), i.e., pairs of feature vectors (xi) and their classifications
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FiGURrE 2: Neonatal disease prediction architecture.

(yi). It started with the generation of base-level classifiers C1,
..., Cn, where Ci=Mi (s). Second, the output of the base-
level classifiers is used as input by the meta-level learner.
Cross-validation has been applied to create a training set for
the meta-level classifier. The procedure continues, as shown
in Figure 4.

Three base-level learners; SVM, RF, and XGB, have been
combined for stacking with and without feature selection.
The model-building workflow has shown in Figure 5, and the
base-level learners have been discussed in the following
subsections:

3.3.1. Support Vector Machine (SVM). SVM is a collection of
similar classification and regression learning methods. It can
be linear, multiple, or nonprobabilistic. The primary goal is
to find the best possible boundary between classes. In order
to classify data, SVM creates a hyperplane or set of hy-
perplanes in a high-dimensional space, as shown in Figure 6.
The data points on the opposite side of the hyperplane
belong to different classes. The longer the hyperplane’s
distance from the closest training data points, the better the
separation for classification. Hence, the longer the margin,
the smaller the classifier’s error. In this study, we used the
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Data cleaning and
handling missing
values

Handling categorical

Data Transformation
values

Feature Engineering

Processed dataset

F1GURE 3: Preprocessing.

TABLE 3: Missing values.

Number Missing values
Name of features  Data type  of missing -
in (%)
values

AF Nominal 14 0.61
Grunting Nominal 7 0.3
WBC Numeric 12 0.52
Vomiting Nominal 23 1
LLVW Nominal 3 0.13
Respiratory rate .
(RR) Numeric 120 5.22
Blood cultures Nominal 53 2.31
C-reactive protein .
(CRP) Nominal 25 1.1
Grunting Nominal 49 2.13
Temperature Numeric 22 0.96
Weight Numeric 182 7.92
Heart rate Numeric 295 12.84

Stacking

O Training Data

o 9 9 o
58S 5L 4L b4 L BudKmodes

Model 1 Model 2 Model 3 Model K

\\ %ear Combination

Stacked Ensemble

FIGURE 4: Stacking classifier.

Support Vector Machine (SVM) and machine learning
classifier’s One-Vs-Rest (OVR) strategy. We used the OVR
with SVM since it is widely used for multiclass
classifications.

3.3.2. Random Forest (RF). It is an ensemble of classifiers
that can solve classification and regression problems and is
often composed of a decision tree. This technique generates
a forest of several decision trees at random. The result is
more precise when there are more trees in the forest. The
way RF operates is to first select K randomly chosen data
points from the training sample. It then creates decision
trees associated with the selected data points. It then repeats
steps 1 and 2 after selecting the number N for the intended
decision trees to be built. It also identifies the predictions
made by each decision tree and assigns the new data in-
stances to the category with the most votes.

3.3.3. XGBoost (XGB). XGBoost is an extended version of
gradient-boosting decision trees designed for the speed and
performance of machine learning. XGBoost is used for both
classification and regression tasks. Important features of
XGBoost are as follows:

(i) Parallelization: implemented on multiple CPU cores
to train

(ii) Regularization: XGBoost uses different regulariza-
tions to avoid overfitting

(iii) Nonlinearity: the ability to generate nonlinear data.
(iv) Cross-validation: built-in
(v) Scalability

3.3.4. Hyperparameter Tuning. Hyperparameter tuning is
a method of selecting a group of hyperparameters to optimize
performance. The tuning can be carried out manually or
automatically. Manually, different sets of hyperparameters are
selected and tested. This is tiresome and may not be feasible
when we have a large number of hyperparameters to try. But
with automatic approaches, an optimization algorithm is used
to select the optimal set of hyperparameters. In this study, we
have used the automatic method. The two most popular
algorithms are grid search and random search. A grid search
is a common technique for hyperparameter optimization that
conducts a complete search on a predetermined subset of the
algorithm’s hyperparameter space. Candidates are generated
during training using a particular grid of parameter values.
High-dimensional spaces are problematic for this approach.
Grid searches are inferior to random searches, especially when
only a small number of hyperparameters affect the perfor-
mance of the machine learning algorithm. Hence, a random
search has been used for this study.
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3.4. Evaluation. Evaluation techniques have been used to
evaluate the performance of the proposed model. The
performance evaluation method may be holdout or cross-
validation. By testing a model on data other than the ones
used to train it, holdout evaluation attempts to provide an
objective assessment of learning performance. A large
dataset is divided into two subsets at random using this basic
strategy, such as training and testing sets. The machine
learning models are trained with the training dataset. The
models’ performance is then tested using an unseen testing
dataset. K-foldcross-validation is the technique used for
evaluating a model’s performance on an unseen test dataset.
The stratified form of the k-fold cross-validation enforces
matching the class distribution in each split with the entire
training dataset. Due to the availability of a slightly im-
balanced class distribution, we believe that stratified k-fold

cross-validation is appropriate. Hence, it has been used in
this study.

The performance of selected models has been evaluated
using various performance evaluation metrics, including
precision, recall, accuracy, and f1-score. When classification
is conducted, four different kinds of results could be found as
follows:

(i) True positive (TP) is a result when the model
correctly predicts positive class instances, i.e., the
predicted positive value is the same as the actual
positive value

(ii) True negative (TN) is a result when the model
correctly predicts negative class instances, i.e., the
predicted negative class value is the same as the
actual negative class value

(iii) False positive (FP) is a result when the model
wrongly predicts as positive class value when the
actual value is negative

(iv) False negative (FN) is a result when the model
wrongly predicts as negative class value when the
actual value is positive

Accuracy is a widely used evaluation metric for classi-
fication models. It is a percentage of correctly classified
values as shown in the following equation:

TP + TN

A - . 2
Y = TP ¥ TN + FP + EN @

Precision is the ratio of true positive to the sum of true
positive and false positive values as shown in the following
equation:

TP

- 3
TP + FP )

Precision =
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TaBLE 4: Four-class classification confusion matrix.

Predicted values

Sepsis RDS PA NEC

Sepsis True False False False

P sepsis RDS PA NEC

False False False

éacltulzasl RDS sepsis True RDS PA NEC
False False False

PA  sepsis rRDs  WePA T Nge

False False False True

NEC sepsis RDS PA NEC

Recall is the ratio of true positives to the number of all
relevant samples as shown in the following equation:

TP

_ 4
TP + FN )

Recall =
Fl-score is calculated with the harmonic mean of pre-
cision and recall as shown in the following equation:
Precision * Recall

Fl1-Score=2% —— (5)
Precision * Recall

Table 4 shows the confusion matrix.

4. Results and Discussion

In this section, dataset exploration, feature selection,
modeling, and evaluation have been discussed. The results of
selected models and a newly developed stacking model were
compared. The best-performing model has been deployed
using a Flask server. A comparative discussion of the results
with those of previous studies has also been made.

4.1. The Dataset Exploration. The total size of the dataset is
2298, with 20 features including the target class. Four
dominant neonatal diseases considered in the study are
sepsis, respiratory distress syndrome (RDS), necrotizing
enterocolitis (NEC), and parental asphyxia (PA). Their
distribution has been shown in Figure 7, which is 711 in-
stances of sepsis, 648 instances of respiratory distress syn-
drome (RDS), 527 instances of parental asphyxia (PA), and
412 instances of necrotizing enterocolitis (NEC). There is
a slight class imbalance.

As shown in Figure 8, 59.9% of women follow up on
antenatal care during their pregnancy. As shown in Figure 9,
49.3% of neonates were born term, 4.6% were born preterm,
and 46.1% were born post-term.

4.2. Feature Relevance. The ranking of features based on
their relevance has been shown in Figure 10. Feature se-
lection methods have been applied in order to select relevant
feature sets for the better predictive performance of clas-
sifiers with an acceptable computational cost. Recursive
feature elimination with cross-validation (RFECV) was used
in the training of the SVM, RF, XGB, and stacking ensemble
models. As a result, 12 features were selected.

count

NEC  Perinatal asphyxia =~ RDS Sepsis
Class
Class
== NEC == RDS
== Perinatal asphyxia == Sepsis

FiGure 7: Distribution of four neonatal diseases.

Antinatal folowup

Note follup antinatal

FIGURE 8: Antenatal follow-up.

term

post-term

Pre-term

FiGure 9: Term birth status.

Models were built on multiclass datasets with and
without feature selection techniques. Stratified 10-fold cross-
validation has been used along with other evaluation
methods, as previously discussed. Stacking, SVM, RF, and
XGB performance have been discussed using the original
features of the neonatal disease dataset without any feature
selection.
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Vomiting
Grunting
crying
AF

RR
weight
Temp
HR

BC

CRP
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reflexes
SpO2
WBC
GA
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ICSCR
APGARS
resuscitate

0.00 0.02 0.04 0.06

0.08 0.10 0.12 0.14

FiGgure 10: Feature importance.

The performance of SVM has been shown in the con-
fusion matrix in Figure 11. 104 instances of NEC out of 105,
119 instances of PA out of 127, 154 instances of RDS out of
163, and 164 instances of sepsis out of 180 have been
correctly classified. It wrongly classified 1 instance of NEC as
PA, 2 instances of PA as NEC, 1 instance of PA as RDS, and 5
instances of PA. Similarly, the other wrongly classified can
also be seen from the figure. The normalized confusion
matrix is displayed in Figure 11(b), and it is identical to
Figure 11(a) except that it displays instances that were
correctly identified as decimal.

Figure 12 shows a confusion matrix used to assess
Random Forest’s performance. It correctly classified 102
instances of NEC out of 105, 120 instances of PA out of 127,
158 instances of RDS out of 163, and 166 instances of sepsis
out of 180. RF only misclassified 1 instance of NEC as PA
and 2 instances of NEC as sepsis. Similarly, the other
misclassifications can be seen in the figure. Instances that
have been correctly classified in decimals have been shown
in the normalized confusion matrix.

The other classifier that has been used is XGB and its
performance is shown in Figure 13. It correctly classified
instances of 105 out of 105, 121 out of 127, 154 out of 163,
and 163 out of 180, as Sepsis, NEC, RDS, and PA, re-
spectively. Misclassifications can be seen in the figure. The
confusion matrix in Figure 13(b) is identical to Figure 13(a)
with the exception that it has been normalized.

The evaluation results of RF, XGB, SVM, and stacking
models without feature selection have been summarized in
Table 5. Stacking’s score is the highest in all the following
four performance matrices: precision, recall, F1-score, and
accuracy.

The next set of experiments were using RFE to choose the
best feature subset with the objective of enhancing the
performance of models. The evaluation results of RF, XGB,
SVM, and stacking models with feature selection have been
discussed in the paper.

The evaluation result of SVM using recursive feature
elimination with cross-validation is shown in Figure 14. 104
instances of NEC out of 105, 120 instances of PA out of 127,
156 instances of RDS out of 163, and 167 instances of sepsis
out of 180 have been correctly classified. There are few
wrongly classified values. Figure 14(b) shows a normalized
confusion matrix for SVM with RFECV.

The confusion matrix performance evaluation result
of the Random Forest model with recursive feature
elimination and cross-validation has been illustrated in
Figure 15.102 instances of NEC out of 105, 120 instances
of PA out 0of 127, 158 instances of RDS out of 163, and 166
instances of sepsis out of 180 have been correctly clas-
sified. There are a few wrongly classified instances. Figure
15(b) shows normalized evaluation results for RF with
RFECV.

The performance evaluation results of the XGBoost
model with recursive feature elimination and cross-
validation have been illustrated in Figure 16. 105 in-
stances of NEC out of 105, 121 instances of PA out of 127,
154 instances of RDS out of 163, and 163 instances of sepsis
out of 180 have been correctly classified. There are few
wrongly classified instances. Figure 16(b) shows a normal-
ized confusion matrix for XGBoost with RFECV.

The confusion matrix of the stacking model with re-
cursive feature elimination and cross-validation has been
illustrated in Figure 17. The 105 instances of NEC out of 105,
the 123 instances of PA out of 127, the 158 instances of RDS
out of 163, and the 171 instances of sepsis out of 180 have
been correctly classified. There are very few wrongly clas-
sified instances.

The stratified 10-fold cross-validation with recursive
feature elimination evaluation result of SVM, RF, XGB,
and stacking is shown in Table 6. Stacking’s score is the
highest in the following four performance matrices:
precision, recall, F1-score, and accuracy. It outperformed
three models in all performance matrices.
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Ficure 12: Confusion matrix for RF without (a) and with normalization (b).
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Ficure 13: Confusion matrix for XGB without (a) and with normalization (b).
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TaBLE 5: SVM, RF, XGB, and stacking models performance metrics without FS.

Models Precision (%) Recall (%) Fl1-score (%) Accuracy

SVM 95.14 95.68 95.11 94.86

RF 95.8 95.70 95.70 95.78

XGB 96.01 96.13 95.79 95.91

Stacking 96.70 97.0 96.90 96.69

Bold values indicate the outperformance results of the proposed stacking classifier without feature selection compared to other models.

SVM Confusion Matrix with REFECV
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E PA - 100
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Q
< RDS - - 60
- 40
Sepsis — - 20
| | | — 0
NEC PA RDS Sepsis
Predicted Value
(a)
FiGure 14: Confusion matrix for SVM with
RF-CM with RFECV
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Figure 15: Confusion matrix for RF with RFECV without and with normalization.

Although direct comparisons are difficult due to dataset
differences, population differences, and other differences, we
identified that the developed stacking model has better
performance when compared to the results of previous
works, as shown in Table 7.

One of the main results is the improved performance of
the machine learning model by combining base models,
known as stacking. Different experiments have been carried
out to improve predictive performance. The APGAR score,
CRP (C-reactive protein), resuscitate, LLVW (low lung
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FiGure 16: Confusion matrix for XGB with RFECV without and with normalization.
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TaBLE 6: SVM, RF, XGB, and stacking models performance results with FS.
Models Precision (%) Recall (%) Fl-score (%) Accuracy
SVM 95.43 95.63 95.11 95.3
RF 96.66 96.98 96.67 96.43
XGB 97.02 97.16 97.11 96.65
Stacking 97.21 97.38 97.30 97.04

Bold values indicate the outperformance results of the proposed stacking classifier with feature selection compared to other models.
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volume and whiteout), ICSCR (intercostal subcostal re-
tractions), blood cultures, SpO, (oxygen saturation), GA
(gestational age), WBC (white blood cells), seizures, RR
(respiratory rate), weight, and grunting are the major fea-
tures used to predict neonatal diseases. The stacking model
outperforms three base models; Random Forest, Support
Vector Machine, and XGB, with and without feature se-
lection. Models with RFECV perform better than models
with original features. The stacking model’s accuracy, pre-
cision, recall, and f1-score are 97.04%, 97.21%, 97.38%, and
97.30%, respectively.

5. Conclusion

Deaths caused by neonatal diseases are a significant global
contributor to underfive mortality. There are advancements to
combat the challenge, including an enhanced understanding of
the pathophysiology of the diseases and technological assistance
for diagnosis and treatment. But the improvement is limited.
The similarity of disease symptoms, which may lead to mis-
diagnosis, and the inability of early diagnosis for timely in-
tervention are among the factors contributing to limited success.
Neonatal disease is a major child health challenge in resource-
limited countries like Ethiopia. In Ethiopia, neonatal mortality
accounts for 43.3% of underfive mortality, which indicates that it
has to get adequate attention and prioritization to sustain the
intended progress in the reduction of child mortality. Early
detection of neonatal diseases is believed to have an important
contribution. In this study, the main aim was to detect and
classify four major neonatal diseases (NEC, PA, RDS, and sepsis)
using machine learning techniques. The data was gathered at
Asella Compressive Hospital in Oromia, Ethiopia. It has 2298
instances and 20 features. Different preprocessing techniques
have been applied to the dataset, including handling missing
values with mean imputation, standard scaling, converting
categorical features with label encoders, and class balancing.
Further, recursive feature elimination with cross-validation has
been applied to choose a relevant set of features. Then, modeling
has been carried out using four machine learning models, such
as stacking, RF, XGB, and SVM, with stratified 10-fold cross-
validation. The performance evaluation showed that stacking
with REECV feature selection outperformed the other models
with an accuracy of 97.04%. We believe that this will be useful for
accurate diagnosis and early detection of neonatal diseases.
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