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Computed tomography (CT) has been regarded as the most efective modality for characterizing and quantifying chronic obstructive
pulmonary disease (COPD). Terefore, chest CT images should provide more information for COPD diagnosis, such as COPD stage
classifcation. Tis paper proposes a features combination strategy by concatenating three-dimension (3D) CNN features and lung
radiomics features for COPD stage classifcation based on the multi-layer perceptron (MLP) classifer. First, 465 sets of chest HRCT
images are automatically segmented by a trained ResU-Net, obtaining the lung images with the Hounsfeld unit. Second, the 3D CNN
features are extracted from the lung region images based on a truncated transfer learning strategy.Ten, the lung radiomics features are
extracted from the lung region images by PyRadiomics.Tird, theMLP classifer with the best classifcation performance is determined
by the 3D CNN features and the lung radiomics features. Finally, the proposed combined feature vector is used to improve the MLP
classifer’s performance. Te results show that compared with CNN models and other ML classifers, the MLP classifer with the best
classifcation performance is determined.TeMLP classifer with the proposed combined feature vector has achieved accuracy, mean
precision, mean recall, mean F1-score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971, respectively. Compared to the MLP classifer
with the 3D CNN features selected by Lasso, our method based on the MLP classifer has improved the classifcation performance by
5.8% (accuracy), 5.3% (mean precision), 5.8% (mean recall), 5.4% (mean F1-score), and 2.5% (AUC). Compared to the MLP classifer
with lung radiomics features selected by Lasso, ourmethod based on theMLP classifer has improved the classifcation performance by
5.0% (accuracy), 5.1% (mean precision), 5.0% (mean recall), 5.1% (mean F1-score), and 2.1% (AUC).Terefore, it is concluded that our
method is efective in improving the classifcation performance for COPD stage classifcation.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a com-
mon and non-infectious lung disease characterized by
persistent airfow limitation [1–3]. Because of this charac-
terization, the COPD stage is diagnosed from stage 0 to IV

according to Global Initiative for Chronic Obstructive Lung
Disease (GOLD) criteria accepted by the AmericanToracic
Society and the European Respiratory Society [4]. GOLD is
examined by the pulmonary function test (PFT) and di-
agnosed by the forced expiratory volume in 1 second/forced
vital capacity (FEV1/FVC) and FEV1% predicted [1, 2]. PFT
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can explain the impact on symptoms and life quality of
COPD patients [5, 6], but it cannot refect the change of the
lung tissue in COPD patients with the COPD stage evolu-
tion. PFT changes from normal to abnormal occur when
lung tissue is destroyed to a certain extent. Terefore, the
PFTmakes it challenging to identify the etiology of COPD.

Compared with the GOLD criteria and other imaging
equipment, computed tomography (CT) has been regarded
as the most efective modality for characterizing and
quantifying COPD [7]. Compared with PFT, chest CT
images can indicate that the patients have sufered frommild
lobular central emphysema and decreased exercise tolerance
in smokers without airfow limitation [8]. In addition, the
chest CT images are also used to quantitatively analyze the
bronchial, airway disease, emphysema, and vascular for
COPD patients [7]. However, automatic multi-classifcation
based on convolutional neural networks (CNNs) using chest
CT images remains a challenging task for the COPD stage.
One main reason is that the number of medical images is
limited compared to natural images. In particular, few
people seek medical treatment in the early stage of COPD
and undergo CT scans simultaneously. Transfer learning [9]
may solve the above problems. Since radiomics was pro-
posed to mine more information frommedical images using
advanced feature analysis in 2007 [10], it has been widely
used to analyze lung disease imaging [11–15]. However,
radiomics features are extracted from medical images by
specifc calculation equations, preset types of images, and
preset classes, limiting the forms of radiomics features. Some
deep features from CNN (CNN features) are also needed to
improve the classifer’s performance in multi-classifcation.
CNN features extracted from medical images will make up
for the limitations of radiomics features.

Radiomics features in COPD develop slower than those
in other lung diseases, such as lung cancer and pulmonary
nodules. Until 2020, reference [16] points out that radiomics
features in COPD have not been extensively investigated yet.
Nevertheless, there are potential applications of radiomics
features in COPD for the diagnosis, treatment, and follow-
up of COPD and future directions [16]. A critical reason
limiting the development of radiomics features in COPD is
its difuse distribution in the lung. At the same time,
radiomics features need to be extracted from the region of
interest (ROI) of the chest CT images. However, the difuse
distribution of COPD makes it difcult to determine ROI.
COPD results from the joint action of the peripheral airway,
pulmonary parenchyma, and pulmonary vessels [17–19].
Tus, the peripheral airway, pulmonary parenchyma, and
pulmonary vessels as ROI to extracting lung radiomics
features are reasonable for COPD stage classifcation.

Currently, radiomics features also have been used in
COPD for survival prediction [20, 21], COPD presence
prediction [22], COPD exacerbations [23], COPD early
decision [4], and analysis of COPD and resting heart rate
[3]. However, as mentioned above, lung radiomics fea-
tures have not been applied in the COPD stage classif-
cation. On the other hand, radiomics based on machine
learning (ML) and chest CT images based on CNN have
been widely and respectively used in COPD and its

evaluation. However, the advantages of radiomics based
on machine learning and medical images based on CNN
need to be further integrated to improve the performance
of COPD stage classifcation. Terefore, this paper pro-
poses a feature combination strategy by concatenating
three-dimension (3D) CNN features and lung radiomics
features for COPD stage classifcation based on the multi-
layer perceptron (MLP) classifer. Our contributions in
this paper are briefy described as follows. (1) MLP
classifer with the best classifcation performances is de-
termined in the ML classifer for 3D CNN features or lung
radiomics features. (2) Truncated transfer learning is
proposed from the excellent segmentation model for
generating nonlinear 3D CNN features. (3) Te proposed
feature combination strategy by concatenating 3D CNN
features and lung radiomics features efectively improves
the MLP classifer’s performance.

2. Materials and Methods

2.1. Materials. Te participants are enrolled by the na-
tional clinical research center of respiratory diseases,
China, from May 25, 2009, to January 11, 2011. Finally,
465 Chinese subjects participated in the study after being
strictly selected by the inclusion and exclusion criteria
[24]. Te 465 subjects underwent chest HRCTscans at the
full inspiration state. In addition, the 465 subjects also
underwent the PFT, and the COPD stage of each subject is
diagnosed by PFT in Global Initiative for Chronic Ob-
structive Lung Disease (GOLD) criteria 2008 accepted by
the American Toracic Society and the European Re-
spiratory Society.

Figure 1 shows the COPD stage distribution of the
subjects in this study. Tere are 129, 108, 121, and 107
subjects in each COPD stage (GOLD 0, GOLD I, GOLD II,
GOLD III, and GOLD IV). Tis study was approved by the
ethics committee of the national clinical research center for
respiratory diseases in China. In addition, all 465 subjects
have been provided written informed consent to the frst
afliated hospital of Guangzhou medical university before
chest HRCT scans and PFT. Refer to our previous study [4]
for a more detailed description of the materials.

2.2. Methods. Figure 2 shows the proposed method in this
study. Te main idea of the proposed method proposed in
this paper is to combine 3D CNN features and lung
radiomics features for COPD stage classifcation. When
generating the 3D CNN features, we adopt a truncated
transfer learning strategy that only intercepts the encoder
backbone of the pretrained Med3d [25].

2.2.1. Lung Radiomics Features Extraction. First, 465 sets of
chest HRCT images are automatically segmented by
a trained ResU-Net [26], obtaining 465 sets of lung images
with the Hounsfeld unit (Hu) [27]. Te lung images include
the peripheral airway, pulmonary parenchyma, and pul-
monary vessels. Te architecture of the ResU-Net has been
described in detail in our previous study [28]. Ten, lung
radiomics features of 465 subjects are extracted from the
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feature vector and the radiomics feature vector. (d) Te combined feature vector is used to classify the COPD stage based on MLP classifer.
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Figure 1: COPD stage distribution of the subjects in this study.
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lung images by PyRadiomics [29]. Refer to our previous
study [4] for a more detailed description of the lung
radiomics feature extraction.

2.2.2. 3D CNN Feature Extraction. A truncated transfer
learning strategy is proposed to extract the 3D CNN features
based on the pretrained Med3d [25]. Med3d, a heteroge-
neous 3D network, is used to extract general medical 3D
features by building a 3DSeg-8 dataset with diverse mo-
dalities, target organs, and pathologies. Tus, we only
transfer the encoder backbone of the pretrained Med3d (3D
ResNet10) for generating the 3D CNN features, as shown in
Figure 2(a).

Figure 2(b) shows that the 465 sets of lung images with
Hu are input to the transferring encoder backbone, gen-
erating CNN feature vectors in detail. First, the lung images
(512× 512×N) are cropped into the size 280× 400×N′,
retaining the lung region. Te non-lung images are also
deleted, so N changes into N′ (N′ <N). Second, the cropped
lung images are preprocessed by the method in reference
[25], normalizing the lung region and generating random
values outside the lung region in accordance with Gaussian
distribution. Equation (1) shows the mathematical form of
normalization:

x
′

�
x − x

σ
, (1)

where x is the value of the lung region, x is the mean value of
the lung region, and σ is the mean square deviation of the
lung region.

Tird, the CNN feature maps (512× 35× 50× 75) are
generated by the cropped and preprocessed lung images
(1× 280× 400×N′) and the pretrained Med3d. Last, higher-
order CNN feature maps (512× 3× 3× 3) need to be
extracted from the CNN feature maps (512× 35× 50× 75) by
3D average pooling. Ten, the higher-order CNN feature
maps (512× 3× 3× 3) are fattened into the CNN feature
vector. Finally, each CNN feature vector (per subject) in-
cludes 13824 3D CNN features (512× 3× 3× 3�13824).

2.2.3. Combined Feature Vector for COPD Classifcation.
Figure 2(c) shows that the combined feature vector is
generated by concatenating the CNN feature vector and the
radiomics feature vector. First, the CNN feature vector
(13824) and the radiomics feature vector (1316) are selected
by the least absolute shrinkage and selection operator
(Lasso) [30], respectively. After Lasso, the number of the
selected CNN feature vector and the selected radiomics
feature vector is 60 and 106, respectively. A standard python
package LassoCV, with tenfold cross-validation, is per-
formed in this paper. Equation (2) shows the mathematical
form of Lasso [4]:

A← arg min 
n

i�1
yi − β0 − 

p

j�1
βjxij

⎛⎝ ⎞⎠

2

+ λ

p

j�0
βj





⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(2)

where matrix A denotes the selected lung radiomics feature.
xij denotes the lung radiomics features (the independent
variable). yi denotes the COPD stage (the independent
variable). λ denotes the penalty parameter (λ≥ 0). βj denotes
the regression coefcient, i ∈ [1, n], and j ∈ [0, p].

Second, the combined feature vector is generated by
concatenating the selected CNN feature vector and the se-
lected radiomics feature vector. Finally, the combined fea-
ture vector is the size 1× 166 per subject. Figure 2(d) shows
thatMLP [31, 32] with the combined feature vector is used to
classify the COPD stage in this paper.

2.2.4. Experiments and Evaluation Metrics. Our proposed
method uses the combined feature vector of 3D CNN fea-
tures and lung radiomics features for COPD stage classif-
cation based on the MLP classifer. Our experiment includes
fve experiments in this section to verify the efectiveness of
our proposed method.

Figure 3 shows the experimental design in this paper.
End-to-end CNN models based on parenchyma images are
used for COPD stage classifcation in experiments 1-2.
Specifcally, two classic CNN models, DenseNet and Goo-
gLeNet, based on parenchyma images, are adopted to
compare the classifcation performance of the six diferent
ML classifers. Te classifcation performance of DenseNet
and GoogleNet has been evaluated by our previous study
[33], which achieved the best classifcation performance for
image classifcation. Furthermore, compared with experi-
ment 1, multiple-instance learning (MIL) [34], a form of
weakly supervised learning, is applied in experiment 2.
Meanwhile, diferent ML classifers based on diferent fea-
ture vectors are also used for COPD stage classifcation in
experiments 3–5.

Specifcally, the training parameters of 2D DenseNet and
3D DenseNet are set: 20/2 (batch size (2D/3D)), 512× 512/
512× 512× 20∗ (input size (2D/3D)), 50/50 (epoch (2D/
3D)), and 0.5/0.2 (drop rate (2D/3D)) in experiment 1. Te
training parameters of 2D GoogleNet and 3D GoogleNet are
set: 16/2 (batch size (2D/3D)), 512 × 512/512× 512× 20∗
(input size (2D/3D)), 50/50 (epoch (2D/3D)), and 0.2/0.2
(drop rate (2D/3D)) in experiment 1. ∗MIL: each case (a set
of chest HRCT images) was equally divided into 20 seg-
ments, with one slice taken equidistantly to obtain 20 slices
in each case. Te training parameters of 2D DenseNet with
MIL (2D DenseNet_MIL) and 3D DenseNet with MIL (3D
DenseNet_MIL) are set: 16/2 (batch size (2D/3D)),
512× 512∗∗/512× 512× × 512×16∗∗∗ (input size (2D/3D)),
50/50 (epoch (2D/3D)), and 0.5/0.2 (drop rate (2D/3D)) in
experiment 2. Te training parameters of 2D GoogleNet
with MIL (2D GoogleNet_MIL) and 3D GoogleNet with
MIL (3D GoogleNet_MIL) are set: 16/2 (batch size (2D/
3D)), 512 × 512∗∗/512× 512×16∗∗∗ (input size (2D/3D)),
50/50 (epoch (2D/3D)), and 0.2/0.2 (drop rate (2D/3D)) in
experiment 2. ∗∗MIL: each case was equally divided into 10
bags, with one slice taken randomly to obtain 10 slices in
each case. ∗∗∗MIL: each case was equally divided into 16
bags, with one slice taken equidistantly to obtain 16 slices in
each case.
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Specifcally, experiments 3–5 are designed to compare
the classifcation performance of the six diferent classifers
based on the CNN feature vector (13824), radiomics feature
vector (1316), their selected feature vector by Lasso, and the
proposed combined feature vector (166), respectively. First,
based on 3D ResNet10, we use six classic classifers (SVM
[35], MLP, RF [36], LR [37], GB [38], and LDA [39]) to
determine the best COPD classifcation classifer by diferent
feature vectors. Table 1 reports the six diferent classifers
with their defnitions in this paper. Te diferent feature
vectors include the CNN feature vector (13824), CNN
feature vector selected by Lasso (60), radiomics feature
vector (1316), and radiomics feature vector selected by Lasso
(106). Te MLP classifer with the best classifcation per-
formance is determined. Second, we further verify the
proposed combined feature vector (166) to improve theMLP
classifer’s performance. Tird, 3D ResNet18 and 3D
ResNet34 are also transferred to generate the CNN feature
vector, and the 3D ResNet10 is determined as the encoder
backbone with the best performance on the MLP classifer.
Te 465 subjects are divided into the train set (70%) and the
test set (30%). Figure 4 shows the detailed dataset division
for training and test set in each COPD stage.

Standard evaluation metrics of the CNN and ML
models include the accuracy, precision, recall, F1-score,
and area under the curve (AUC). Te above standard
evaluation metrics are defned as in equations (3)–(6).
Te evaluation metric AUC for multi-classifcation is
calculated by the receiver operating characteristic curve
(ROC) [40].

Accuracy �
TP + TN

TP + TN + FP + FN
, (3)

Precision �
TP

TP + FP
, (4)

Recall �
TP

TP + FN
, (5)

F1 − score �
2 × Precision × Recall
Precision + Recall

, (6)

where the true positive (TP) and false positive (FP), re-
spectively, represent the positive and negative samples
classifed to be positive by the CNN and ML models and the
true negative (TN) and false negative (FN), respectively,

1
2

3

Experiment 1

CNN

DenseNet (2D)

DenseNet (3D)

GoogleNet (2D)

GoogleNet (3D)

Copy

Experiment 2 Parenchyma images
(512×512×N)

multiple-instance
learning (MIL)

Experiment 5
(our method)

Experiment 4

CNN

DenseNet (2D)

DenseNet (3D)

GoogleNet (2D)

GoogleNet (3D)

Experiment 3

3D ResNet10 3D ResNet18 3D ResNet34

3D ResNet backbone

CNN feature vector
(13824)

Lasso

CNN feature vector selected by Lasso
(60)

Combined feature vector
(166)

Radiomics feature vector selected by Lasso
(106)

Lasso

Radiomics feature vector
(1316)

Lung radiomics features

Cropped and preprocessed lung images
(1, 280, 400, N')

ML classifier

Support vector machine (SVM)

Multi-layer perceptron (MLP)

Random forest (RF)

Logistic regression (LR)

Gradient boosting (GB)

Linear discriminant analysis (LDA)

Figure 3: Experimental design in this paper.
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represent the positive and negative samples classifed to be
negative by the CNN and ML models.

3. Results

Tis section reports the experimental results, including (1)
the classifcation performance of the parenchyma images
based on the DenseNet and GoogleNet; (2) the classifcation
performance of the CNN feature vector and lung radiomics
vector based on diferent classifers; (3) the MLP classifer’s
performance with the combined feature vector; and (4) the
MLP classifer’s performance with combined feature vector
based on diferent 3D ResNet.

3.1. Te DenseNet and GoogleNet’s Performance with Pa-
renchyma Images. Tis section shows the classifcation
performance of 2D/3D DenseNet, 2D/3D GoogleNet, 2D/
3D DenseNet_MIL, and 2D/3D GoogleNet_MIL based on
the parenchyma images, respectively.

Figure 5 intuitively shows the AUC of the CNNmodels by
drawing the ROC curves. Tables 2 and 3 report the classif-
cation performance of CNNmodels. Specifcally, Table 2 shows
that 2D GoogleNet with parenchyma images performs the best
in 2D CNN models, achieving 0.550 (accuracy), 0.562 (mean
precision), 0.550 (mean recall), 0.553 (mean F1-score), and
0.809 (AUC). In addition, Table 3 shows that 3D DenseNet
with parenchyma images performs the best in 3D CNN
models, achieving 0.579 (accuracy), 0.614(mean precision),
0.579 (mean recall), 0.579 (mean F1-score), and 0.787 (AUC).

3.2. Te Classifcation Performance of CNN Feature Vector
and Lung Radiomics Vector Based on Diferent Classifers.
Tis section shows the classifcation performance of the
CNN feature vector (13824), the CNN feature vector selected
by Lasso (60), the lung radiomics vector (1316), and the lung
radiomics vector selected by Lasso (106) based on diferent
classifers, respectively.

Figure 6 intuitively shows the AUC of the diferent
classifers by drawing the ROC curves. Tables 4–7 show
that the MLP classifer is the best classifer for COPD
stage classifcation. Specifcally, Table 4 reports the
classifcation performance of the diferent classifers with
the CNN feature vector (13824), respectively. Te best
classifer is the MLP classifer with 0.793 (accuracy), 0.798
(mean precision), 0.793 (mean recall), 0.790 (mean F1-
score), and 0.790 (AUC), respectively. Table 5 reports that
the classifcation performance of the MLP classifer with
the CNN feature vector selected by Lasso has improved
with 0.821 (accuracy), 0.826 (mean precision), 0.821
(mean recall), 0.821 (mean F1-score), and 0.946 (AUC),
respectively. Table 6 reports that the classifcation per-
formance of the MLP classifer with the radiomics feature
vector selected by Lasso has improved with 0.786 (ac-
curacy), 0.784 (mean precision), 0.784 (mean recall),
0.784 (mean F1-score), and 0.919 (AUC), respectively.
Table 7 reports that the classifcation performance of the
MLP classifer with the radiomics feature vector selected
by Lasso has improved with 0.829 (accuracy), 0.828
(mean precision), 0.829 (mean recall), 0.824 (mean F1-
score), and 0.950 (AUC), respectively.

Table 1: Te diferent classifers with their defnitions.

Classifer Model defnition in Python 3.6
SVM SVM sklearn.svm.SVC(kernel� “rbf”,probability� true)

MLP sklearn.neural_network. MLPClassifer (hidden_layer_sizes� (400, 100),
alpha� 0.01, max_iter� 10000)

RF sklearn.ensemble.RandomForestClassifer(n_estimators� 200)
LR sklearn.linear_model.logisticRegressionCV(max_iter� 100000, solver� “liblinear”)
GB sklearn.ensemble.GradientBoostingClassifer()
LDA sklearn.discriminant_analysis.()
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Figure 4: Dataset division in this paper. (a) Training set. (b) Test set.
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Table 5 also reports that Lasso only plays a role in
improving the classifcation performance of the MLP clas-
sifer with the CNN feature vector. It does not improve the
classifcation performance of other classifers with the CNN
feature vector. However, Table 7 reports that Lasso does play
a role in improving the classifcation performance of all
classifers with the radiomics feature vector.

3.3. Te MLP Classifer’s Performance with Combined
Feature Vectors. Te best MLP classifer is determined
with the CNN feature vector selected by Lasso (60) or
the lung radiomics vector selected by Lasso (106) by
Section 3.1. Tis section shows the classifcation per-
formance of the MLP classifer with combined feature
vectors.
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Table 2: Te 2D DenseNet and 2D GoogleNet’s performance with parenchyma images in experiments 1 and 2.

CNN model Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

2D DenseNet 0.471 0.800/0.311/0.000/0.720/
(0.466)

0.500/0.848/0.000/0.562/
(0.471)

0.615/0.455/0.000/0.632/
(0.428) 0.730

2D GoogleNet 0.550 0.788/0.419/0.385/0.622/
(0.562)

0.650/0.394/0.429/0.719/
(0.550)

0.712/0.406/0.405/0.667/
(0.553) 0.809

2D DenseNet_MIL 0.493 0.538/0.318/0.333/0.720/
(0.477)

0.875/0.424/0.057/0.562/
(0.493)

0.667/0.364/0.098/0.632/
(0.445) 0.770

2D GoogleNet_MIL 0.414 0.418/0.444/0.368/1.000/
(0.545)

0.950/0.121/0.400/0.062/
(0.414)

0.580/0.190/0.384/0.118/
(0.333) 0.648

Table 3: Te 3D DenseNet and 3D GoogleNet’s performance with parenchyma images in experiments 1 and 2.

CNN model Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

3D DenseNet 0.579 0.571/0.429/0.533/0.947/
(0.614)

0.800/0.455 0.457/0.562/
(0.579)

0.667/0.441/0.492/0.706/
(0.579) 0.787

3D GoogleNet 0.393 0.463/0.333/0.279/0.833/
(0.471)

0.775/0.061/0.486/0.156/
(0.393)

0.579/0.103/0.354/0.263/
(0.338) 0.674

3D DenseNet_MIL 0.500 0.500/0.600/0.408/0.900/
(0.592)

0.950/0.091/0.571/0.281/
(0.500)

0.655/0.158/0.476/0.429/
(0.441) 0.741

3D GoogleNet_MIL 0.486 0.471/0.413/0.200/0.789/
(0.463)

0.825/0.576/0.029/0.469/
(0.486)

0.600/0.481/0.050/0.588/
(0.432) 0.746
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Figure 7 intuitively shows the confusion matrix and
ROC curves of the MLP classifer with diferent feature
vectors based on 3D ResNet10. Te MLP classifer’s

performance with diferent feature vectors reported in
Table 8 can be calculated from the confusion matrix.
Table 8 reports that the proposed combined feature
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Figure 6: Te ROC curves of the CNN feature vector and lung radiomics vector are based on diferent classifers. (a) Te ROC curves of the
CNN feature vector (13824). (b)Te ROC curves of the CNN feature vector selected by Lasso (60). (c)Te ROC curves of the lung radiomics
vector (1316). (d) Te ROC curves of the lung radiomics vector selected by Lasso (106).

Table 4: Te diferent classifers’ performances based on CNN feature vector (13824) in experiment 3.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.629 0.763/0.556/0.514/0.690/(0.635) 0.725/0.606/0.543/0.625/(0.629) 0.744/0.580/0.528/0.656/(0.631) 0.863
MLP 0.793 0.829/0.815/0.806/0.732/(0.798) 0.850/0.667/0.714/0.938/(0.793) 0.840/0.733/0.758/0.822/(0.790) 0.938
RF 0.657 0.711/0.621/0.600/0.667/(0.652) 0.800/0.545/0.514/0.750/(0.657) 0.753/0.581/0.554/0.706/(0.652) 0.858
LR 0.650 0.689/0.621/0.630/0.641/(0.647) 0.775/0.545/0.486/0.781/(0.650) 0.729/0.581/0.548/0.704/(0.643) 0.835
GB 0.643 0.750/0.500/0.548/0.767/(0.644) 0.750/0.424/0.657/0.719/(0.643) 0.750/0.459/0.597/0.742/(0.641) 0.869
LDA 0.721 0.857/0.625/0.632/0.771/(0.726) 0.750/0.606/0.686/0.844/(0.721) 0.800/0.615/0.658/0.806/(0.722) 0.913
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Table 5: Te diferent classifers’ performances based on CNN feature vector selected by Lasso (60) in experiment 3.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.629 0.811/0.450/0.552/0.706/(0.637) 0.750/0.545/0.457/0.750/(0.629) 0.779/0.493/0.500/0.727/(0.630) 0.880
MLP 0.821 0.919/0.722/0.833/0.811/(0.826) 0.850/0.788/0.714/0.938/(0.821) 0.883/0.754/0.769/0.870/(0.821) 0.946
RF 0.600 0.638/0.480/0.594/0.639/(0.590) 0.750/0.364/0.543/0.719/(0.600) 0.690/0.414/0.567/0.676/(0.591) 0.858
LR 0.650 0.714/0.500/0.538/0.771/(0.633) 0.875/0.455/0.400/0.844/(0.650) 0.787/0.476/0.459/0.806/(0.636) 0.866
GB 0.600 0.714/0.395/0.538/0.793/(0.613) 0.750/0.515/0.400/0.719/(0.600) 0.732/0.447/0.459/0.754/(0.602) 0.869
LDA 0.657 0.771/0.526/0.541/0.833/(0.670) 0.675/0.606/0.571/0.781/(0.657) 0.720/0.563/0.556/0.806/(0.662) 0.898

Table 6: Te diferent classifers’ performances based on radiomics feature vector (1316) in experiment 4.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.643 0.784/0.514/0.514/0.793/(0.655) 0.725/0.576/0.543/0.719/(0.643) 0.753/0.543/0.528/0.754/(0.647) 0.863
MLP 0.786 0.857/0.731/0.692/0.848/(0.784) 0.900/0.576/0.771/0.875/(0.786) 0.878/0.644/0.730/0.862/(0.782) 0.919
RF 0.664 0.762/0.586/0.561/0.750/(0.668) 0.800/0.515/0.657/0.656/(0.664) 0.780/0.548/0.605/0.700/(0.664) 0.886
LR 0.679 0.850/0.567/0.564/0.710/(0.680) 0.850/0.515/0.629/0.688/(0.679) 0.850/0.540/0.595/0.698/(0.678) 0.863
GB 0.729 0.795/0.724/0.690/0.684/(0.727) 0.875/0.636/0.571/0.812/(0.729) 0.833/0.677/0.625/0.743/(0.724) 0.906
LDA 0.379 0.357/0.278/0.407/0.548/(0.395) 0.250/0.455/0.314/0.531/(0.379) 0.294/0.345/0.355/0.540/(0.377) 0.639

Table 7: Te diferent classifers’ performances based on the radiomics feature vector selected by Lasso (106) in experiment 4.

Classifer Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

SVM 0.736 0.816/0.606/0.694/0.818/(0.737) 0.775/0.606/0.714/0.844/(0.736) 0.795/0.606/0.704/0.831/(0.736) 0.915
MLP 0.829 0.864/0.840/0.750/0.857/(0.828) 0.950/0.636/0.771/0.938/(0.829) 0.905/0.724/0.761/0.896/(0.824) 0.950
RF 0.786 0.809/0.750/0.774/0.794/(0.783) 0.950/0.636/0.686/0.844/(0.786) 0.874/0.689/0.727/0.818/(0.781) 0.928
LR 0.693 0.800/0.667/0.630/0.636/(0.689) 0.900/0.485/0.486/0.875/(0.693) 0.847/0.561/0.548/0.737/(0.680) 0.886
GB 0.736 0.766/0.708/0.686/0.765/(0.732) 0.900/0.515/0.686/0.812/(0.736) 0.828/0.596/0.686/0.788/(0.729) 0.928
LDA 0.786 0.829/0.706/0.774/0.824/(0.785) 0.850/0.727/0.686/0.875/(0.786) 0.840/0.716/0.727/0.848/(0.784) 0.920
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Figure 7: Continued.
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vectors improve the MLP classifer’s performance,
achieving 0.879 (accuracy), 0.879 (mean precision), 0.879
(mean recall), 0.875 (mean F1-score), and 0.971 (AUC),
respectively.

3.4.TeMLPClassifer’s Performance with Combined Feature
Vector Based onDiferent 3DResNet. Te best MLP classifer
is determined with the CNN feature vector selected by Lasso
(60) or the lung radiomics vector selected by Lasso (106) by
Section 3.1. Tis section shows the classifcation perfor-
mance of the MLP classifer with combined feature vectors.

Figure 8 intuitively shows the confusionmatrix and ROC
curves of the MLP classifer with combined feature vectors
based on diferent 3D ResNet. Te MLP classifer’s per-
formance with combined feature vectors based on diferent
3D ResNet reported in Table 7 can be calculated from the
confusion matrix. Table 9 reports that the MLP classifer
with combined feature vectors based on 3D ResNet10
achieves the best classifcation performance.

4. Discussion

Tis paper proposes a features combination strategy by
concatenating 3D CNN features and lung radiomics features
for COPD stage classifcation based on the MLP classifer.
Tree sections are discussed in this section, and we also point
out the limitations in this study and the future direction.

First, 2D GoogleNet with parenchyma images performs
the best in 2D CNN models. Te main reason is that 2D

GoogleNet is designed for 2D natural image classifcation
(RGB images). Terefore, it achieves the best classifcation
performance in 2D parenchyma images. Meanwhile, because
of the ability to extract interlayer information, 3D DenseNet
with parenchyma images performs the best classifcation in
3D CNN models. However, CNN models with parenchyma
images fail to classify the COPD stage. One main reason is
that the chest HRCT image cannot fully refect COPD’s
characteristics for the CNN models. Specifcally, the gold
standard of COPD classifcation is characterized by airfow
restriction with a slight diference in the chest HRCT image.
Te slight diference in COPD is mainly caused by small
airway disease with an airway diameter<2mm [17]. Because
of the limitation of HRCT resolution, the above diferential
features of the small airway will be further blurred in the
chest HRCT image. Another reason is that chest HRCT
images can refect the COPD anatomical characteristics, but
COPD patients are with high heterogeneity and diferent
phenotypes [1]. Te heterogeneity and diferent phenotypes
often result in diferent features of the chest HRCT images in
the same stage.Terefore, it is hard for CNNmodels to learn
specifc COPD characteristics, resulting in bad classifcation
performance. At the same time, a set of standard medical
images is not as easy to obtain as natural images, and the
number of chest HRCT images also restricts CNN models
for COPD stage classifcation. Terefore, compared with
CNN models, the ML classifer can realize the COPD stage
classifcation with a small number of samples. Tis paper
determines the MLP classifer with 3D CNN features or lung
radiomics features, which performs the best for COPD stage
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Figure 7: Te confusion matrix and ROC curves of the MLP classifer with diferent feature vectors based on 3D ResNet10. (a) Te
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classifcation. In addition, compared with the convolution
layer in the CNN models, the MLP classifer is composed of
three full connection layers, which is more efcient and
more suitable for modeling long-range dependencies. Te
MLP classifer also can handle complex nonlinear features
and discover dependencies between diferent input features
compared with other classifers [31, 32]. Meanwhile, the

objective evaluation of the COPD stage is only the degree of
airfow limitation tested by GOLD criteria [1, 2, 4]. COPD is
a heterogeneous disease [41], resulting in diferences in
features (3D CNN features or lung radiomics features
extracted from chest HRCT images) with the same degree of
airfow limitation. Terefore, a nonlinear relationship exists
between 3D CNN features or lung radiomics features and
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Figure 8: Te confusion matrix and ROC curves of the MLP classifer with combined feature vectors based on diferent 3D ResNet. (a) Te
confusion matrix of the MLP classifer with combined feature vector based on 3D ResNet10. (b) Te confusion matrix of the MLP classifer
with combined feature vector based on 3D ResNet18. (c) Te confusion matrix of the MLP classifer with combined feature vector based on
3D ResNet34. (d) Te ROC curves of the MLP classifer with combined feature vectors based on 3D ResNet.

Table 9: 3D ResNet’s performance based on MLP classifer with the combined feature vector (166).

3D ResNet Accuracy Precision (GOLD
0/I/II/III&IV (mean))

Recall (GOLD
0/I/II/III&IV (mean))

F1-score (GOLD
0/I/II/III&IV (mean)) AUC

3D ResNet10 0.879 0.905/0.885/0.861/0.861/(0.879) 0.950/0.697/0.886/0.969/(0.879) 0.927/0.780/0.873/0.912/(0.875) 0.971
3D ResNet18 0.871 0.907/0.923/0.875/0.795/(0.877) 0.975/0.727/0.800/0.969/(0.871) 0.940/0.814/0.836/0.873/(0.869) 0.950
3D ResNet34 0.864 0.884/0.828/0.853/0.882/(0.862) 0.950/0.727/0.829/0.938/(0.864) 0.916/0.774/0.841/0.909/(0.862) 0.960
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the COPD stage. Because of this, the MLP classifer is
suitable for classifying the COPD stage and has achieved an
excellent result in COPD stage classifcation.

Second, Lasso can improve the classifcation perfor-
mance of the MLP classifer with the 3D CNN features and
the lung radiomics features. Lasso is often used with survival
analysis models to determine variables and eliminate the
collinearity problem between variables [30, 42]. Te results
show that Lasso also can improve the MLP classifer’s
classifcation performance by establishing the relationship
between the independent variables (3D CNN features or
lung radiomics features extracted from chest HRCT images)
and dependent variables (the COPD stages). Furthermore,
Lasso selects 3D CNN features or lung radiomics features
related to COPD stages to reduce the complexity of the MLP
classifers and avoid overftting [43]. While reducing the
complexity of the MLP classifers, the MLP classifers can
focus on the selected lung radiomics features (the radiomics
feature vector selected by Lasso) or the selected 3D CNN
features (the CNN feature vector selected by Lasso) and
improve the classifcation performance. From the results of
the Lasso, the number of the CNN feature vector selected by
Lasso is 60, and that of the radiomics feature vector selected
by Lasso is 106. We are surprised that the number of col-
linearity features in the CNN feature vector is more than that
in the radiomics feature vector. Tis further shows that
feature selection of 3D CNN features or the radiomics
features is necessary for the COPD stage classifcation, es-
pecially in clinical applications.

Tird, the proposed feature combination strategy can
further improve the classifcation performance of the MLP
classifer. Tis paper does not improve the existing classic
classifers and starts with the classifcation features to en-
hance the classifer’s performance. Many nonlinear classi-
fcation features, the 3D CNN features, are obtained by
a truncated transfer learning strategy. We concatenate the
CNN feature vector and the radiomics feature vector for the
COPD stage classifcation, which improves the MLP clas-
sifer’s performance. Te MLP classifer is good at handling
complex nonlinear features by itself [31, 32]. Terefore,
based on the radiomics feature vector, we add the nonlinear
CNN feature vector to the radiomics feature vector, gen-
erating a combined feature vector. Te combined feature
vector with the nonlinear CNN feature vector enhances the
MLP classifer’s performance. Terefore, this fts the essence
of the MLP classifer and is interpretable [44]. Te selected
encoder backbone of the pretrained Med3D is also directly
related to the classifcation performance. Compared with the
MLP classifer with 3D ResNet18 or 3D ResNet34, the MLP
classifer with 3D ResNet10 performs the best, consistent
with the results of multi-class segmentation task (left lung,
right lung, and background) in reference [25].

Finally, this study has some limitations, and we point out
the future direction. First, from the materials used in this
study, there are not enough cases at the COPD stages III and
IV. Second, the existing classic classifers are not improved.
Tird, the classifcation performance of the ML classifer
with the 3D CNN features is also limited by the encoder
backbone of the pretrained Med3d. In our future work, the

recent networks, an auto-metric graph neural network [45],
will be further attempted and modifed for COPD stage
classifcation based on the 3D CNN features and/or the lung
radiomics features.

5. Conclusions

Tis paper proposes a feature combination strategy by
concatenating 3D CNN features and lung radiomics features
for COPD stage classifcation based on the MLP classifer.
First, the 3D CNN features are extracted from the lung
region images based on a truncated transfer learning
strategy. Ten, the lung radiomics features are extracted
from the lung region images by PyRadiomics. Compared
with CNN models and other ML classifers, the MLP clas-
sifer with the best classifcation performance is determined
by the 3D CNN features and the lung radiomics features.
Lasso plays a role in improving the classifcation perfor-
mance of theMLP classifer with the CNN feature vector and
the radiomics feature vector. Te proposed combined fea-
ture vector also improves the MLP classifer’s performance.
Te MLP classifer with the proposed combined feature
vector has accuracy, mean precision, mean recall, mean F1-
score, and AUC of 0.879, 0.879, 0.879, 0.875, and 0.971,
respectively. Tis shows that our method efectively im-
proves the classifcation performance for COPD stage
classifcation.
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