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In recent years, Internet of Tings (IoT) and advanced sensor technologies have gained considerable interest in linking diferent
medical devices, patients, and healthcare professionals to improve the quality of medical services in a cost-efective manner. Te
evolution of the smart healthcare sector has considerably enhanced patient safety, accessibility, and operational competence while
minimizing the costs incurred in healthcare services. In this background, the current study develops intelligent energy-aware
thermal exchange optimization with deep learning (IEA-TEODL) model for IoT-enabled smart healthcare. Te aim of the
proposed IEA-TOEDL technique is to group the IoTdevices into clusters and make decisions in the smart healthcare sector. Te
proposed IEA-TEODL technique constructs clusters using the energy-aware chaotic thermal exchange optimization-based
clustering (EACTEO-C) scheme. In addition, the disease diagnosis model also intends to classify the collected healthcare data as
either presence or absence of the disease. To accomplish this, the proposed IEA-TODL technique involves several subprocesses
such as preprocessing, K-medoid clustering-based outlier removal, multihead attention bidirectional long short-term memory
(MHA-BLSTM), and weighted salp swarm algorithm (WSSA). Te utilization of outlier removal and WSSA-based hyper-
parameter tuning process assist in achieving enhanced classifcation outcomes. In order to demonstrate the enhanced outcomes of
the IEA-TEODL approach, a wide range of simulations was conducted against benchmark datasets. Te simulation results
inferred the enhanced outcomes of the IEA-TEODL technique over recent techniques under distinct evaluation metrics.

1. Introduction

With the advancements made in smart sensorial media,
Internet of Tings (IoT), and cloud techniques, smart health
care has gained considerable interest in diferent domains
such as healthcare, academia, government, and industry [1].
In recent times, Internet of Tings (IoT) has brought the
vision of a smart world into reality, with numerous services
in the pipeline generating massive amounts of data. Cloud
computing (CC) suits well as an enabling technique since it
presents a fexible stack of software, computing, and storage
services at a lower cost [2]. Cloud-based service has the

potential to provide a high-quality seamless experience to
clinicians, physicians, and other caregivers, anytime and
anywhere. While research has been making advances in
cloud services and IoT separately, minimum attention has
been paid to emerging, afordable, and cost-efective in-
telligent healthcare services [3]. At present, cloud and IoT
technologies have assisted in delivering smart healthcare
services on a real-time basis and also havemade considerable
improvements.

With the integration of the IoTcloud, a great demand for
intelligent and smart healthcare systems provides a rapid
and seamless response. Artifcial intelligence (AI) and deep
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learning (DL) techniques can improve decision-making and
cognitive behaviour [4]. Advanced electronic applications
are presented to intelligent healthcare stakeholders along
with smart sensor devices. In spite of these, it is challenging
to access or fnd hospitals and medical professionals in
intelligent healthcare environments. In general, patients
with serious medical needs must be provided quick attention
and faster response in order to save their lives [5]. Terefore,
data recorded from patients needs to be interpreted and
transferred to healthcare professionals with minimum delay
while the results need to be sufciently accurate so that it can
be utilized by healthcare experts for disease prognosis.
Hence, a smart healthcare system is required that could
resolve the above-mentioned problems and leverage the
technology and services available in the intelligent health-
care environment. Figure 1 illustrates the structure of
a smart healthcare system.

Tough there have been advancements in this domain,
the concept of a smart healthcare system remained uncertain
without cognitive function. Smart city service can never be
exploited completely without the cognitive knowledge of its
stakeholders [6]. Even though the conventional methods
achieve rapid delivery of results, it is expected to obtain
highly accurate results. But, most of the time, the results
sufer from complex data [7]. In this situation, high accuracy
can be accomplished by deep learning (DL) techniques and
its diferent versions. In literature, these techniques are
trained using large datasets [8]. DL method is an emerging
feld that has gained considerable outcomes in sequence
prediction, mixed-modality data sets, and natural language
processing tasks that have received heavy growth in various
applications such as computer vision and speech
recognition [9, 10].

Te current article develops intelligent energy-aware
thermal exchange optimization with deep learning (IEA-
TEODL) model for IoT-enabled smart healthcare. Te
proposed IEA-TEODL technique derives energy-aware
chaotic thermal exchange optimization-based clustering
(EACTEO-C) scheme. Besides, a disease diagnosis model is
also involved to classify the collected healthcare data into
either presence or absence of the disease. To accomplish this,
the proposed IEA-TODL technique involves several sub-
processes such as preprocessing, K-medoid clustering-based
outlier removal, multihead attention bidirectional long
short-term memory (MHA-BLSTM), and weighted salp
swarm algorithm (WSSA). In order to validate the promising
performance of the IEA-TEODL technique, a wide range of
simulations was performed against benchmark datasets, and
the results were validated under diferent measures.

2. Literature Review

Mansour et al. [11] developed a disease diagnosis system for
diabetes and heart disease using IoT and AI convergence
methods. Te presented technique employed crow search
optimization approach-based cascaded LSTM (CSO-
CLSTM) for disease diagnoses. To accomplish improved
classifcation of healthcare information, CSO was employed
for tuning “weights” and “bias” parameters of the presented

approach. Te authors in the literature [12] developed
a cloud-centric IoT-based m-healthcare monitoring disease
diagnosis system that predicts the possible disease occur-
rence with the severity level. In this study, key terminology
was determined to generate user-based health measurement
by examining computation science concepts.

In literature [13–15], the authors presented a disease
diagnosis system with DL as well as IoT. Te healthcare
information is preprocessed since it contains noise. Te
preprocessed information is then passed onto isolation
forest (iForest) for outlier recognition with high precision
and linear time complexity.Te data undergo a classifcation
method in which DenseNet169 and PSO methods are in-
corporated to diagnose the disease; the parameter is then
tuned to improve the performance. Awotunde et al. [16]
developed an IoT-WBN-based architecture with an ML
approach. Te data collected from wearable sensors such as
glucose sensors, body temperature, chest, and heartbeat
sensors are transferred by IoT device to the cloud dataset.

Nagarajan et al. [17] designed an IoT-based FoG-enabled
cloud network framework that accumulates real-time
healthcare information from patients through a number
of healthcare IoT sensor networks. Tis information is ex-
amined by the DL technique deployed in a fog-based
healthcare environment. Moreover, the presented ap-
proach was utilized in sustainable smart city solutions to
estimate real-time process. Ihnaini et al. [18] proposed an
intelligent healthcare system for diabetes based on deep ML
and data fusion perspectives. With data fusion, the unrelated
burden of computation abilities was removed, and the
presented system’s efciency in terms of recommendation
and prediction of this severe disease, in a precise format, was
increased. At last, the ensembleML approach was trained for
predicting diabetes.

3. The Proposed Model

In this study, a novel IEA-TEODL technique has been
developed to accomplish clustering and decision-making in
an IoT-enabled smart healthcare environment. Te pro-
posed IEA-TEODL technique follows 2-stage processes,
namely EACTEO-C-based cluster construction and optimal
DL-based disease classifcation. Te detailed working pro-
cess of these two modules is elaborated in the succeeding
subsections. Figure 2 displays the block diagram of the IEA-
TEODL technique.

3.1. Process Involved in EACTEO-C Technique. In the pri-
mary stage, the IoT devices are placed in the healthcare
environment to gather medical data from the patients. In
order to achieve efectual energy utilization and data
transmission to the cloud server, the EACTEO-C technique
is executed to select the cluster head (CH) and construct it.

3.1.1. Overview of CTEO Algorithm. Te primary aim be-
hind the adaption of a meta-heuristic approach named
thermal exchange optimization (TEO) is to cluster the
nodes. Te model of temperature from TEO refects the
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interface feature of nodes [19]. Te cooling object mentions
the place of nodes whereas the environmental temperature
signifes the adjacent nodes. Te object is considered as
a sensor node. Terefore, important nodes are either
interpreted as objects or conversely.

Te primary temperature of every node is defned as
follows:

T
0
i � Tmin + rndx Tmax − Tmin( 􏼁, (1)

where T0
i refers to the primary solution vector of the node, i.

Tmin and Tmax signify the limits of temperature variables. In
addition, rnd stands for arbitrary vector, whereas all the
components are in the range of zero and one. Te main
function computes the cost value of all the nodes. Te
memory has regarded that hierarchy holds the optimum T

vector, and the main function value is connected to these
vectors. It improves the technical performance with no
increase in computational cost. In this way, a thermal
memory (TM) is utilized to save several optimum solutions
at the moment. So, during this phase, solution vectors,
stored from TM, are transmitted to populations. In addition,
a similar amount of accessible worse nodes is not assumed.
Eventually, the node is sorted in an ascending order based on
its respective main function values. Te node is divided into
two equivalent groups. For instance, T1 is an environment
object for Tn/2+1 cooling object and conversely.

Generally, if the β value of object is lesser, it somewhat
modifes the temperatures. An analogy is simulated as this
feature is projected. Te value of all the nodes is calculated
based on equation (2). Terefore, the β value of lesser cost
node remains a minimum value, and somewhat it modifes
the node place.

β �
cost(node)
cost(wnode)

. (2)

Te time is dependent upon the number of iterations. t

denotes the time value for all the nodes and is computed as
follows:

t �
Niter

Nmax−iter
, (3)

where Niter and Nmax−iter demonstrate the present and
maximal number of iterations correspondingly. Te envi-
ronment temperature is replaced by equation (4). At this
point, c1 and c2 denote control variables.

T
env
i � 1 − c1 + c2 ∗ (1 − t)( 􏼁∗ rnd( 􏼁∗T

p−env
i . (4)

T
p−enν
i refers to the previous temperature of the node

modifed to Tenν
i .

(i) (1 − t) is recognized to decrease arbitrariness when
approaching the fnal iteration.While the procedure
is nearing the end, t improves and reduces the
production of arbitrariness in a linear fashion.

(ii) c1 checks the size of arbitrary steps. Besides, c1
contains arbitrariness if it does not utilize
a descending method (c2 � 0).

(iii) c2 controls (1 − t). Tat is, where a decrease is not
needed, this could be regarded as equivalent to zero.

Where the condition of C � 0(c1 � c2 � 0), the pre-
ceding temperature is multiplied by I″ and c1 and c2 are
chosen in {0 or 1}. With the preceding stages and equation
(4), the upgrade temperature of all the nodes is defned based
on equation.

T
new
i � T

env
i + T

prev
i − T

env
i( 􏼁exp (−βt). (5)

Pr parameter from (0, 1) defnes whether the element of
all the nodes is replaced. To all the nodes, Pr is related to
rnd(i)(i � 1, 2, · · · , n) and is an arbitrary number that is
equally distributed from zero and one. If rnd(i)<Pr, a di-
mension nodes, i is arbitrarily selected, and their values are
redefned as follows:

Tij � Tj,min + rndx Tj,max − Tj,min􏼐 􏼑, (6)

where Ti,j refers to the variable j of node i. Tj,min and Tj,max
imply lower as well as upper limits of the variable j cor-
respondingly. Only one size is altered to preserve the in-
frastructure of nodes.Tis method presents many benefts to
nodes for moving throughout the searching region and
attaining the optimum diversity.

In this work, the TEO algorithm can be improved with
the design of the CTEO algorithm using chaotic concepts
[20]. A chaos map employs chaotic variables with change-
able nature before arbitrary variables. Tis order is initiated
from nonlinear and dynamic systems whereas non-
convergent orders are from nonperiodic and bounded
systems. It can ofer easy searching together with a superior
convergence rate than arbitrary search. Tis process uses the
technique for providing the optimum exploration from
solution spaces due to their dynamic performance of tur-
bulence sequence. Te current analysis utilizes a sinusoidal
chaotic map function to improve both convergence speed
and premature convergence of the TEO technique so as to
consider a trade-of between exploitation as well as explo-
ration techniques. Tis is performed to provide a well-
defned outcome from the solution space which does not
stuck at the local optimum points. In order to modify the
TEO approach with the help of a chaos map, the chaos value
is replaced with arbitrary numbers using the important
formula as follows:

ri+1 � P.r
2
i sin π.ri( 􏼁, (7)

where P defnes the control parameter, and ri and ri+1 imply
the chaotic arbitrary numbers generated from preceding and
the existing iterations correspondingly. At this point, r0 �

0.7 and P � 2.3.

3.1.2. Application of EACTEO-C Technique for CH Selection.
Te primary goal of the EACTCO-C technique is to min-
imize the distance among the carefully chosen CH nodes.
Te main objective is to minimize the delay during the
transmission of information from one node to another. In
contrast, for the network energy should be higher, it should
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consume a small number of energies at the time of data
communication.Te objective function of the adapted CH is
given in equation (7), where the value of η must depend
upon 0< η< 1. Now, vm and vn show the operations as given
as follows.Te constraints on distance, delay, and energy are
stated as σ1, σ2, and σ3. Te condition of this constraint is
represented by σ1 + σ2 + σ3 � 1. Xx − Bs represents the
distance between normal and sink nodes.

Hn � ηvn +(1 − η)vm, (8)

vm � σ1 ∗ vidis + σ2 ∗ viene + σ3 ∗ videl ,

vn �
1
b

􏽘

b

x�1
X

x
− Bs

����
����,

(9)

where vdis(m) represents the packet transmission from the
normal node to CH and from CH to BS. vidis must depend
upon [0, 1]. Te value of vidis remains high when the normal
node is more along with distance among CH [21].

vidis �
v
dis
(m)

v
dis
(n)

,

v
dis
(m) � 􏽘

Nx

x�1
Cx − Bs

����
����􏽨 + 􏽘

Ny

y�1
Cx − Xx

����
����,

v
dis
(n) � 􏽘

Nχ

x�1
􏽘

Ny

y�1
Xx − Xy

�����

�����.

(10)

Xx denotes the normal node in xth cluster, Cx represents
the CH of xth cluster, the distance between the BS and CH is
shown as Cx − Bs, Cx − Xx represents the distance between
normal node and CH, and Xx − Xy shows the distance among
two normal nodes, Nx and Ny indicate the node amount that
does not assume xth and yth cluster. Te value of viene becomes
higher than one, and the whole CH cumulative vene(m) and vene(n) is
considered as less energy value with high number of CH s.

v
ene
i �

v
ene
(m)

v
ene
(n)

. (11)

Delta ftness function is directly proportionate to each
node that resides in the cluster. Tus, a delay gets reduced,
when the CH owns a lesser number of nodes. Te de-
nominator NN shows the overall number of nodes in WSN,
and the numerator indicates the high amount of CH.
Furthermore, the value of vde li must be in d[0, 1].

v
del
i �

max Cx − Xx

����
����􏼐 􏼑

Nc

x�1
NN

. (12)

3.2. Disease Diagnosis Module. In this work, the disease
diagnosis model encompasses a series of subprocesses,
namely preprocessing outlier removal, MHA-BLSTM-based
classifcation, and WSSA-based hyperparameter
optimization.

3.2.1. Data Preprocessing. At the initial stage, preprocessing
takes place in diferent ways, namely data normalization,
data transformation, and data augmentation. In this work,
min-max normalization approach is used to normalize the
input medical data. Besides, data are also transformed into
a useful format, and data augmentation is applied using
SMOTE technique to increase the size of the dataset.

3.2.2. K-Medoid Clustering. Next to data preprocessing, the
outlier removal process is carried out using the K-medoid
clustering approach. Te K-means approach that utilizes
and determines the means of data point in the calculation is
mainly sensitive to the outlier. To resolve this, a new ap-
proach was developed in which the medoids are utilized
rather than the average value from the cluster. Medoids are
centre points from the cluster, and the approach is named
as k-medoids clustering. Even though k-medoids com-
putationally increase their demands, the k-medoids cluster
is not mainly sensitive to the existence of outlier points and
is appropriate to discrete and continuous felds of in-
formation [22]. Generally, the input provided has the value
of k that denotes the amount of clusters determined to data.
For every k cluster, a k-reference point is chosen. Te
variance between k-medoids and k-means algorithms is
that the former k-medoids considers the point as a refer-
ence object for the cluster whereas k-means considers the
average value from the former k-medoid cluster as the
reference point.

3.2.3. Data Classifcation Using MHA-BLSTM Model.
During the data classifcation process, the MHA-BLSTM
model can be employed for the classifcation process. RNN is
a well-known technique to train the series data, namely
image processing, video capture, and word prediction that
could remember the series element using a memory cell. Te
main problem of handling RNN is that once it is utilized for
training with long step size, it cannot remember the data for
a longer period since the backpropagated gradient either
shrinks or grows at every time step. Tis makes the training
weight vanish or explode. LSTM memory overcomes this
problem while a standard LSTM unit consists of input,
output, and forget gates that control the data into and out of
the memory cell.Te structure of a single LSTM cell includes
the logistic sigmoid function whereas i, f, 0, and c represent
the input gate, forget gate, output gate, and cell state, cor-
respondingly. Te input gate determines the ratio of input
and has an impact on the value of the cell state [23]. Te
framework could resolve the exploding and vanishing
gradient problems.

Figure 3 demonstrates the framework of Bi-LSTM. Bi-
LSTM has both forward and backward LSTM layers. Te
forward layer captures the historical data of order while the
backward layer captures the future data of the sequences.
Te combined layers are linked to a similar resultant layer.
Our network utilizes Bi-LSTM with a multihead (MH)
process. MH permits the model for combined data to
appear in various representations of subspaces at distinct
places. Te attention process plays a vital role in the DL
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network to capture the explicit and latent context. MH
attention process is presented since it utilizes several in-
dividual attention functions to capture distinct contexts.
Te attention function gets input as an order of query Q �

Q1, . . . , QN􏼈 􏼉 and group of key-value pairs
K, V{ } � (K1, V1), . . . , (KR, VR)􏼈 􏼉. MH attention method
primary transforms Q, K, and V to C subspaces, with
distinct and learnable linear projection.

At this point. Qc, Kc, and Vc signify the cth head of query,
key, and value correspondingly. WQ

c , WK
c , WV

c􏼈 􏼉 ∈ Rd×dk

implies the parameter matrices, and d and dk stand for
models and their subspace dimensions. Moreover, C at-
tention functions are executed concurrently to obtain the
resultant state, O1, . . . , OC.

O
c

� A
c
V

c
,

A
c

� softmax
Q

c
K

cT

��
dk

􏽰⎛⎝ ⎞⎠.

(13)

Ac implies the attention distribution, formed by cth at-
tention head. Tese resultant states are concatenated to
produce the last state.

3.2.4. Parameter Tuning Using WSSA Technique. In order to
fne-tune the parameters involved in the DL model, the
WSSA technique is used which in turn improves the clas-
sifer results. Te SSA approach is stimulated from navi-
gation behaviour of salps in search of food in the ocean [24].
It is classifed as leader and follower. In the searching
method of optimization technique, it is important to balance
the exploration and exploitation capabilities to accomplish
better efciency. Te idea of inertia weight factor is initially
presented to quicken the convergence speed. Researchers
fnd that when inertia weight is lesser, the particle has
stronger exploitation capability. However, it easily falls into

local optima. In contrast, when inertia weight is larger, the
particle still has a stronger exploration ability; however, the
searching efcacy becomes low. Furthermore, the researcher
presented the inertia weight factor to enhance the searching
method. Here, the weight factor reduces linearly to balance
between exploration and exploitation ability; thus, the
particle has a stronger global searching capability in the
earlier stage and searches for the precise outcome in the later
stage. In the current study, to enhance the outcomes from
traditional SSA, a weight factor is included to update the
position. It changes dynamically with the number of iter-
ations [25]. Te weighted factor decreases linearly with the
number of iterations from maximum to minimum values to
accomplish optimal outcomes.

w(t) � wmaX −
(wmax − wmin)

⋆
t

L
􏼠 􏼡, (14)

whereas wmax and wmin denote the maximal and minimal
values of the weighted factors, t represents the present it-
eration, and L indicates the maximal iteration. Te position
is upgraded inWSSA for leader and follower and is modelled
as follows:

X
1

�
w
⋆
F + c1 (UB − LB)∗ c2 + LB( 􏼁c3 ≥ 0,

w
⋆
F − c1 (UB − LB)⋆c2 + LB( 􏼁c3 ≥ 0,

⎧⎨

⎩

X
j

� 0.5∗w∗ X
j

+ X
j− 1

􏼐 􏼑,

(15)

whereas the variable has a similar meaning as in SSA.
WSSA approach derives a ftness function to accomplish

better classifcation accuracy. It describes a positive integer
to characterize the improved accuracy of the candidate
solution. Here, the minimization of the classifcation error
rate is taken into account as the ftness function. Te op-
timum solution has the least error rate whereas the worst
solution achieves an increased error rate.

xt-1

Backward Layer

Forward Layer

Inputs

Outputs

ht-1 ht ht+1

yt-1 yt yt+1

xt xt+1

ht+1htht-1

Figure 3: Bi-LSTM structure [23].
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f itness xi( 􏼁 � classif ier error rate xi( 􏼁

�
number of misclassif ied instances

Total number of instances
∗ 100.

(16)

4. Experimental Validation

In this section, the proposed IEA-TEODL model is ex-
perimentally validated for its performance using a heart
disease dataset [26]. It comprises of 270 samples with 13
attributes such as age, sex, chest pain value, resting blood
sugar, serum cholesterol, fasting blood sugar, resting
electrocardiographic results, maximum heart rate achieved,
exercise-induced angina, old peak, slope of peak exercise,
number of major vessels, and thal. Besides, the dataset
includes two class labels, namely the presence of CKD and
the absence of CKD.

4.1.ResultsAnalysis. Table 1 and Figure 4 provide the overall
results of the analysis of the IEA-TEODLmodel on the heart
disease dataset under three runs. Te results demonstrate
that the proposed IEA-TEODL model accomplished an
efectual classifcation outcome under all runs. For instance,
with run-1, the IEA-TEODL model achieved a sensy of
98.76%, specy of 93.09%, accuy of 91.27%, and an Fscore of
95.61%. Along with that, with run-2, the proposed IEA-
TEODL approach accomplished a sensy of 98.21%, specy of
92.56%, accuy of 94.19%, and an Fscore of 94.16%. In line with
these, with run-3, IEA-TEODL methodology ofered a sensy

of 99.15%, specy of 96.32%, accuy of 95.92%, and an Fscore of
99.33%.

Figure 5 depicts the ROC curve generated by the IEA-
TEODL approach under three runs. Te fgure exposes that
the proposed IAOA-DLFD technique reached an enhanced
outcome with maximum output under diferent runs. For
the sample, with run-1, the proposed IEA-TEODL meth-
odology obtained a high ROC of 97.0602. Likewise, with
run-2, the IEA-TEODL algorithm obtained an enhanced
outcome (ROC) of 97.4922. Eventually, with run-3, the
proposed IEA-TEODL system achieved an increased ROC of
98.4221.

Figure 6 provides the accuracy and loss graph analysis
results accomplished by the IEA-TEODL approach under
three runs. Te outcomes show that the accuracy value
increased while the loss value decreased with an increase in
epoch count. It can be also understood that the training loss
is low, and validation accuracy is high under three runs.

4.2. Discussion. A brief sensy analysis was conducted on the
IEA-TEODL model against existing ones, and the results are
shown in Table 2 and Figure 7. Te results report that the
proposed IEA-TEODL model achieved better outcomes in
terms of sensy under distinct instances. For instance, with
2000 instances, IEA-TEODL model reached an increased
sensy of 96.58%, but NN approach, NB methodology, SVM
system, and ANN models obtained reduced sensy values

such as 93.55%, 87.97%, 83.16%, and 95.33% correspond-
ingly. In addition, with 10000 instances, the proposed IEA-
TEODL model reached an increased sen of 99.15%, while
NN approach, NB methodology, SVM system, and ANN
models obtained reduced sensy values such as 93.47%,
88.26%, 84.21%, and 98.70%, respectively.

A comparative specy analysis was conducted on the IEA-
TEODL model against existing ones, and the results are
shown in Table 3 and Figure 8. Te results report that the
proposed IEA-TEODL approach achieved better outcomes
in terms of specy under various instances. For instance, with
2000 instances, IEA-TEODL approach reached an increased
specy of 95.40%, whereas NN approach, NB methodology,
SVM system, and ANN models obtained the least specy

values such as 84.86%, 83.71%, 80.93%, and 94.36% re-
spectively. Furthermore, with 10000 instances, the proposed
IEA-TEODL technique reached an increased specy of
96.32%, whereas NN approach, NB methodology, SVM
system, and ANN methodologies obtained less specy values
such as 90.26%, 86.91%, 84.13%, and 91.90%
correspondingly.

A detailed accy analysis was conducted on the IEA-
TEODL algorithm against existing methods, and the results
are shown in Table 4 and Figure 9.Te results report that the
proposed IEA-TEODL technique achieved better outcomes
with respect to accy under distinct instances. For instance,
with 2000 instances, the proposed IEA-TEODL model
attained an increased accy of 94.28%, but NN approach, NB
methodology, SVM system, and ANN systems obtained less

Table 1: Analytical results of IEA-TEODL technique under
three runs.

No. of runs Sensitivity Specifcity Accuracy F-score
Run-1 98.76 93.09 91.27 95.61
Run-2 98.21 92.56 94.19 94.16
Run-3 99.15 96.32 95.92 99.33
Average 98.71 93.99 93.79 96.37

92

94

96

98

100

V
al

ue
s (

%
)

F-scoreAccuracySpecificitySensitivity

Run-1
Run-2
Run-3

Figure 4: Analytical results of IEA-TEODL technique under
three runs.
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accy values such as 88.73%, 77.43%, 73.17%, and 92.54%
correspondingly.

Additionally, with 10000 instances, the proposed IEA-
TEODL approach reached the maximum accy of 95.92%,
whereas NN approach, NB methodology, SVM system, and
ANN models obtained low accy values, namely 89.61%,
82.02%, 81.98%, and 93.88% correspondingly.

A brief Fscore analysis was conducted between the IEA-
TEODL method and the existing models, and the results are
shown in Table 5 and Figure 10. Te results infer that the
proposed IEA-TEODL approach achieved better outcomes
in terms of Fscore under distinct instances. For instance, with
2000 instances, the presented IEA-TEODL model reached
the maximum Fscore of 98.32%, while NN approach, NB
methodology, SVM system, and ANN algorithms obtained

low Fscore values such as 92.33%, 84.63%, 81.59%, and
97.67% correspondingly. Finally, with 10000 instances, the
proposed IEA-TEODL algorithm obtained an increased
Fscore of 99.33%, whereas NN approach, NB methodology,
SVM system, and ANN models reached less Fscore values
such as 97.71%, 84.25%, 82.32%, and 95.84%
correspondingly.

At last, a brief TEC examination was conducted between
IEA-TEODL model and recent methods, and the results are
shown in Table 6 and Figure 11 [27]. Te experimental
values highlight that the proposed IEA-TEODL model
produced efective TEC values under distinct IoT sensor
counts. For instance, with 100 IoT sensors, the IEA-TEODL
model gained a low TEC of 41.30%, whereas EE-PSO, ABC,
GWO, and ACO algorithms obtained high TEC values such
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Figure 5: ROC analysis results of IEA-TEODL technique under three runs.
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as 45.04%, 57.14%, 60.65%, and 66.16%, respectively. At the
same time, with 300 IoT sensors, the proposed IEA-TEODL
method gained a low TEC of 57.71%, whereas EE-PSO, ABC,
GWO, and ACO systems obtained high TEC values such as
59.73%, 67.24%, 73.44%, and 77.15% correspondingly. In

line with this, with 500 IoT sensors, the proposed IEA-
TEODL model gained a low TEC of 65.74%, whereas EE-
PSO, ABC, GWO, and ACO approaches attained high TEC
values namely 69.28%, 78.51%, 82.11%, and 84.08%
correspondingly.
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Table 2: Sensitivity analysis results of IEA-TEODL technique against existing approaches.

Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 93.55 87.97 83.16 95.33 96.58
4000 88.03 85.03 81.95 94.33 95.41
6000 92.92 86.87 83.62 95.53 97.41
8000 92.02 88.98 81.40 96.96 98.71
10000 93.47 88.26 84.21 98.70 99.15
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Figure 7: sensy analysis of the IEA-TEODL technique with recent approaches.

Table 3: Specifcity analysis results of IEA-TEODL technique against existing approaches.

Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 84.86 83.71 80.93 94.36 95.40
4000 86.58 84.08 82.75 92.92 95.29
6000 86.72 86.59 84.01 94.27 96.14
8000 87.65 81.34 78.14 92.26 94.40
10000 90.26 86.91 84.13 91.90 96.32
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Figure 8: Specy analysis results of the IEA-TEODL technique against recent approaches.
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Table 4: Accuracy analysis results of the IEA-TEODL technique against existing approaches.

Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 88.73 77.43 73.17 92.54 94.28
4000 90.97 77.80 76.69 94.33 95.86
6000 86.99 76.89 75.86 92.59 93.70
8000 86.43 80.42 77.86 94.82 95.15
10000 89.61 82.02 81.98 93.88 95.92
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Figure 9: Accy analysis results of the IEA-TEODL technique against recent approaches.

Table 5: F-score analysis results of the IEA-TEODL technique against existing approaches.

Instances Nearest neighbour Naive Bayes SVM model ANN model IEA-TEODL
2000 92.33 84.63 81.59 97.67 98.32
4000 89.47 84.91 82.45 95.87 96.87
6000 92.57 88.19 87.16 95.33 96.52
8000 92.28 83.73 80.61 94.49 96.29
10000 91.71 84.25 82.32 95.84 99.33
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Figure 10: Fscore analysis results of the IEA-TEODL technique against recent approaches.
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After examining the above-mentioned tables and fgures, it
is apparent that the proposed IEA-TEODL technique out-
performed other methods. Te enhanced performance of the
proposed model is due to the integration of EACTEO-C-based
cluster construction and optimal DL-based disease classifcation.

5. Conclusion

In this study, a novel IEA-TEODL technique has been
developed to accomplish clustering and decision-making in
an IoT-enabled smart healthcare environment. Te pro-
posed IEA-TEODL technique follows a two-stage process,
namely EACTEO-C-based cluster construction and optimal
DL-based disease classifcation. Besides, the disease di-
agnosis model encompasses a series of subprocesses, namely
preprocessing outlier removal, MHA-BLSTM-based classi-
fcation, and WSSA-based hyperparameter optimization. In
order to validate the promising performance of the proposed
IEA-TEODL technique, a wide range of simulations was
conducted against benchmark datasets. Te simulation re-
sults established the enhanced outcomes of the IEA-TEODL
technique over other recent techniques under distinct
evaluation metrics. Tus, the IEA-TEDOL technique can be
utilized as an efectual tool to accomplish energy efciency
and data classifcation in an IoT environment. In the future,
lightweight cryptography and authentication mechanisms
can be included to assure security in the smart healthcare
environment.
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