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We propose a neural architectural search model which examines histopathological images to detect the presence of cancer in both
lung and colon tissues. In recent times, deep artifcial neural networks have made tremendous impacts in healthcare. However,
obtaining an optimal artifcial neural network model that could yield excellent performance during training, evaluation, and
inferencing has been a bottleneck for researchers. Our method uses a Bayesian convolutional neural architectural search algorithm
in collaboration with Gaussian processes to provide an efcient neural network architecture for efcient colon and lung cancer
classifcation and recognition. Te proposed model learns by using the Gaussian process to estimate the required optimal
architectural values by choosing a set of model parameters through the exploitation of the expected improvement (EI) values,
thereby minimizing the number of sampled trials and suggesting the best model architecture. Several experiments were con-
ducted, and a landmark performance was obtained in both validation and test data through the evaluation of the proposed model
on a dataset consisting of 25,000 images of fve diferent classes with convergence and F1-score matrices.

1. Introduction

At present, lung and colon cancer types are among the most
prevalent and deadliest cancers leading to cancer-related
deaths globally [1]. In contrast with the combination of
breast, ovarian, and prostate cancers, lung and colon cancers
cause more death per annum. In recent reports, vaping and
smoking have skyrocketed the risk of lung cancer; although
nonvapers may be infected, the threat is minimal. Dietary
habits, advancing age, obesity, and sedentary lifestyles [2]
also contribute immensely to the risk factors leading to the
progressive surge in incidences of colon cancer. People with
an established family history of CRC infammatory and
bowel disease, adenomatous polyposis, or hereditary non-
polyposis colon cancer are highly prone to CRC infection.
According to studies, 20–53% of the U.S. citizens above 50

years of age are projected to be infected with adenomas and
the aged have about 5% lifetime threat of adenocarcinomas
emergence [3]. Prompt detection of cancer is essential to its
cure, but manual recognition and the stages of the processes
involved in the identifcation are cumbersome and dan-
gerous, especially in the early stages. Biopsies and imaging
such as CT scans are two major diagnostic [4] methods.

Te microscopic investigation of unhealthy tissues or
histopathology is critical to the early diagnosis and treatment
of cancers [5]. In recent times, the developmental strides in
digital microscopy have pioneered the extraction of relevant
information from these diseased tissues via whole-slide
images (WSIs) of cancer tissues utilizing artifcial neural
network algorithms based on convolutional neural networks
[6]. Deep artifcial neural networks can perform pathological
examinations independently, which are usually conducted
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manually by pinpointing strategic interpretable features that
pose prognostic characteristics. In the past, deep learning
networks required huge data, which was hard to gather in
the healthcare feld for model training and performing in-
ference. However, recent advancements such as single-shot,
few-shot, data augmentation, and architectural search
learning methods have seen a reduction in demand for huge
data in training and deploying deep learning models in
healthcare.

Numerous factors impede the automatic detection and
classifcation of these unhealthy tissues containing cancers.
For instance, images of low quality due to poor fxation and
strains during tissue preparatory works or failures due to
autofocus when performing slide digitisation. Also, complex
tissue builds, nuclei clutter, and variations in the mor-
phology of the nucleus also constitute a great challenge.
Specifcally, lung and colon colorectal adenocarcinoma and
lung squamous-cell-carcinomas often pose asymmetrical
chromatin textures which are extremely cluttered together,
having unclear boundaries, and this invariably makes the
detection of distinct nuclei a perplexing task [7]. In addition,
inconsistencies in the appearance of similar nuclei within
and across several data samples make the classifcation of
specifc nuclei invariably tough. Tese challenges were taken
care of during the data preprocessing process.

Due to these complex patterns of cancer-afected tissue
images, the classical design of automated cancer recognizers
needs domain expert knowledge to guide on which specifc
features to extract for training an artifcial neural network
algorithm. Tis process, also referred to as feature engi-
neering [8], is time-consuming, labor-intensive, and error-
prone. Our proposed method is capable of learning the
feature representations in the colon and cancer-afected
tissues, thereby eliminating feature engineering. Our hy-
pothesis is based on using a Bayesian neural architectural
search to estimate the exact classifer architecture in con-
junction with patients’ endpoint as the outcome that has the
potential of divulging recognized prognostic morphologies
and also recognizing previously unfamiliar prognostic
structures.

2. Related Works

In recent times, researchers have applied diferent artifcial
intelligence and deep learning strategies to classify images
containing diferent types of health problems, including
cancer, for early identifcation and treatment. In a related
work, a collection of classifers such as the KNN (k-nearest
neighbor), ANN (artifcial neural networks), and SVM
(support vector machine) in conjunction with the Bayesian
model select and learn features from the leukemia dataset
[9]. In their study, Hosny et al. [10] proposed an automated
framework to classify skin lesions for early cancer detection.
In the work, they used transfer learning on a pretrained deep
learning network to achieve a reliable result for cancer
detection. In another closely related investigation, feed-
forward neural networks with a deep belief network and
H2O were deployed to perform cancer classifcation from a
cancer data repository [11].

Furthermore, a deep learning pipeline for a fully auto-
mated cervical cancer classifcation was proposed in work by
[12]. In the proposed pipeline, two pretrained deep learning
frameworks were integrated to automatically conduct cer-
vical tumour classifcation and cervix detection tasks. Also, a
deep learning model was adopted to explore the possibility
of classifying from gene expression data cancer cells [13]. In
another similar study, a supervised cancer classifcation
model for the molecular subtyping of cancer cells, in par-
ticular, breast and colorectal cancers, was proposed [14]. In
another study, a convolutional neural network-driven deep
learningmethod was deployed to perform amulticlass breast
cancer classifcation task [15].

In continuation, a study used a three-way decision-based
Bayesian deep learning approach to conduct an uncertainty
quantifcation in skin cancer classifcation [16]. Diverse
convolutional neural network-powered deep learning
models were used to perform dermatologist-level dermo-
scopy skin cancer classifcation tasks [17]. Also, another
scientifc investigation utilised a weakly-supervised 3D deep
learning model to classify and localise breast cancer lesions
found onMR imageries [18]. An optimal feature fusion from
ultrasound images for breast cancer classifcation using a
probability-driven optimal deep learning framework was
introduced by [19]. A patch-based deep learning framework
was introduced to perform breast cancer classifcation tasks
from histopathological images [20]. In this work, a rapid,
deep learning-inspired framework using a Baye-
sian–Gaussian neural architectural search strategy is pro-
posed. Our work is motivated by the recent drive for efcient
models that are capable of rapid cancer data processing and
recognition.

3. Theoretical Background

3.1. Bayesian Neural Architectural Search. Te neural ar-
chitectural search [21] focuses on automating the neural
network training cycle by eliminating the hassles of the
manual neural network architecture value selection process
(see Figure 1). Random and grid search [22], Bayesian
optimisation [23], evolutionary search [24], reinforcement
learning [25], and gradient descent [26] are some of the
methods that have been proposed. Each of these algorithms
has merits and demerits. For instance, the grid search has an
issue known as the “Curse of Dimensionality” because it
requires enormous time to train due to the drastic increase in
the number of parametric combinations as more parameters
are added to the model. Te random search tries at random
parameter-combinations instead of searching each param-
eter combination like the grid search strategy. So, as the
parameter value increases, the probability of obtaining an
ideal combination of parameters via random sampling re-
duces to zero.

Bayesian optimisation using the Gaussian process al-
gorithm provides a better alternative for 0-th order opti-
misation of expensive function evaluation necessary for
artifcial neural network architecture selection. For a given
Bayesian optimisation iteration, we train and observe a
subset of the neural network to gauge the accuracy of
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unknown model architecture in a search domain. Tis
method solves the aforementioned problems in the other
search algorithms and eliminates the need for manual
construction of distance functions between neural networks.
Bayesian optimisation normally works by the assumption
that an unidentifed function was sampled via a Gaussian
process (GP), having a frm grip on this function while
observation persists. In this work, the observations are the
degree of convergence of several choices of hyper-param-
eters we intend to optimise. In choosing the hyper-pa-
rameters of the next iteration, the expected improvement
(EI) [27] is optimised on the best present result, or the upper
confdence bound [28] of the Gaussian process. Te ef-
ciency of the upper confdence bound (UCB) and the ex-
pected improvement (EI) have been confrmed for the
amount of function evaluation necessary to attain the global
optimum of numerous black-box functions [29].

3.2.Te Gaussian Process (GP). Gaussian process (GP) is an
optimal method for loss function modelling in models that
require optimisation and is a prior of functions that are
closed under sampling [29], that is, if the prior distribution
of a function f is perceived to be GP having k kernel and 0
mean, then the conditional distribution of f, acknowledging
a sample Z � (xi, f(xi)

n
i�1 of its values, is also regarded as

GP whose covariance and mean functions are derivable
analytically. Gaussian processes possessing mean functions
that are generic can also be used in principle, but it is efcient
and easy to use only 0-mean processes for this work. We
achieved this by focusing the values of functions on the data
sets being processed.

3.3. Acquisition Functions for Bayesian Optimisation.
Assumptions are made such that the function f(x) is se-
lected from the prior of the Gaussian process, and obser-
vations are in the form of xn, yn

N
n�1 , given yn ∼ N f( ( xn), v

and v representing the noise variance introduced into the
observed function. Posterior over functions are induced by
the data and the prior, which is denoted as a: X⟶ R+,
which fxes what point in X should next (n) be estimated
through a proxy optimisation Xn � argmaxx a(x)W;here
many diverse functions have been anticipated. Previous
observations are relied upon by the acquisition functions,
even the Gaussian process hyperparameters and these de-
pendencies are denoted as a(x; xn, yn ; P). Many popular
acquisition functions are available, but with the Gaussian
process prior, they rely solely on the predictive mean
function of a given model μ(x; xn, yn , P) in conjunction
with the predictive variance function σ2(x; xn, yn ; P).
Terefore, the current best value is presented as
Xb � argmaxxn

f(xn), β(.) as the cumulative distribution
function of the standard normal and c(.) the standard
normal density function [29]. Intuitively, a notable approach
is to maximise the probability of improving the current best
result, and this process is known as probability of im-
provement (PI) [25]. Analytically, this can be computed as
follows:

aPI x( ; xn, yn , P � β(φ(x)), (1)

where

φ(x) �
f xb(  − μ x; xn, yn , P( 

σ x; xn, yn ; P( 
. (2)
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Figure 1: Te proposed neural architectural search cycle with Gaussian process.

Journal of Healthcare Engineering 3



Alternatively, we adopted to maximise the expected
improvement (EI) of the current best result in this work,
which is closely related to the Gaussian process:

aEI x( ; xn, yn , P � σ x; xn, yn ; P( (φ(x)c(φ(x)) + N(φ(x); 0, 1)). (3)

3.4. Convolutional Neural Network. Te discovery of the
convolutional neural network has ushered in a new di-
mension in healthcare image classifcation, segmentation,
disease detection, and recognition.Te digitalised healthcare
system has enabled the collection of large-scale visual data
required for CNN model training and inferencing [30]. Te
layers present in a convolutional neural network extract
complex features from healthy and unhealthy (cancer) tis-
sues required for critical diagnostic decision-making. Te
CNN consists of diferent blocks of layers and subsampling
layers, each performing a distinct function necessary for easy
extraction of adequate information for the detection of
cancer in a given image.

Te convolutional layer is the power block where vital
convolutional operations are performed and important
features are extracted, as shown in Figure 2. It extracts
similar features from diferent image regions and matches
them together for probabilistic decision-making. A chuck of
images (x1, x2, x3) are taken from the image repository and
fed into the convolutional blocks (Block1, Block2, Block3,
. . .) for operations. Filters in the convolution layers convolve
over the input image chunks to pick vital key points using
the back propagation algorithm. Te pooling layer or sub-
sampling layers carry out down sampling processes on the
images emanating from the convolution operations. Ten, a
max-pooling operation picks the largest pixel values from a
specifc part of the image kernels, thereby minimising the
required parameters to be computed and making the con-
volution activities translational invariant to scale, size, and
shape [31]. Te last layer is a fully connected layer which
accepts the inputs of all previous neurons and operates on
them to produce output (y1).

4. Materials and Methods

4.1.Materials. We present the detailed materials and resources
used in training and evaluating the proposed model. We
employed Keras open-source deep learning framework with
TensorFlow backend [32] to construct, train, and evaluate the
Bayesian–Gaussian driven convolutional neural architectural
search model for cancer identifcation. All experiments were
performed on a high-end PC with an 8G GPU card of 16GB
internal memory, a cuDNN library, and a CUDA Toolkit.

4.2.Dataset. Te dataset used in this work consists of 25,000
colon and lung histopathological images of fve classes [33].
Each class contains 5000 images placed in separate folders,
where 0, 1, . . ., n denotes the classes of the images. Te
classes belonging to colon histopathological images are

colon adenocarcinomas and benign colonic tissues, and that
having lung histopathological images are lung adenocarci-
nomas, lung squamous cell carcinomas, and benign lung
tissues. All patients’ identities are removed and the data are
freely made available for AI researchers. Te original size of
all the images is 768× 768 pixels. However, during pre-
processing, we resized all the images to 150×150 pixels to
minimise computational demand and allow the dataset to ft
into our computational model. Te dataset was randomly
split into three, having 70% samples assigned to the training
set, 20% for validation and 10% designated for testing the
model.

4.3.Methods. A baseline convolutional neural network with
three layers was used for the training of the proposed
Bayesian–Gaussian inspired convolutional neural architec-
tural search. Te frst consists of 9 kernel sizes, 1-stride, 16-
flters, and max-pooling of (2 × 2). Te second has pa-
rameters as the frst but with a dropout layer of 0.15. Te
third layer has nine kernel sizes, 1-stride, 36-flters, max-
pooling of (2 × 2), and a dropout layer of 0.15. Te fourth
and fnal layer is the dynamic layer, where the neural ar-
chitectural search processes are performed. We used cate-
gorical cross-entropy as the loss function and Adam as the
optimiser. Te best model was initialised at zero before
training with 30 epochs and a batch size of 128. Expected
improvement was used as the acquisition function with the
number of calls set at 11. Initially, we kept the dynamic
learning rate between 1e− 6 low and 1e− 1 high with a
uniform prior, the artifcial neural dense layer at 1-low and
10-high, and dense node at 2-low and 512-high. We set the
default parameter P at 1e− 3 learning rate, 1–16 dense layer/
node, and rectifed linear unit (ReLU) as the activation
function.

5. Results and Discussion

We deployed several measurement matrices to determine
the cancer identifcation prowess and performance of the
proposed model.

5.1. Convergence and Matrix Plots. Te convergent plot in
Figure 3 shows the learning progression during training with
respect to the number of calls. As the call n increase, the
model convergence increases and attain the peak between 4
and 11 calls. Figure 4 is a matrix plot illustrating the
combination of the three key training dimensions.

Te frst and second plots on the frst row of Figure 4
show the partial dependences of two dimensions of the
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ftness-value-change approximation resulting from the si-
multaneous alteration of the dimensions. Tey represent the
estimates of the modelled ftness function, which invariably
are the approximation of the real ftness function.Te partial
dependence (PD) is computed by setting an individual value
for the learning rate and selecting a large number of ex-
amples randomly for the dimensions left in the search space,
and then the projected ftness values available in all the
points are averaged. To demonstrate the infuence of this
exercise on the average ftness function, this process is re-
done on other learning rates. Similarly, this procedure is
repeated on the plots of the partial dependencies of the other
remaining dimensions.

Te sample distribution of individual hyperparameters
while performing Bayesian optimisation is shown in the
diagonal of the histograms in Figure 5.Te other plots under
the diagonal diagram show the position of samples in the
search space. Te magnitude of the sample selections is
demonstrated with the colour coding. It is most likely to
observe a high concentration of samples in sections of the
search space when bigger numbers of samples are chosen.
Te top ten accuracies of the model architectural search

process drawn from 30 generated architectures are shown in
Table 1. From the table, the model with 1.85e− 4 learning rate,
nine layers, and 142 dense nodes yielded the best result
overall.

5.2. Te Confusion Matrix. We further measure the per-
formance of our proposed method by examining the pre-
cision, recall, and F1-score of randomly selected test samples
of each class of the colon and lung tissues. Te recall is the
ability of the proposed model to discover all the signifcant
cases of cancer in a given set of samples. In order words, it is
the number of true positives (TP) divided by the number of
true positives (TP) [34] added to the number of false neg-
atives (FN), i.e.,

Recall(R) �
TP

(TP + FN)
. (4)

Te colon and lung tissue data points accurately clas-
sifed as positive are the true positive (TP), and the ones
classifed as negative when they are actually positive in re-
ality are false negatives (FN). Te ability of the proposed
method to detect only the relevant colon and lung tissue data
points is the precision or the number of true positives (TP)
divided by the number [35] of false positives (FP) added to
the number of true positives (TP) i.e.,

Precision(P) �
TP

(TP + FP)
. (5)

False positives (FP) are instances where the model
classifes data points as positive when they are negative in
reality. Furthermore, the harmonic mean of the precision
and recall are the F1-score expressed as follows:

F1 � 2 ×
(P × R)

(P + R)
. (6)

Finally, the macro and weighted averages are the
arithmetic mean of the F1-scores per class of the colon-lung
tissue test data samples and the weight of the F1-score of
each colon-lung tissue test data class by the number of
samples from that class, respectively.
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Figure 3: Convergence plot of the training process.
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Analysing the performance of the proposed model on
each class of the lung-colon tissue test samples, our model
recorded a 98% F1-score on 489 randomly selected lung
adenocarcinoma (LA) test samples, as shown in Table 2.
Also, a 99% F1-score was achieved on 511 test samples of the

lung squamous (LS) tissues and 94% on 534 lung benign
(BL) test data samples, respectively. Likewise, the model
yielded a 93% F1-score on the 512 randomly picked colon
adenocarcinomas (CA) test data samples and 99% on 454
benign colonics (BC) test data samples. An overall 97% test
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Figure 5: Matrix plot of the Bayesian optimization process.
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accuracy on the 2500 reserved test data samples was achieved
with 97% macro-averaging and weighted averaging,
respectively.

We compared our result with the one obtained using our
baseline conventional convolutional neural network (CNN)
model, having 3,474,501 trainable parameters with 50
epochs, as shown in Table 3. All parameters in the baseline
model remain the same as the proposed model but without
the Bayesian–Gaussian architectural search process. A closer
look at Table 3 indicates that the baseline model sufers
overftting problems which can be mitigated with some
cumbersome measures, but our method does not require
additional measures to obtain an optimal model. Our ap-
proach achieved an approximately 97% overall accuracy
(Table 2), thereby outperforming the normal CNN method,
which yielded an overall accuracy of 62%, as shown in
Table 3.

Furthermore, a comparative analysis with related works
on deep learning-based lung and colon cancer classifcation
is performed against the proposed model in this section.
Since our work is based on new novel dataset, some of these
related results cited in this article are not completely
comparable as the dataset they used in the various works are
diferent from our work. Even so, the objective of the works
is the same and thus put into comparison as shown in
Table 4.

As shown in Table 4, our introduced method out-
performed the other referenced methods in terms of clas-
sifcation and recognition of cancer infection types. Te frst
three works on the used SVMs, SC-CNN, and RF, respec-
tively to conduct the cancer classifcation tasks and recorded

accuracies far below our proposed method within the range
of 72% and 86%. Tis is followed by the models proposed
[38] that used the RESNET-50 deep learning architecture
and obtained an accuracy of 93.91%, then [39] Hatuwal and
Tapa [40] and Masud et al. [41], respectively, used con-
ventional CNN architectures on the histopathological cancer
image datasets to obtain classifcation accuracies ranging
from 97.89% to 97.92%. However, our proposed method
used a novel variant Bayesian–Gaussian architectural search
process to obtain amore better CNN architecture that yield a
more superior performance in terms of performance ac-
curacy and efciency.

6. Conclusions

In this work, we proposed a neural architectural search
model which examines a histopathological image to rec-
ognize the presence of some classes of cancer in both lung
and colon digital images by learning and distinguishing
critical features in them. Tis method works by using key
points in a given batch of data occupying a search space to
suggest a suitable and efcient neural network architecture.
Te results from this work have shown that by having a
sizeable amount of histopathological image dataset, one can
successfully construct an efective and efcient neural net-
work model capable of recognizing a cancer-infected person
without undergoing painful rigorous diagnostic processes.
Tis technique works without manually setting network
architecture features, unlike the conventional artifcial
neural network models. In the future, we plan to increase the

Table 3: Confusion matrix of the convolutional neural network.

Class Precision Recall F1-score Support
LA 0.43 1.00 0.60 489
LS 0.00 0.00 0.00 511
CA 0.93 0.22 0.36 512
BC 1.00 0.93 0.97 454
BL 0.67 0.98 0.80 534
Accuracy 0.62 2500
Macro avg 0.61 0.63 0.55 2500
Weighted avg 0.60 0.60 0.53 2500

Table 4: Comparison of the obtained results with other related
methods.

Reference Classifer Accuracy (%)
Xu et al. [36] SVMs 72.00
Sirinukunwattana et al.
[35] SC-CNN 75.00

Babu et al. [37] RF 85.30
Bukhari et al. [38] RESNET-50 93.91
Mangal et al. [39] CNN 97.89
Hatuwal andTapa [40] CNN 97.21
Masud et al. [41] CNN 96.33

Proposed Bayesian–Gaussian
CNN 97.92

Table 1: Top ten search accuracies.

Learning rate No. of dense
layers

No. of dense
nodes Accuracy

1.85e− 4 9 142 96.911110
1.e− 6 7 264 72.155556
1.3e− 5 4 325 20.355555
1.715e− 3 7 185 20.355555
6.121e− 3 6 303 20.355555
1.28e− 4 4 499 20.355555
7.570e− 3 2 395 20.355555
4.407e− 3 5 83 19.466667
2.095e− 3 1 201 19.466667
7.0403e− 2 7 81 19.466667

Table 2: Confusion matrix of the optimal model.

Class Precision Recall F1-score Support
LA 0.98 0.98 0.98 489
LS 0.99 0.99 0.99 511
CA 0.93 0.93 0.93 512
BC 0.99 1.00 0.99 454
BL 0.95 0.93 0.934 534
Accuracy 0.97 2500
Macro avg 0.97 0.97 0.97 2500
Weighted avg 0.97 0.97 0.97 2500
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robustness of the model by adding more cancer classes and
cases and increasing the model’s efciency and accuracy.
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