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Respiratory sounds have been used as a noninvasive and convenient method to estimate respiratory fow and tidal volume.
However, current methods need calibration, making them difcult to use in a home environment. A respiratory sound analysis
method is proposed to estimate tidal volume levels during sleep qualitatively. Respiratory sounds are fltered and segmented into
one-minute clips, all clips are clustered into three categories: normal breathing/snoring/uncertain with agglomerative hierarchical
clustering (AHC). Formant parameters are extracted to classify snoring clips into simple snoring and obstructive snoring with the
K-means algorithm. For simple snoring clips, the tidal volume level is calculated based on snoring last time. For obstructive
snoring clips, the tidal volume level is calculated by the maximum breathing pause interval. Te performance of the proposed
method is evaluated on an open dataset, PSG-Audio, in which full-night polysomnography (PSG) and tracheal sound were
recorded simultaneously. Te calculated tidal volume levels are compared with the corresponding lowest nocturnal oxygen
saturation (LoO2) data. Experiments show that the proposed method calculates tidal volume levels with high accuracy and
robustness.

1. Introduction

Sleep quality and sleep time are both important for human
health. Sleep quality is the measurement of how restful and
restorative the sleep process proceeds. Enough sleep hours
do not necessarily guarantee to get the most restful type of
sleep. More than 80 sleep disorders are known to afect sleep
quality. Among all these factors that cause poor sleep quality,
sleep-related breathing disorders (SRBD) is the second one
of all sleep-related disorders (the frst one is insomnia) [1].
SRBD is the condition of abnormal and difcult respiration
during sleep, which has efects on the balance of oxygen and
carbon dioxide in the blood. Tidal volume is one of the
parameters for monitoring respiratory ventilation and
pulmonary function. Tidal volume is the amount of air that
moves in or out of the lungs with each respiratory cycle. Te
normal tidal volume is around 500mL in an average healthy
adult male and approximately 400mL in a healthy female.
Te tidal volume during sleep can be measured by many
methods, such as polysomnography (PSG) and inductance
plethysmography [2]. However, these methods are

expensive, require a specialized operation, and cause un-
comfortable sleeping. Terefore, there is a need for a non-
intrusive, easy-operating method that can be used in a home
environment. Te acoustic method is getting popular in
respiration monitoring as it only involves acquiring and
processing respiratory sound signals to estimate tidal vol-
ume.Te development of smartphones and wearable devices
also made it possible tomonitor respiration and tidal volume
during sleep. Monitoring respiratory quality using re-
spiratory sound is becoming a hotspot in recent years.

Many researchers have focused on analyzing the cor-
relation between respiratory sound and respiratory airfow
due to its potential for assessing snoring risk and estimating
tidal volume. Various models or algorithms are proposed to
estimate respiratory fow through respiratory sounds.
Gavriely and Cugell proposed that the breath-sound am-
plitude (BAS) and fow (F) generally follow a 1.75-power
relationship [3]. Yap and Moussavi proposed a method to
use average power and an exponential model to estimate
respiratory fow through tracheal sound, which reached an
estimation error of 5.8± 3.0% [4]. Reljin et al. used the
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blanket fractal dimension (BFD) as the parameter for esti-
mating the tidal volume from tracheal sounds recorded by
an Android smartphone, the smallest normalized root-
mean-squared error of 15.877%± 9.246% was obtained with
the BFD and exponential model [5]. Yadollahi andMoussavi
extracted the average power, the logarithm of the variance,
and the logarithm of the envelope of tracheal sound as
a feature, they compared the ability of these features to ft the
fow-sound relationship, suggesting that the logarithm of the
variance is the best feature to describe the fow-sound re-
lationship with a linear model [6]. Other studies indicated
that the Shannon entropy and sound variance also have an
exponential relationship with the respiratory fow [7, 8].
Most of these papers indicate that the fow rate and re-
spiratory sound amplitude follow a power law. Tis re-
lationship used to estimate the respiratory fow rate can be
presented in the following equation:

logFest � C1log(E) + C2. (1)

Fest is the estimated fow rate (L/min), E is the re-
spiratory sound amplitude, and C1 and C2 are the co-
efcients. C1 and C2 are determined by the human upper
airway structure and can be calculated via a few breaths
with a known fow rate for each participant, this pro-
cedure is called calibration. Current methods require
calibration to determine the model coefcients C1 and C2.
Yadollahi and Moussavi found that the parameters of the
fow-sound relationship during sleep and wakefulness are
diferent [9]. Terefore, for monitoring the tidal volume
during sleep, the model parameters should be calibrated
with sleep respiratory sounds.

However, these methods mentioned above are only
applied to normal respiration, and calibration is needed for
each case. Furthermore, these methods had not worked well
for respiration during snoring. During snoring, the sound
amplitude is higher than normal breathing, on contrary, the
respiratory airfow is lower than normal breathing.Temain
reason is that the upper airway is usually collapsed or
obstructed, and is highly variable during snoring. Respira-
tion monitoring during snoring is important as it greatly
afects sleep quality. During snoring, the upper airway is
partially or completely blocked, and the respiratory airfow is
limited or vanishes. Snoring usually leads to intermittent
hypoxemia (IH), hypercapnia, arousal, hypertension, and
sleep fragmentation. In this paper, a qualitative tidal volume
estimation by a respiratory sound signal is proposed. It only
used respiratory sound for analysis and does not need
calibration. Terefore, the respiratory sound data could be
easily collected by recording equipment and could be used in
a home environment.

Te proposed method consists of 4 main steps. First, the
respiratory sounds are preprocessed into clips. Second, all
clips are clustered into the normal breathing/snoring/un-
certain categories with agglomerative hierarchical clustering
(AHC). Tird, the snoring clips are classifed into simple
snoring and apneic snoring with the K-means algorithm
based on formant parameters and time domain parameters.
Finally, the maximum breathing pause interval (MBPI) is

calculated for apneic snoring clips to set the tidal volume to
a medium or low level. Te last time is calculated for simple
snoring to set the tidal volume to a high- or medium-level.
All the predictions are compared with LoO2 (lowest noc-
turnal oxygen saturation) to evaluate the performance. All
steps are unsupervised and do not need any calibration. Te
fow of the proposed method is shown in Figure 1.

2. Materials and Methods

Te tracheal sounds are extracted from the PSG-Audio
dataset. Te dataset comprises 212 polysomnograms along
with synchronized tracheal sound. Te dataset contains edf
fles comprising polysomnogram signals and rml fles
containing all annotations by the medical team [10]. Te edf
fles contain 20 channels, the SpO2 (blood oxygen saturation
level, in channel 15) and tracheal sound (in channel 19) data
are extracted from the edf fles for analysis. Te SpO2
measures the amount of oxygen in the blood. Te corre-
sponding respiratory events (obstructive apnea/mixed ap-
nea/hypopnea) are extracted from the rml fles. Te
sampling frequency of SpO2 and tracheal sound is 1Hz and
48000Hz, respectively. A fve minutes data clip is shown in
Figure 2.

2.1. Agglomerative Hierarchical Clustering

2.1.1. Processing. Te frst step of preprocessing is fltering and
denoising. As the respiratory sound energy of healthy people is
usually concentrated in the low-frequency range of [50, 2500]
Hz, a 50–2500Hz Butterworth bandpass flter is used to flter
noise. Te sampling rate of recording fles is downsampled to
5000Hz.Te second step of preprocessing is segmentation.Te
duration of the clip length is settled by considering the micro
and the macro aspect. One clip should be short enough to
separate each breathing stage; therefore, the audio signal in one
clip is stable.Te length of the clip is better to be cut with 5 to 10
breath periods for analysis.Te usual breath period during sleep
is 3 to 6 seconds. Te length of 30 seconds to 60 seconds is
considerable. Furthermore, considering the time of apnea in
a serious case, it usually takes more than 30 seconds. In this
paper, the length of segmentation is set at 60 seconds.

2.1.2. Feature Extraction. According to research about the
human hearing mechanism, the human ear has diferent
hearing sensitivity to sound waves of diferent frequencies.
Te human ear has a higher resolution of low-frequency
sounds than high-frequency sounds. Te Mel scale is
a mapping from the human auditory perceived frequency to
the actual frequency of the sound. By converting the fre-
quencies to the Mel scale, features can better match the
human auditory perception [6]. Te Mel scale describes the
nonlinear characteristics of the human ear frequency, and its
relationship with frequency can be approximated by the
following equation.

Mel(f) � 2595∗ log10
f

700
+ 1 , (2)
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f is the frequency in Hertz.
Te Mel-scale Frequency Cepstral Coefcients (MFCC) is

a cepstral parameter extracted in the Mel-scale frequency
domain [11]. MFCC were extracted from each clip fle as the
feature. Te MFCC extraction algorithm usually includes
windowing the signal into frames, and applying the fast Fourier
transform (FFT) on frames to get the short-time Fourier
transform spectrum (STFT). Ten, the STFT spectrum was
fltered withMel-flter banks to get theMel-spectrum, theMel-
spectrum was transformed into Mel-frequency cepstrum by
taking the logarithm and then followed by applying the discrete
cosine transform (DCT) to get MFCC coefcients. Te MFCC

feature vector describes the power spectral envelope of a single
frame. Figure 3 shows the waveform, the Mel-spectrum, and
the MFCC of a snoring sound clip with a duration of
60 seconds.

2.1.3. Similarity Calculation. Te MFCC of each clip is
a two-dimensional matrix, each column presents for a frame,
and each row in the matrix corresponds to the Mel-
frequency cepstral coefcients for the corresponding
frame. As the respiratory sound signal is quasiperiodic, the
MFCC matrix can be averaged by each row to get a one-
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Figure 1: Te fow of the proposed method.
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Figure 2: Data extracted from PSG-audio: (a) SpO2; (b) Tracheal sound; (c) Respiratory events.
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dimension vector. As a vector can be presented as a point in
a high-dimension space by its Cartesian coordinates, the
MFCC matrix can be presented as points in a high-
dimension space. Te distance between the two clips can
be measured by the distance between these two points. Based
on our experiences, the Euclidean distance gave the most
satisfying cluster result. Te Euclidean distance between two
points in Euclidean space is the length of a line segment
between the two points. In general, if p and q are two points
in n-dimensional Euclidean space, then the distance between
them can be calculated by the following equation:

d(p, q) �

���������������������������������

p1 − q1( 
2

+ p2 − q1( 
2

+ · · · + pn − qn( 
2



.

(3)

2.1.4. Agglomerative Hierarchical Clustering. Hierarchical
clustering is a method of cluster analysis that can discover the
structure of the dataset in an unsupervised way. It seeks it-
erativelymerging nodes into bigger clusters (agglomerative), or
divisive clustering nodes in the inverse (divisive) to build
a hierarchy of all data. Agglomerative hierarchical clustering
(AHC) is the most common type of hierarchical clustering [12,
13]. Pairs of clusters are successively merged until all clusters
have been merged into one big cluster that contains all objects.
At each iteration, two nodes or clusters, which have the
minimum distance are merged. Te result is a tree-based
representation of all the objects, named a dendrogram. Te
number of clusters needs to be set before the algorithm begins.

A 120minutes length fle (2 hours) was selected from
all the data and segmented into 60 seconds length clips for
demonstration; therefore, 120 clips were used in the
experiments. Te STFT spectrum window length is
1000 ms with an overlap of 500 ms. Te 40 Mel-scale
flters were set in MFCC extraction. Te distance ma-
trix size is a symmetry matrix with a size of (120, 120). Te
dendrogram of the clustering result is shown in Figure 4.
Based on the structure of the dendrogram, the dendro-
gram was divided into 3 clusters. Cluster 1, cluster 2, and
cluster 3 are presented with cyan, magenta, and yellow,
respectively. Te dendrogram is shown in Figure 4, and
the dendrogram is truncated for showing the main
structure for the better visualization efect. Te properties
of each cluster are listed in Table 1.

One clip was chosen from each cluster as an example
for analysis. Te waveform and Mel-spectrum of exam-
ples present for each example are shown in Figure 5.
Figure 5(a) is a spectrum of snoring. Te snoring sounds
are almost the same in amplitude and evenly spaced, the
pitch of the snoring sound is in the low-frequency range
and corresponds to a fundamental frequency with as-
sociated harmonics, and inspiratory is louder than ex-
piratory. Figure 5(b) is a spectrum of normal respiration.
It is characterized by a broader spectrum and is audible
both during the inspiratory and expiratory phases.
Figure 5(c) is a spectrum of uncertain types. Te signal is
very weak, and its spectrum has almost equal energy at
frequencies below 2000 Hz. It is mixed with the weak
breath, but the signal level is insufcient for analysis.
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Figure 3: Spectrum of a snoring sound clip. (a) Te waveform; (b) the Mel-spectrum; (c) MFCC.
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2.2. Snoring Classifcation Based on K-Means Algorithm.
Snoring occurs when the upper airways collapse, air moves
around the foppy tissue near the back of the throat, and causes
the tissue to vibrate. Simple snoring (also called benign snoring)
occurswhen there is a partial collapse of the soft tissues. As such,
simple snoring is generally not considered a health threat.
Apneic Snoring (also called obstructive sleep apnea-related
snoring) is caused by partial or complete obstruction of the
airway, and apneic snoring causes a partial or complete airfow
stop, resulting in little or no oxygen going to the blood [14, 15].
For the apneic snoring, at the end of the obstruction, the closed
upper airway is suddenly opened, and the pressures of the upper
and lower airfows are suddenly balanced, causing the upper
airway to repeat multiple openings and closings in a short
period, producing a popping sound. Te collapse degree and
resistance of the upper airway may vary greatly from the be-
ginning to the end of inspiration, thus, afecting the vibration of
the upper airway tissue [16]. Te snoring sounds in patients
with obstructive sleep apnea and with simple snoring have
diferent characteristics and efects on breath quality. It is es-
sential to discriminate between these two diferent types of
snoring for evaluating the infuence on tidal volume.

Formant frequencies represent the resonance frequen-
cies of the airways and change with the upper airway
anatomy. A formant is the broad spectral maximum pro-
duced by an acoustic resonance of the human vocal tract
[17]. Formants represent the direct source of pronunciation
information, and the extraction and trajectory tracking of

formants play an important role in speech recognition and
speech synthesis. Te formants F1–F3 are the three lowest
resonant frequencies of the vocal tract. F1 is associated with
the degree of pharyngeal constriction and the height of the
tongue. F2 refects the degree of the tongue’s relative ad-
vancement position to its neutral position. F3 is related to
the degree of lip rounding. Among F1–F3, F1 carries more
information than others as it is associated with severity of
apnea. Like speech pronunciation, snoring sounds are also
produced depending on the shape and physical conditions of
the upper airway, the formant of snoring can be extracted as
a snoring feature [18]. Ng et al. proposed that apneic snoring
has a high formant frequency than simple snoring in F1, and
a threshold value of F1� 470Hz can be used to distinguish
apneic snoring from simple snoring [19]. Sola Soler et al.
suggested that the formant standard deviation of OSA
snoring is higher than simple snoring [20].

Tese studies used the formant parameters to distinguish
simple snoring from apneic snoring, and all emphasized the
decisive role of F1. However, some cases may be misjudged
by these methods. Te reason is that the diference between
the speech formant and the snoring formant is not con-
sidered. Te most important formant analysis in speech
processing is the formant tracks. Te spacing between the
word formant is not taken into consideration in speech
processing. On the contrary, in applications such as speech
recognition, the efect of spacing needs to be eliminated.Te
frequently used methods are dynamic time warping (DWT).
By locally scaling the speech sequence, DWT eliminates the
infuence of speech rate and word spacing, so that the
morphology of the two speech sequences is as consistent as
possible, and the maximum possible similarity is obtained.
But in snoring recognition, the interval between breathing is
an important parameter as it is associated with airfow re-
duction time, and the interval of apneic snoring is usually
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Figure 4: Te dendrogram of cluster result.

Table 1: Characteristics of each cluster.

Cluster no Property Clip number
1 Snoring 94
2 Normal respiratory 12
3 Uncertain 14
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Figure 5:Te example waveform andMel-spectrum of each cluster: (a) Example of cluster 1; (b) Example of cluster 2; (c) Example of cluster 3.
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larger and more irregular than simple snoring. To solve this
problem, this paper extracted the standard deviation of the
formant interval, together with the standard deviation of the
formant frequencies as parameters, and used the K-means
algorithm to discriminate between simple snoring and ob-
structive snoring by unsupervised clustering. K-means
clustering is an unsupervised learning algorithm, it
groups the unlabeled dataset into diferent clusters [21]. K
defnes the number of predefned clusters that need to be
created in the process, here the K is set as 2.

Te linear predictive analysis (LPC) method is one of the
fast and more efective formant frequency estimation
methods. Te system function of the human vocal tract can
be uniquely determined by a set of linear prediction co-
efcients, so the efect of vocal tract modulation can be
estimated through LPC analysis. Te formant of snoring can
be obtained. Te sound signals were windowed with
a Hamming window of 20ms with 50% overlap. In each
window, a 14th-order LPC analysis is performed, and the
LPC parameters were calculated via the Yule–Walker
autoregressive method with the Levinson–Drubin recursive
procedure. Te standard deviation of F1 frequencies and the
standard deviation of F1 interval are extracted to form a 2-
dimensional feature vector. Te snoring cluster result is
shown in Figure 6. Te apneic snoring and simple snoring
are marked with red and cyan dots, respectively. After K-
means clustering, the snoring cluster result of AHC is di-
vided into 2 subclusters: cluster 0 and cluster 1.Te property
of all 4 clusters is shown in Table 2. Te spectrum of the
example clip chosen from cluster 0 and cluster 1 is shown in
Figure 7, the formant is displayed with black dots on the
spectrum.

2.3. Tidal Volume Level Estimation. For each cluster, dif-
ferent parameters are extracted and the corresponding tidal
volume levels are determined based on these parameters.
Te tidal volume levels are divided into three grades: high,
medium, and low. Te tidal volume level is calculated for
each cluster.

Cluster 2 contains the normal breathing clips, although
there are fuctuations during normal respiration, the tidal
volume levels of normal breathing can roughly be set as high.

Cluster 1 contains simple snoring. According to Hof-
stein’s research, simple snoring does not cause a sustained
deterioration of MnO2 (mean nocturnal oxygen saturation)
but cause signifcantly the variability of LoO2 (lowest noc-
turnal oxygen saturation) [22]. Based on this research, the
tidal volume level during simple snoring beginning is similar
to normal respiration, but after a certain duration, the
fuctuation of nocturnal oxygen saturation increases and
deteriorates ventilation quality at a moderate level. Although
the accurate SpO2 drop time is not clear, according to the
research by Gruber, the interval to equilibration of oxygen
saturation is within 4.5minutes [23]. Terefore, the SpO2
drop threshold is set at 4minutes, meaning that when the
normal breathing ends and simple snoring starts, after
approximately 4minutes, the SpO2 drops to a medium level
with high probability.

Cluster 0 contains apneic snoring. Te breathing pause
lasts longer than normal breathing during apnea. Based on
the research by Ma et al., nocturnal hypoxemia severity is
proportional to the pause time [24]. To evaluate the severity
of hypoxemia, the maximum breathing pause interval
(MBPI) is calculated as a parameter. According to the apnea
defnition, the threshold to distinguish the low/medium
grade of apneic snoring is set to 10 seconds. Te criterion for
tidal volume level estimation is listed in Table 3.

3. Results and Discussion

Te SpO2 is a reading that shows the amount of oxygen
available in human blood to deliver to the heart, brain,
lungs, and other muscles and organs. Te LoO2 (lowest
nocturnal oxygen saturation) is the lowest SpO2 value
during a certain time and has a high correlation with tidal
volume. Te LoO2 is divided into 3 levels: large than 95%
is considered a high level, less than 90% is considered low
(hypoxemia), and between 95% and 90% is considered
medium (mild) hypoxemia. Te summarized results are
shown in Figure 8. Te frst row is the clustering result,
the x-axis represents the clip index, and each clip is
60 seconds in length. Each clip is classifed into apneic
snoring/simple snoring/breathing/uncertain types. Te
second row is the tidal volume level calculated by the
proposed algorithm. Te third row is the LoO2, which is
divided into high/medium/low levels, and the uncertain
level corresponds to the uncertain clustering type. Te
fourth row is the SpO2 level that is used to calculate the
third row.

Six clips were selected as representatives, which are
shown in Figure 9. Figure 9(a) is a normal respiration state at
the 13th minute, the corresponding SpO2 is stable and LoO2
is above 95%. Figure 9(b) is apneic snoring with MBPI≤ 10
at the 19th minute, the SpO2 fuctuates, and LoO2 is between
95% and 90%. Figure 9(c) is apneic snoring with MBPI> 10
at the 20th minute, the SpO2 fuctuates dramatically, and
LoO2 is below 90%. Figure 9(d) is simple snoring at the 16th
minute, the SpO2 is at a high level as in (a). Figure 9(e) is
simple snoring at the 43th minute, the SpO2 drops slightly,
and the LoO2 drops to between 95% and 90%. Figure 9(f ) is
an uncertain case by which the signal is insufcient to
calculate the SpO2 level.

Te accuracy is calculated by equation (4). Six patients
with diferent apean-hypopnea index (AHI) were selected to
test the efectiveness and robustness of the proposed
method. AHI is defned as the number of apnea or hypopnea
per hour during sleep. It is used as a parameter for the
evaluation of the OSA severity. AHI less than 15 is con-
sidered mild apnea. AHI between 15 and 30 denotes
moderate apnea, while a greater than 30 is considered severe.
Te characteristic of selected data and algorithm perfor-
mance are shown in Table 4.Te algorithm accuracy is 88.3%
in the group with mild apnea. As for the moderate apnea
group, the algorithm accuracy slightly drops to 85.8%. In the
severe apnea group where the sound signal contains ambient
noise, the algorithm accuracy is still above 83%.
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Table 2: Characteristics of after SS/AS classifcation.

Cluster no Property Clip number
0 Apneic snoring (AS) 29
1 Simple snoring (SS) 65
2 Normal respiration 12
3 Uncertain 14
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Figure 7: Example spectrum and formant of; (a) cluster 0 and (b) cluster 1.
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Table 3: Te criterion for tidal volume calculation.

Cluster no Property Criterion Breathing quality

0 Apneic snoring MBPI≤ 10 second Medium
MBPI> 10 second Low

1 Simple snoring Last time< 4minutes High
Last time≥ 4minutes Medium

2 Normal respiration All High
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Figure 9: Te representative state in prediction result. (a) Normal respiration; (b) apneic snoring with MBPI≤ 10; (c) apneic snoring with
MBPI> 10; (d) simple snoring with normal SpO2; (e) simple snoring with SpO2 drops slightly; (f ) uncertain signal.
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Accuracy �
correct prediction number

total number − uncertain number
. (4)

4. Conclusion

In this study, a tidal volume level predictionmethod is proposed
based on unsupervised clustering and snoring parameters. Tis
method can provide a coarse-grained tidal volume level esti-
mation that does not need any calibration. In addition, this
method can be used for sleep breathing monitoring in a home
environment. However, the accuracy of the method in this
study is not very well because noise such as ambient noise will
cause misjudgement, also breathing during sleep is afected by
many other factors such as sleep position, pulmonary disease,
and body movement, these factors cannot be captured by
breathing sound. We are going to improve the performance by
incorporating other factors in the future.

Data Availability

Te data supporting the current study are available from the
corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was partially supported by the Ministry of
Education of Japan, Science, Sport and Culture, Grant-
in-Aid for Scientifc Research, 2019–2022, 19K04257.

References

[1] E.M.Wickwire andN. A. Collop, “Insomnia and sleep-related
breathing disorders,” Chest, vol. 137, no. 6, pp. 1449–1463,
2010.

[2] P. P. Terragni, G. Rosboch, A. Tealdi et al., “Tidal hyperinfation
during low tidal volume ventilation in acute respiratory distress
syndrome,” American Journal of Respiratory and Critical Care
Medicine, vol. 175, no. 2, pp. 160–166, 2007.

[3] N. Gavriely and D. W. Cugell, “Airfow efects on amplitude
and spectral content of normal breath sounds,” Journal of
Applied Physiology, vol. 80, no. 1, pp. 5–13, 1996.

[4] Y. L. Yap and Z. Moussavi, “Acoustic airfow estimation from
tracheal sound power,” IEEE CCECE2002. Canadian Con-
ference on Electrical and Computer Engineering, vol. 2,
pp. 1073–1076, 2002.

[5] N. Reljin, B. A. Reyes, and K. H. Chon, “Tidal volume estimation
using the blanket fractal dimension of the tracheal sounds ac-
quired by smartphone,” Sensors, vol. 15, no. 5, pp. 9773–9790,
2015.

[6] A. Yadollahi and Z. Moussavi, “Comparison of fow-sound
relationship for diferent features of tracheal sound,” in
Proceedings of the 2008 30th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society,
pp. 805–808, Vancouver, BC, Canada, Augest 2008.

[7] J. Fu, W. N. Teng, and W. Li, “Estimation of respiratory nasal
pressure and fow rate signals using diferent respiratory
sound features,” IRBM, vol. 43, no. 6, pp. 694–704, 2021.

[8] G. Chen, I. de la Cruz, and E. Rodriguez-Villegas, “Automatic
lung tidal volumes estimation from tracheal sounds,” in
Proceedings of the 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society,
pp. 1497–1500, Chicago, IL, USA, November 2014.

[9] A. Yadollahi and Z. M. K. Moussavi, “Te efect of anthro-
pometric variations on acoustical fow estimation: proposing
a novel approach for fow estimation without the need for
individual calibration,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 6, pp. 1663–1670, 2011.

[10] G. Korompili, A. Amflochiou, L. Kokkalas et al., “PSG-Audio,
a scored polysomnography dataset with simultaneous audio
recordings for sleep apnea studies,” Scientifc Data, vol. 8,
no. 1, pp. 197–213, 2021.

[11] V. Tiwari, “MFCC and its applications in speaker recogni-
tion,” International Journal on Emerging Technologies, vol. 1,
no. 1, pp. 19–22, 2010.
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