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Sleep apnea syndrome (SAS) is the most common sleep disorder which afects human life and health. Many researchers use deep
learning methods to automatically learn the features of physiological signals. However, these methods ignore the diferent efects
of multichannel features from various physiological signals. To solve this problem, we propose a multichannel fusion network
(MCFN), which learns the multilevel features through a convolution neural network on diferent respiratory signals and then
reconstructs the relationship between feature channels with an attention mechanism. MCFN efectively fuses the multichannel
features to improve the SAS detection performance. We conducted experiments on the Multi-Ethnic Study of Atherosclerosis
(MESA) dataset, consisting of 2056 subjects. Te experiment results show that our proposed network achieves an overall accuracy
of 87.3%, which is better than other SAS detection methods and can better assist sleep experts in diagnosing sleep disorders.

1. Introduction

Sleep apnea syndrome (SAS) is a common sleep-breathing
disorder characterized by repetitive events of complete or
partial cessation of breathing during sleep [1]. SAS often
occurs in men and women aged 30 to 60 years or older [2].
Te main symptoms of SAS are daytime sleepiness, tired-
ness, inattention, and so on. Most SAS patients are undi-
agnosed and untreated which may lead to health problems
such as heart and brain diseases [3–6].

SAS includes two important sleep events: obstructive
sleep apnea (OSA) and hypopnea. According to an Amer-
ican Academy of Sleep Medicine (AASM) manual [7], OSA
is scored when there is a 90% or more reduction in the
prevent baseline of the airfow amplitude. However, there is
a continued respiratory efort in the thoracic and abdominal
belts. Hypopnea is scored when there is a 30% or more
reduction in the preevent baseline of the airfow and 3% or
more signifcant oxygen desaturation from the preevent
baseline. Every OSA and hypopnea event lasts longer than

10 s. Normal sleep is scored when there is no OSA and
hypopnea event or their duration time is less than 10 s.

Diagnosing SAS traditionally uses polysomnography
(PSG), which is the gold standard. PSG can measure several
signals, such as respiratory, electrocardiography (ECG),
blood oxygen saturation, electroencephalography (EEG),
and body movement signals. However, it is expensive and
inconvenient because the patients need to attach a variety of
sensors to their bodies. Moreover, it is time-consuming due
to the manual analysis of signals. Terefore, it is necessary to
propose alternative methods to automatic SAS detection
using fewer physiological signals.

Various physiological signals have been used to detect
sleep events [8–10]. Among these signals, respiratory signals
can directly refect the breathing situation during sleep [11].
Te respiratory signal can be measured directly from the
airfow sensor and thoracic and abdominal belts. Some
methods have been used for SAS detection, such as
threshold, support vector machine (SVM), logical regression
(LR), and k nearest-neighbor (k-NN) [12–16]. Tese
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methods extracted the time domain, frequency domain, and
other nonlinear features from physiological signals. How-
ever, manual feature extraction is difcult to perform in
noisy signals and requires domain knowledge.

Deep learning networks are alternatives as they can
learn informative features without prior domain knowl-
edge. Many researchers use long- and short-term memory
(LSTM) and convolutional neural networks (CNNs) to
classify physiological signals [17–32]. In particular, CNN is
a popular class of deep learning networks that can auto-
matically learn and fnd features from physiological signals.
Haidar et al. [22] have demonstrated the efcacy of CNN
models in classifying apnea or hypopnea events using
airfow respiratory signals, with an accuracy of 77.6%.
When a wavelet spectrogram of airfow respiratory signals
input the network, the accuracy was 79.8%. If we use ab-
dominal and thoracic respiratory signals simultaneously,
the performance can reach 83.5% [23]. Urtnasan et al. [24]
proposed a method for automated OSA detection from a
single-lead ECG using CNN. Choi et al. [25] used CNN and
a single-channel nasal pressure signal to detect the real-
time apnea-hypopnea event. Nasal pressure signals were
adaptively normalized and segmented by sliding a 10 s
window at 1 s intervals. Many researchers use the LSTM
model for SAS detection to learn the temporal features of
sleep events. Van Steenkiste et al. [26] used LSTM to detect
sleep apnea from raw respiratory signals, obtaining 77.2%
accuracy. Elmoaqet et al. [27] used LSTM and bidirectional
long-short-term memory (Bi-LSTM) to detect three sleep
events and got an average accuracy of 83.6%. Yu et al. [32]
proposed a method of sleep staging based on EEG signals
combined with sleep apnea-hypopnea syndrome classif-
cation, which signifcantly reduced the rate of false posi-
tives that appear in the waking period. Te data
preprocessed by the sliding window were manipulated by
LSTM and CNN to identify distinct various sleep events.
Although these networks can automatically extract and
learn deep-level features from physiological signals, there
are still some shortcomings. First, they only focus on
extracting deep features, ignoring the efect of shallow
features, which can provide rich information for sleep
events. Our initial conference paper solved this problem
using a multilevel feature fusion network in [33]. Second,
these networks did not consider the impact of channel
features obtained by diferent respiratory signals. Some
channel features can clearly distinguish sleep events, while
others have little efect on SAS detection. We propose a
multichannel fusion network (MCFN) to address this
problem. MCFN efectively utilizes the shallow features of
respiratory signals and fuses the multichannel features by
an attention mechanism. We design a multichannel fusion
block to calibrate the feature channel of various respiratory
signals adaptively. Since the signifcance of each respiratory
signal feature channel is diferent, this block can auto-
matically obtain the importance of each feature channel,
selectively enhance the useful channel feature, and restrain
the useless ones. We evaluate our proposed network on a
publicly available dataset with 2056 subjects. Te MCFN
can achieve an overall accuracy of 87.3%.

2. Material and Methods

MCFN can efectively fuse the features of diferent levels and
channels. Tis network mainly includes signal preprocess-
ing, multilevel feature concatenation, and multichannel
attention fusion. We show the framework in Figure 1. First,
we segment the various respiratory signals into a series of the
30 s length of epochs. Te preprocessing block standardizes
the respiratory signals, and each epoch is labeled as an event
of OSA, hypopnea, and normal sleep according to the AASM
guidelines. Second, the multilevel feature concatenation
block obtains abundant features from shallow and deep
layers through skip connections. Shallow features also
contain some valuable identifcation information. Tird, the
multichannel fusion block uses an attention mechanism to
learn diferent weights. Te channel features that signif-
cantly afect SAS detection can obtain larger weights; oth-
erwise, they get smaller weights. Finally, the feature vectors
are input into two convolution layers and the max-pooling
layer. Te sleep classifcation is performed in the fully
connected layer by sigmoid activation functions. In the
following subsections, we detail the main block of this
network.

2.1. Dataset. We conducted our experiments on a large
dataset called the Multi-Ethnic Study of Atherosclerosis
(MESA) [28, 29].Tis dataset is retrieved from the National
Sleep Research Resource (NSRR). NSRR is a new National
Heart, Lung, and Blood Institute resource designed to
provide extensive data resources to the sleep research
community. MESA contains PSG recordings of 2056
subjects. Te subjects, aged 45 to 84, come from diferent
ethnic groups, including black, white, Hispanic, and
Chinese men and women. Each PSG recording included
various physiological signals such as EEG, respiration
signals, and ECG. Our network only used three types of
respiratory signals extracted from nasal thermal sensors
and conductive belts around the thorax and abdomen. Te
sampling frequency of these signals is 32Hz. Sleep experts
labeled the start time and duration time of OSA and
hypopnea events.

2.2. Data Preprocessing. In our network, three types of re-
spiratory signals need to be preprocessed. First, we delete
some subjects from the dataset which only contain normal
sleep events. Second, due to diferent detection environ-
ments and equipment, the amplitude of each respiratory
signal is very diferent. Terefore, the respiratory signal is
individually standardized by subtracting the mean and di-
viding it by the standard deviation. Finally, according to the
time of each sleep event, each 30 s epoch was labeled as OSA,
hypopnea, or normal sleep event. If the epoch contains only
obstructive sleep apnea or hypopnea lasting more than 10
seconds, it is labeled OSA or hypopnea. We excluded the
epoch with obstructive sleep apnea and hypopnea events
lasting more than 10 seconds. If an epoch contains ob-
structive sleep apnea or hypopnea events lasting less than 10
seconds, it is labeled as normal sleep.
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We also need to consider the balance classifcation of
sleep events in preprocessing blocks. Typically, sleep events
such as normal sleep are more thanOSA or hypopnea.When
learning a detection network with imbalanced classes, the
result detects the most frequent sleep events. One way to
address this issue is to employ balanced sampling. We
randomly select the same number from the majority sleep
event as the minority sleep event and then feed the network
with batches of data that contain as many epochs from each
sleep event.

2.3. Multilevel Feature Concatenation Block. A simple CNN
architecture has been used for SAS detection [23, 33]. It was
composed of convolution, pooling, and classifcation layers.
Te convolution layer extracts a feature map by applying a
flter to the input respiratory signal. Te pooling layer makes
the feature more distinct and reduces the amount of data.
Te convolution layer can flter out some high-frequency
information and make the signal smoother. In Figure 2, the
partial feature map of the airfow respiratory signal after four
convolution layers is shown. We fnd that with the increase
of convolution layers, the receptive feld of features becomes
larger, and more high-frequency information is fltered.
Although some networks use deep-level features to detect
SAS, some high-frequency features are lost. Multilevel
feature concatenation is realized through fve skip con-
nections to keep more high-frequency features in the
network.

Te multilevel feature concatenation block includes four
convolution layers, two pooling layers, fve skip connections,
and one concatenation. We detail the parameters of diferent
layers, which are summarized in Table 1. Each convolution

layer has 32 flters with a rectifed linear unit activation
function, and each max-pooling layer has a pool size of (1, 2)
with two strides. Te convolutional kernel size is (1, 3) with
three strides or (1, 2) with two strides. Following each
convolution and pooling layer, the features of this level are
obtained by average pooling to down-sampling. Ten, these
features are concatenated to generate multilevel feature
maps. Tese features include shallow and deep features and
provide more basic information.Tey can improve detection
performance.

2.4. Multichannel Attention Fusion Block. Diferent respi-
ratory signals such as airfow, thoracic, and abdominal have
additional predictive power for SAS detection [27]. We fuse
the multichannel features with an attention mechanism to
fully use multilevel features from three types of respiratory
signals. Tis block adaptively recalibrates channel-wise
feature responses by explicitly modeling interdependencies
between channels. It can learn to emphasize informative
features and restrain less useful ones selectively.

As shown in Figure 1, we obtain the C×W×H features
through the multilevel feature concatenation block, where C
is the number of channels, and each channel containsW×H
features. Each respiratory signal has 192 channels, and each
channel includes 1× 7 features. Te features of each respi-
ratory signal are concatenated to obtain 576 channel fea-
tures, which are the input of the multichannel attention
fusion block. We recalibrate the multichannel features as
follows.

First, the Fsq ( ) operation compresses the features along
the spatial dimension, turning each two-dimensional feature
channel into an actual number. Te global average pooling

Preprocessing

Preprocessing

(a) Flow respiratory signal

(b) Thoracic respiratory signal

(c) Abdominal respiratory signal

Preprocessing

Normal

Hypopnea

OSA

FC

C

F sq
 (·)

Fex (·)

F
re  (·)

C Concatation

Feature Vector FC

Feature Maps

Fully Connected

Figure 1: Overall framework of MCFN for SAS detection.
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completes this operation to make the actual number have a
global receptive feld. Te output dimension is the same as
the number of input channels. Fsq (μc) is calculated as
follows:

zc � Fsq μc( 􏼁 �
1

H × W
􏽘

H

i�1
􏽘

W

j�1
μc(i, j), (1)

where μc represents the feature map of the c-th channel
feature map and i and j represent the row and column of the
feature map, respectively.

Second, the Fex ( ) operation is similar to the gate
mechanism in the recurrent neural network (RNN). Tis
operation can learn a nonlinear interaction between chan-
nels, and it can learn a nonmutually exclusive relationship.
Te operation is completed by two fully connected layers
(FC). Fex (z, W) is calculated as follows:

s � Fex(z, W) � σ W2δ W1, z( 􏼁( 􏼁, (2)

where δ refers to the ReLU function and the parameter W1
multiplied by Z is the frst FC layer. To limit model com-
plexity and aid generalization, dimensions are reduced

according to c/16 × c. A dimensionality-increasing layer
returns to the channel dimension of the transformation
output.

Xc � Fre uc, sc( 􏼁 � uc · sc. (3)

Finally, the Fre ( ) operation regards the output weight of
the excitation as the importance of each feature channel.
Ten, the original feature is recalibrated on the channel
dimension by weighting the previous feature by channel. Fre
(μc, sc) is calculated.where sc indicates the importance of the
feature channel, and μc represents the featuremap of channel
C.

After recalibration, there are 576 channel feature maps.
Te size of each feature map is 1× 7. After two convolutions
and one pooling operation, the convolution kernel sizes are
(1, 3) and (1, 2), and the strides are 3 and 2, respectively. Te
max-pooling size is (1, 2), and the stride is 2. Finally, the
fatten operation obtains the 576 features. Ten, two fully
connected layers and the sigmoid function output the
probability of each sleep event. According to the probability
value, this block outputs the sleep events.
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Figure 2: Feature maps of diferent convolution layers. (a) Airfow respiratory signal of OSA. (b) Feature map of the frst convolution layer.
(c) Feature map of the second convolution layer. (d) Feature map of the third convolution layer. (e) Feature map of the fourth convolution
layer.

Table 1: Parameters in multilevel feature fusion block.

Layer Size Stride #Filter Activation Dropout
Conv1 (1, 3) 3 32 ReLU ( ) 0.2
Conv2 (1, 2) 2 32 ReLU ( ) 0.2
Pooling (1, 2) 2 32 — —
Conv3 (1, 3) 3 32 ReLU ( ) 0.2
Conv4 (1,2) 2 32 ReLU ( ) 0.2
Pooling (1, 2) 2 32 — —
Concat — — 192 — —
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2.5. Performance Evaluation. We evaluate and compare the
performance of diferent methods using classifcation ac-
curacy, sensitivity (recall), specifcity, precision, and F1
score. Tey are defned as follows:

Accuracy �
TP + TN

TP + TN + FN + FP
× 100%,

Specif icity �
TN

TN + FP
× 100%,

Precision �
TP

TP + FP
× 100%,

Sensitivity(Recall) �
TP

TP + FN
× 100%,

F1 �
Precision∗Recall
Precision + Recall

× 100%,

(4)

where TP, FP, TN, and FN represent the number of true
positive, false positive, true negative, and false negative
epochs. Te proportion of the correctly identifed epochs is
measured by sensitivity. Specifcity refects the detection
efect of negative samples.

Te confusion matrix also is used. Each row of the
confusion matrix represents the epoch in actual labels, while
each column represents the epoch in the predicted labels.
We also standardized the confusionmatrix by rows to obtain
diferent probabilities. We use colors with diferent shades to
represent the probability. Te darker the color, the greater
the probability, vise versa.

3. Experimental Results

Tis section presents the experimental setup and several ex-
perimental results designed to demonstrate the role of each
block. First, we showed the classifcation results of the MCFN
model, which proves that the model has better performance.
Second, we confrmed the efect of diferent respiratory signals
on diferent sleep event detections. Tey complement each
other in the SAS detection. Tird, we demonstrated the ad-
vantages of the multilevel feature concatenation block. Finally,
we confrmed that the attention mechanism efectively fuses
the multichannel features to improve performance.

3.1. Experimental Setup. Te proposed network was trained
and tested on the MESA dataset. After preprocessing, we
selected 1801 subjects from 2506 subjects. Tey included the
54517 OSA events, 209910 hypopnea events, and 2019760
normal sleep events. Te training and test set consisted of a
balanced number for each sleep event to prevent the model
from overftting to the majority number of the class. We
randomly selected 54517 sleep events from each sleep
classifcation and mitigated the class imbalance issue. Te
experiment chose 80% of the sleep events as the training set
and 20% as the testing set.

Te training and testing are conducted based on the
TensorFlow framework of Python 3.6. Te experiments used
the graphics card NVIDIA GTX 2080Ti GPU. Te proposed

network adopted the Adam optimization method and cross-
entropy as the loss function.Te initial learning rate is 1e− 3,
and the learning rate is 1e− 4 after 40 iterations. Te size of
the mini-batch is 400 sleep events. Te network had training
of 100 epochs.

3.2. SASDetection Performance ofMCFN. TeMCFNmodel
detects sleep events using three respiratory signals of the
chest, abdomen, and nasal airfow on the MESA dataset. Te
average accuracy is 87.3%, and the average F1 score is 87.3%.
Table 2 presents the detection performance of the model. We
found that the performance indexes of OSA sleep event
detection are the highest, recall can reach 93.7%, the F1 score
is 93.5%, and precision is 93.3%, indicating that the MCFN
model can achieve good performance in detecting OSA
events. Tere is a contradiction between the precision and
recall of normal sleep and hypopnea events, which the F1
score can measure. Te F1 scores of the two events are very
similar, with a diference of only 0.8%, indicating that the
performance of the MCFN model in detecting these two
events is the same. From the confusionmatrix, we found that
there are some misclassifcations between normal sleep and
hypopnea events, mainly because sometimes the waveforms
of the two events are very similar, but there are diferences in
amplitude.TeMCFNmodel can achieve good performance
in detecting OSA events. Te main reason is that the
waveform of the respiratory signal of OSA events is very
diferent from that of other events.

3.3. Te Efects of Tree Respiratory Signals. We used sen-
sitivity and specifcity to measure the efect of diferent
respiratory signals on various sleep events. Te sensitivity
measures the proportion of correctly identifed positives,
such as the percentage of OSA events correctly identifed as
having the event. Te specifcity measures the proportion of
correctly identifed negatives, such as the percentage of not
OSA correctly identifed as not having the event.

We show the sensitivity of airfow (Flow), thoracic
respiratory signal (Tor.), and abdominal respiratory signal
(Abdo.) in Figure 3. Te sensitivity of abdominal respi-
ration signal in detecting OSA and hypopnea sleep events is
81.39% and 73.05%, respectively. Te sensitivity of the
airfow respiration signals in detecting normal sleep events
is 72.9%, which was higher than the other respiratory
signals.

We show the specifcity in Figure 4. Te specifcity of the
airfow respiratory signal in detecting OSA was 93.72%, and
the specifcity of detecting hypopnea sleep events was
87.64%, which was 4.31% higher than that of the abdominal
respiratory signal. Te specifcity of abdominal respiratory
signals in detecting normal sleep events was 47.2%. Tese
experimental results show that diferent respiratory signals
play diferent roles in detecting various sleep events, so we
can use three respiratory signals simultaneously for SAS
detection.

To comprehensively evaluate the role of three respiratory
signals in detecting SAS, we show the accuracy in Figure 5.
We input single, two, and three respiratory signals into the
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MCFNmodel, respectively. It can fnd that the SAS detection
performance of single respiratory signals is the lowest. Te
accuracy of nasal airfow, abdominal, and thoracic

respiratory signals was 76.5%, 76.3%, and 74.0%, respec-
tively. When we combine the respiratory signals in pairs, the
accuracy improves to varying degrees compared with that of
single respiratory signals, such as the accuracy of combined
fow and thoracic respiratory signals which can reach 83.1%,
which is 6.6% higher than that of fow. Te detection ac-
curacy is the highest when the three respiratory signals are
combined, reaching 87.3%. Te detection accuracy im-
proved by 9.1%.

We fnd that the detection performance of the combined
respiratory signals is better than that of single respiratory
signals. Te three kinds of respiratory signals play diferent
roles in detecting sleep events. Te combination of multiple
respiratory signals can complement each other and improve
the SAS detection performance.

3.4. Multilevel Features Concatenation Block Improves
Performance. In this experiment, we investigate the infu-
ence of the multilevel feature concatenation block on
classifcation performances. First, to concatenate the features
of diferent levels, it is necessary to down-sample the shallow
features to get the same dimension. Tere are two methods
for down-sampling: average pooling and max pooling.
Trough the experiment, we fnd that the two methods have
little efect on the detection performance. We choose one
way randomly, and here we choose average pooling to re-
duce the dimension. Ten, by inputting diferent respiratory
signals into the model with only deep-level features or
multilevel features, the overall accuracy obtained is shown in
Figure 6.

We fnd that whether it is single respiratory signals or
combined respiratory signals, the detection accuracy using
multilevel features is higher than that using only deep
features. For airfow respiratory signals, the accuracy is only
improved by 0.2%, indicating that the other level’s features
provide less identifcation information. For thoracic respi-
ratory signals, the accuracy with only deep features was
71.1%, and the accuracy with multilevel features was 74.0%.
It increased by 2.9%, indicating low-level features of thoracic
respiratory signals which can provide rich identifcation
information and improve the detection performance. For
the combined respiratory signals, the accuracy can get
improvement.

Tis result shows that the multilevel features of various
respiratory signals have diferent efects on SAS detection.
Te complete learning features of thoracic and abdominal
respiratory signals can improve detection accuracy. In
contrast, the multilevel features of airfow respiratory signals
have little impact on performance.

Table 2: Confusion matrix and the per-class result of the MCFN model.

MCFN output Per-class result (%)
Normal Hypopnea OSA Precision Recall F1 score

Ground truth
Normal 4586 836 185 87.5 81.8 84.6

Hypopnea 574 4842 191 81.4 86.4 83.8
OSA 79 273 5255 93.3 93. 93.5

Bold values indicate the highest value of each performance index.
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Figure 3: Sensitivity of diferent respiratory signals on sleep events.
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3.5. Multichannel Features Fusion Block Improves
Performance. In this experiment, we investigated the in-
fuence of the relationship between diferent channel fea-
tures on classifcation performances. We take two types of
airfow and abdominal signals or three kinds of respiratory
signals as an example. Whether or not multichannel feature
fusion is used, Figure 7 shows the SAS detection confusion
matrix.

Comparing the confusion matrices (a) and (b), we fnd
that the correct classifcation probability of hypopnea events
increased from 0.78 to 0.83, increased by 0.05. Te correct
classifcation probability of OSA events rose from 0.92 to
0.94, increasing by 0.02. Te experimental results show that
the respiratory signal combined with abdominal and airfow
can extract rich features. After attention fusion, it can
strengthen useful features and suppress useless features to
improve performance. Te correct classifcation probability
of normal sleep events did not increase. Still, it decreased by
0.02, indicating that the extracted features by the two
combined signals are very similar.

Comparing the confusion matrices (a) and (c), we fnd
that the correct probability of each event classifcation in (c)
is greater than or equal to that in (a). Te experimental
results confrm that the classifcation performance of three
respiratory signals is better than that of two signals, which
further verifes that various respiratory signals can provide
richer information.

Comparing the confusion matrices (c) and (d), we fnd
that the correct probability of event classifcation in (d) is
greater than that in (c). Te correct classifcation probability
of hypopnea events increased from 0.82 to 0.86, an increase
of 0.04. Te correct probability of OSA event and normal
event classifcation has increased by 0.01. Te experimental
results confrm that the attention mechanism improves the
detection performance by fusing the multichannel features
of the three respiratory signals.

Te abovementioned experimental results confrm that
the multichannel attention fusion block can improve the
correct classifcation probability of hypopnea events and
OSA events. Te efect on normal sleep events is not very
signifcant, mainly because the waveform of such events is
relatively stable.

3.6. LearnedWeight for Each Channel Feature. Te attention
mechanism can learn diferent weights for the channel
features. Te experiment results verify that the channel
features of each respiratory signal have diferent efects on
SAS detection. Figure 8 shows the multichannel feature
weights of three respiratory signals. For the frst channel of
each respiratory signal, the channel weight of airfow re-
spiratory is 0.18, the channel weight of thoracic respiratory is
0.50, and the channel weight of abdominal respiratory is
0.16. For the 64th channel of each respiratory signal, the
channel weight of airfow respiratory is 0.50, the channel
weight of thoracic respiratory is 0.50, and the channel weight
of abdominal respiratory is 0.99. After multilevel feature
concatenation of each respiratory signal, the model can
obtain 192 channel features.Temultichannel feature fusion
block obtains 576 channel features. Te attention mecha-
nism learns the weight of each feature channel through
training.

From Figure 8, we can fnd that the weights of each
respiratory signal feature channel are diferent. For example,
the weights of fow respiratory signals channel features are
close to 1, and some are close to 0. Tese weights indicate
that varying levels of features have diferent efects on sleep
event detection. In addition, the weights of the feature
channels 0, 32, 64, 96, 128, and 160 are marked with special
graphics. Te importance of channel features at the same
level is also diferent.

Figure 9 shows the weight distribution of diferent re-
spiratory signal channel features. When the weight is less
than 0.25, the weight distribution of the three respiratory
signals is very similar, indicating that the number of weak
action feature channels is approximately equal. When the
weight is in the range of 0.25∼0.75, the number of feature
diagrams of airfow respiratory signal is signifcant, indi-
cating that the role of airfow respiratory signal is moderately
important. When the weight is more powerful than 0.75, the
number of the abdominal respiratory signals feature dia-
grams is large. Tis result indicates that these features
contribute the most to SAS detection and contain the most
identifying information. In addition, the Kolmogor-
ov–Smirnov (KS) test further determines whether the
channel weights of the two respiratory signals obey the same
distribution. Since the P values are less than 0.05, they belong
to diferent distributions. Terefore, each respiratory signal
learning channel feature has diferent efects on SAS de-
tection, which shows that the fusion of multiple respiratory
signals is essential.

 . Discussion

Several methods have been applied to automated sleep event
detection in previous studies. Tey can detect various sleep
events, such as OSA, hypopnea, normal sleep, central sleep
apnea (CSA), and mixed sleep apnea (MSA). Te detection
accuracy is compared with previous studies to evaluate the
efciency of MCFN.

Gutiérrez et al. [15] used a single airfow respiratory
signal and the AdaBoost method to obtain 86.5% accuracy.
Tey extracted features manually, detected normal sleep and
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sleep apnea events, and did not classify them in detail. Lin
et al. [13] explored the possibility of identifying sleep apnea
events, including OSA and CSA, by solely analyzing one or
both the thoracic and abdominal respiratory signals. Tey
introduced an adaptive nonharmonic model to model the
thoracic and abdominal movement signals. Ten, an SVM
method was applied to classify three categories of sleep
events. When features from the thoracic and abdominal
signals were combined, the overall classifcation accuracy
became 81.8%. Jiménez et al. [16] evaluated the comple-
mentarity of airfow and oximetry (SpO2) signals. Tey
assessed the utility of a multiclass AdaBoost classifer to
predict OSA severity in children.

Van Steenkiste et al. [26] used LSTM to detect normal
sleep and sleep apnea on large data sets, and the accuracy was
77.2%. Although the temporal correlation of sleep events was
considered, they ignored the relationship between diferent
channel features. Elmoaqet et al. [27] developed the LSTM
and Bi-LSTM framework to detect apnea events. Tey
evaluated the framework over three respiration signals:
airfow, nasal pressure (NPRE), and abdominal respiratory
inductance plethysmography. Tey used PSG recording of
17 patients with obstructive, central, and mixed apnea
events. Te average accuracy was 83.6%.

Barroso et al. [31] conducted the 13 bispectral features
from airfow. Te oxygen desaturation index ≥3% (ODI3)
was also obtained to evaluate its complementarity to the
bispectral analysis. Tey used the fast correlation-based flter
(FCBF) and a multilayer perceptron (MLP) to select the

feature and recognize the pattern. Te model reached 82.5%
accuracy for the typical cut-ofs of fve events per hour. Yu
et al. [32] proposed the SAS detection and classifcation
method, which uses C4/A1 single-channel EEG signal,
oronasal fow signal, and abdominal displacement signal.
Tey utilized LSTM-CNN to identify four distinct types:
normal sleep, hypopnea events, OSA, and CSA+MSA. Te
overall classifcation accuracy achieves 83.94%.

It is challenging to compare as they do not all use the
same database and the number of the same sleep classif-
cation. To make a comparison on the same dataset, we have
implemented the research of Haidar et al., who have carried
out a lot of analysis on the MESA dataset. In the beginning,
in [22], they got 77.6% accuracy with CNN by inputting
airfow respiratory signal. Later, in [23], they obtained 83.5%
accuracy by inputting three types of respiratory signals. All
the previously mentioned research studies are summarized
in Table 3. Considering the efect of shallow features on sleep
classifcation and the relationship between diferent channel
features in detecting sleep events, our experiment improved
the accuracy by 3.9%. Our network could not only detect
many types of sleep events but also improve accuracy.

5. Conclusion

We propose an MCFN model to detect OSA, hypopnea, and
normal sleep. Te model uses the multilevel feature con-
catenation block which can extract more rich information
and give full play to the role of shallow features. Ten, the
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Figure 9: Distribution of weight values on diferent respiratory signal channel features.

Table 3: Performance comparison between MCFN and existing methods.

Signals Methods Patients Classify Accuracy (%)
Gutiérrez et al. [15] Flow AdaBoost 317 Apnea/normal 86.5
Lin et al. [13] Flow, Abdo. Tor. SVM 34 OSA/CSA/hypopnea 81.8
Jiménez et al. [16] Flow, SpO2 AdaBoost 974 OSA/normal 81.3
Haidar et al. [23] Flow, Abdo. Tor. CNN 2056 OSA/hypopnea/normal 83.4
Van Steenkiste et al. [26] Abdo. Tor. EDR LSTM 2100 Apnea/normal 77.2
Elmoaqet et al. [27] Flow, Abdo. NPRE LSTM/Bi-LSTM 17 OSA/CSA/MSA 83.6
Barroso et al. [31] Flow, ODI3 MLP 946 Apnea/normal 82.5
Yu et al. [32] EEG, fow, Abdo. LSTM_CNN 126 Normal/hypopnea/OSA/MSA 83.9
Ours Flow, Abdo. Tor. MCFN 2056 OSA/Hypopnea/normal 87.3
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model utilizes an attention mechanism to efectively fuse the
diferent level features of airfow, abdominal, and thoracic
respiratory signals. Te fusion block makes each channel
feature of three respiratory signals have diferent weights,
enhances the useful channel feature, and suppresses the
useless channel feature. Te experiments verifed that
multiple respiratory signals, multilevel features, multi-
channel fusion, and channel features afect SAS detection.
MCFNmodel improves SAS detection performance by using
the complementarity of various signals and the completeness
of features. Te detection accuracy is 87.3% on the MESA
dataset, which is better than the other methods. In future
research, we will try to study the efect of sleep apnea on
sleep staging.
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